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Abstract

Sifted colimits, important for algebraic theories, are “almost” just
the combination of filtered colimits and reflexive coequalizers. For
example, given a finitely cocomplete category A, then a functor with
domain A preserves sifted colimits iff it preserves filtered colimits and
reflexive coequalizers. But for general categories A that statement is
not true: we provide a counter-example.

Introduction

Sifted colimits play for the doctrine of finite products precisely the role which
filtered colimits play for the doctrine of finite limits. Recall that a small
category D which is filtered has the property that D-colimits commute with
finite limits in Set. The converse is less well known (but trivial to prove
using representable functors as diagrams): if D-colimits commute with finite
limits in Set, then D is filtered. Now sifted categories are defined as those
small categories D such that D-colimits commute with finite products in Set.
They were first studied (without any name) in the classical lecture notes
of P. Gabriel and F. Ulmer [6] who proved that D is sifted iff the diagonal
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∆: D → D × D is a final functor; this nicely corresponds to the fact that
D is filtered iff the diagonals ∆: D → DJ are final for all finite graphs J .
Sifted colimits are colimits whose schemes are sifted categories; they were
studied (independently of [6]) by C. Lair [9] who called them “tamisante”,
later P. T. Johnstone suggested the translation to “sifted”. Besides filtered
colimits, prime examples of sifted colimits are reflexive coequalizers, that is,
coequalizers of parallel pairs of epimorphisms with a joint splitting.

Sifted colimits are of major importance in general algebra. Recall that
an algebraic theory (in the sense of F. W. Lawvere [10]) is a small category
T with finite products and an algebra for T is a functor A : T → Set pre-
serving finite products. The category Alg T of algebras is a full subcategory
of the functor category Set T . Now, let us denote by SindA the free com-
pletion of a category A under sifted colimits (resembling the name IndA for
Grothendieck’s completion under filtered colimits, see [4]). Then for every
algebraic theory T the category of algebras is just the above completion of
T op:

Alg T = Sind T op

see [2]. And algebraic functors, that is functors between algebraic categories
induced by morphisms of algebraic theories, are precisely the functors pre-
serving limits and sifted colimits, see [1].

The aim of our paper is to discuss the slogan
“filtered colimits = filtered colimits + reflexive coequalizers.”

This could mean the existence:

A category A has sifted colimits iff it has filtered colimits and reflexive
coequalizers.

Or the preservation:

A functor F : A → B preserves sifted colimits iff it preserves filtered
colimits and reflexive coequalizers.

Unfortunately, none of these two statements holds in general, as we demon-
strate by counter-examples. However, both statements are true whenever A
is finitely cocomplete. Whereas the first one is trivial, since filtered colimits
imply cocompleteness, the latter one concerning preservation is not. Let us
mention that this result, assuming A is cocomplete, was proved by A. Joyal
(his proof even works for quasicategories, see [7]) and by S. Lack (see [8]).
There proofs are different, and more elegant than our proof below, however,
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2 EXISTENCE OF SIFTED COLIMITS

for our proof we only assume the existence of finite colimits. (Another proof
assuming cocompleteness is presented in [3].)

Let us also remark that there is another interpretation of the above slogan:
the free completion of a category A under sifted colimits can be constructed
as a free completion of IndA under reflexive coequalizers. This is true if A
has finite coproducts and false in general, see [2].

Acknowledgement We are grateful to the referee whose comments led us
to an improved presentation of our result.

2 Existence of Sifted Colimits

As mentioned in the Introduction, a small category D is called sifted iff
D-colimits commute in Set with finite products. That is, given a diagram

D × J → Set

where J is a finite discrete category, then the canonical morphism

colim
D

(
∏
J

D(d, j)→
∏
J

(colim
D

D(d, j)

is an isomorphism.
Colimits of diagrams over sifted categories are called sifted colimits.

2.1 Remark. (i) As proved by P. Gabriel and F. Ulmer [6], a small, nonempty
category D is sifted if and only if the diagonal functor ∆: D → D×D is final.
This means that for every pair of objects A, B of D the category (A, B) ↓ ∆
of cospans on A, B is connected. That is:

(a) a cospan A→ X ← B exists, and

(b) every pair of cospans on A, B is connected by a zig-zag of cospans.

This characterization was later re-discovered by C. Lair [9].

(ii) P. Gabriel and F. Ulmer [6] also proved that a small category D
is sifted if and only if D is final in its free completion FamD under finite
coproducts. In fact, (a) and (b) above clearly imply the same property for
finite families of objects too. This is precisely the finality of D → FamD.

(iii) Every small category with finite coproducts is sifted. This immedi-
ately follows from (i).
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2.2 Example. ([2]) Reflexive coequalizers are sifted colimits. That is, the
category D given by the graph

P

a1 ))

a2

55
Qdoo

and the equations
a1 · d = idB = a2 · d

is sifted. This follows from the characterization of sifted colimits mentioned
in the introduction. We present a full proof here because we are going to use
it again below. Let us add that this fact was was already realized by Y. Diers
[5] but remained unnoticed. Another proof is given in [12], Lemma 1.2.3.

In fact, suppose that

A
a2

//
a1 //

B
c // C and A′

a′2

//
a′1 //

B′ c′ // C ′

are reflexive coequalizers in Set. We can assume, without loss of generality,
that c is the canonical function of the quotient C = B/ ∼ modulo the equiv-
alence relation described as follows: two elements x, y ∈ B are equivalent iff
there exists a zig-zag

A : z1
ai1

����
��

��
�� ai2

��<
<<

<<
<<

< z2

ai3

����
��

��
�� ai4

��<
<<

<<
<<

< ······ zk
ai2k−1

����
��

��
�� ai2k

��?
??

??
??

?

B : x ··· y

where i1, i2, . . . , i2k are 1 or 2. For reflexive pairs a1, a2 these zig-zags can
always be chosen to have the following form

A : z1

a1

����
��

��
�� a2

��<
<<

<<
<<

< z2

a2

����
��

��
�� a1

��<
<<

<<
<<

< ······ z2k

a2

����
��

��
�� a1

  A
AA

AA
AA

A

B : x ··· y

(∗)

where for the elements z2i of A we use a1, a2 and for the elements z2i+1 we
use a2, a1. In fact, let d : B → A be a joint splitting of a1, a2. Thus given a
zig-zag, say,

z
a2

����
��

��
�� a1

��?
??

??
??

x y
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we can modify it as follows: put z1 = d(x) and z2 = z to get

z1

a1

��~~
~~

~~
~~ a2

  @
@@

@@
@@

@ z2

a2

��~~
~~

~~
~~ a1

��@
@@

@@
@@

@

x x y

Moreover, the length 2k of the zig-zag (∗) can be prolonged to 2k + 2 or
2k + 4 etc. by using d. Analogously, we can assume C ′ = B′/ ∼′ where ∼′
is the equivalence relation given by zig-zags of a′1 and a′2 of the above form
(∗). Now we form the parallel pair

A× A′
a1×a′1 //

a2×a′2

// B ×B′

and obtain its coequalizer by the zig-zag equivalence ≈ on B × B′. Given
(x, x′) ≈ (y, y′) in B ×B′, we obviously have zig-zags both for x ∼ y and for
x′ ∼′ y′ (use projections of the given zig-zag). But also the other way round:
whenever x ∼ y and x′ ∼′ y′, then we choose the two zig-zags so that they
both have the above type (∗) and have the same lengths. They create an
obvious zig-zag for (x, x′) ≈ (y, y′). From this it follows that the map

A× A′
a1×a′1 //

a2×a′2

// B ×B′ c×c′ // (B/ ∼)× (B′/ ∼′)

is a coequalizer, as required.

2.3 Example. By merging two copies of reflexive pairs we also obtain a
sifted category D: let D be given by the graph

A

a1
++

a2

33 B
doo d′ // A′

a′2

kk

a′1
ss

and the equations making both parallel pairs reflexive:

ai · d = idB = a′i · d′ for i = 1, 2

The proof thatD is sifted is completely analogous to the proof of Example 2.2:
we verify that colimits over D in Set commute with finite products. Assume
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that the above graph depicts sets A, B and A′ and functions between them.
Then a colimit can be described as the canonical function c : B → C = B/ ∼
where two elements x, y ∈ B are equivalent iff they are connected by a zig-
zag formed by a1, a2, a

′
1 and a′2. Since the two pairs are reflexive, the length

of the zig-zag can be arbitrarily prolonged. And the type can be chosen to
be

z1

a1

~~~~
~~

~~
~ a2

��=
==

==
==

= z2

a2

����
��

��
�� a1

��=
==

==
==

= z3
a′1

����
��

��
�� a′2

��=
==

==
==

= z4
a′2

����
��

��
�� a′1

��=
==

==
==

=
......

z4k
a′1

  B
BB

BB
BB

x y

From that it is easy to derive that D is sifted.

2.4 Example. A category A which does not have sifted colimits although it
has both filtered colimits and reflexive coequalizers: A is the free completion
of D from 2.3 under filtered colimits and reflexive coequalizers. We claim
that A is obtained from D by simply adding the coequalizer c of a1, a2 and
the coequalizer c′ of a′1, a′2. That is, we consider the graph

A a1

��a2 ++

A′

a′2rr

a′1

		
B

d
``AAAAAAAA

d′
<<zzzzzzzz

c′

~~}}
}}

}}
}

c

""D
DD

DD
DD

DD

C ′ C

and the equations

c · a1 = c · a2 c′ · a′1 = c′ · a′2.

In fact, the category A is clearly finite. Therefore, its only filtered diagrams
are its idempotents:

ei = d · ai and e′i = d′ · a′i (i = 1, 2) .

We claim that a1 is the colimit of e1. In fact, a1 · e1 = a1, and given a
morphism f with

f · e1 = f ,

then we see that f · d · a1 = f , consequently, f factorizes through a1. Since
a1 is an epimorphism, this factorization is unique. Analogously for e2, e

′
1 and
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e′2. Thus, A has filtered colimits. And it has reflexive coequalizers because
its only reflexive pairs of distinct morphisms are a1, a2 whose coequalizer is
c, and a′1, a′2 whose coequalizer is c′.

It is obvious that the (sifted) embedding D : D → A does not have a
colimit.

3 Preservation of Sifted Colimits

3.1 Theorem. A functor F : A → B with A finitely cocomplete preserves
sifted colimits iff it preserves filtered colimits and reflexive coequalizers.

Proof. Given a sifted diagram D : D → A with a colimit in A, we prove that
F ·D has colimit F (colim D) in D.

Recall from 2.1(ii) that D : D → FamD is final, thus, D has the same col-
imit as its extension D : FamD → A preserving finite coproducts. Therefore,
without loss of generality we can assume that D has finite coproducts and D
preserves them (if not, substitute D for D). Recall also the construction of
finite colimits via finite coproducts and coequalizers from [11]: given a finite
graph M and a functor F : M → A we form coproducts∐

i

F (i)

indexed by objects i of M and with injections.

αi : F (i)→
∐

i

F (i).

Analogously, we form coproducts ∐
f :i→i′

F (i)

indexed by morphisms f of M and with injections

βf : F (i)→
∐

f :i→i′

F (i).

Consider morphisms

a, b :
∐

f :i→i′

F (i)→
∐

i

F (i)
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such that a · βf = αi and b · βf = αi′ ·Ff for each morphism f : i→ i′ in M .
If q :

∐
i

F (i) → Q is the coequalizer of a and b, then Q = colim F with the

colimit cocone q · αi.
We now prove the theorem:
(1) For every finite reflexive subgraph M of D we form coproducts in D

iM =
∐

i

i jM =
∐

f :i→i′

i

and morphisms
aM , bM : jM → iM

analogous to those considered above. Since D preserves the two coproducts,
we have a = DaM and b = DbM and the colimit QM of the domain restriction
D/M of D on M is given by the coequalizer

DjM

DaM //

DbM

// DiM
qM // QM = colim D/M

Since the graph M is reflexive, aM , bM is a reflexive pair, thus, so is DaM , DbM .
LetM be the directed family of all finite reflexive subgraphs of D.

(2) Let ki : Di → K (i ∈ objD) be a colimit of D, then we prove that
(Fki) is a colimit of FD. We express D as the directed union of all D/M for
M ∈M and for each M ∈M we see that

kiM ·DaM = kjM
= kiM ·DbM (1)

from which we derive that kiM factors through the coequalizer

kiM = rM · qM for some rM : QM → K . (2)

Then K is the filtered colimit of all QM with the colimit cocone (rM)M∈M
(since every colimit is a filtered colimits of all finite subcolimits). We conclude
that

(i) FK is a colimit of FQM with the cocone FrM (M ∈M),

and

(ii) for every M ∈M the coequalizer of FDaM and FDbM is FqM .
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(3) Given a cocone

xi : FDi → X (i ∈ objD)

of FD, we are to find a factorization through (Fki). Analogously to (1)
above we have, for every M ∈M

xiM · FDaM = xjM
= xiM · FDbM

thus, there exists a unique

yM : FQM → C with xiM = yM · FqM . (3)

These morphisms form a cocone of the filtered diagram of all FQM ’s: in fact,
the connecting morphisms

qM,M ′ : QM → QM ′ (M, M ′ ∈M, M ⊆M ′)

are defined by the commutative squares

DiM
DiMM′ //

qM

��

DiM ′

qM′

��
QM qM,M′

// QM ′

where iMM ′ : iM → iM ′ is the coproduct injection in D. The desired equality

yM = yM ′ · FqMM ′

easily follows since, by (ii), FqM is an epimorphism:

FDiM
FDiMM′ //

xiM
""F

FF
FF

FF
FF

FqM

��

FDiM ′

FqM′

��

xi′
M{{wwwwwwwww

·

FQM

yM

<<xxxxxxxxx

FqM,M′
// FQM ′

yM′

ccFFFFFFFFF
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Consequently, we obtain the unique

y : FK → X with y · FrM = yM .

This is the desired factorization: for every i ∈ I we have

y · Fki = xi.

In fact, consider the singleton subgraph M with one object i and its identity
morphism. Obviously

iM = i and qM = id , thus, rM = ki

which yields by (3)

yM · Fki = yM = yM · FqM = xiM = xi .

The uniqueness is clear: since each FqM is an epimorpism, from (2) we see
that (FrM · FqM) is collectively epic, and then (1) implies that (Fki) is
collectively epic.

3.2 Example. A functor F which
(1) does not preserve sifted colimits

but
(2) preserves filtered colimits and reflexive coequalizers

can be constructed as follows.
By adding to the category A of 2.4 a terminal object T we obtain a

category A′ in which the sifted diagram D : D → A has colimit

colim D = T .

Let B be the category obtained from A′ by adding a new terminal object S.
The functor F : A′ → B with F (T ) = S which is the identity map on objects
and morphisms of A does not preserve sifted colimits because colim F ·D = T
but F (colim D) = S. It is easy to verify that F preserves filtered colimits
and reflexive coequalizers.

References
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Université Catholique de Louvain

1348 Louvain-la-Neuve, Belgium

E-mail: enrico.vitale@uclouvain.be

June 8, 2010 12


