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We undertake a systematic study of the Hochschild homology, 
i.e. (the geometric realization of) the cyclic nerve, of (∞, 1)
categories (and more generally of category-objects in an 
∞-category), as a version of factorization homology. In 
order to do this, we codify (∞, 1)-categories in terms of 
quiver representations in them. By examining a universal 
instance of such Hochschild homology, we explicitly identify 
its natural symmetries, and construct a non-stable version of 
the cyclotomic trace map. Along the way we give a unfied 
account of the cyclic, paracyclic, and epicyclic categories. We 
also prove that this gives a combinatorial description of the 
n = 1 case of factorization homology as presented in [4], which 
parametrizes (∞, 1)-categories by solidly 1-framed stratfied 
spaces.
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0. Introduction

0.1. Hochschild homology and its symmetries

In this paper, we undertake a systematic study of (non-stable) Hochschild homology

HH(C) ∈ S

of an (∞, 1)-category C, i.e. (the geometric realization of) its cyclic nerve (see Def
inition 3.1.2). Here we state those of our three main results that concern (possibly 
noninvertible) symmetries of HH(C); we discuss our two other main results in §0.3 and 
§0.5, respectively. Throughout, we write

W := T ⋊N×
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for the Witt monoid, the semidirect product monoid with respect to the isogenic action 
N×

↷ T (see Definition 2.1.5). We write ModW op(S) for the ∞-category of (left) W op
modules (or equivalently right W -modules) in spaces.)

Theorem A (Theorem   4.3.1(1)). For any (∞, 1)-category C, the Hochschild homology of 
C canonically admits the structure of a W op-module:(

W op
↷ HH(C)

)
∈ ModW op(S) .

We construct a canonical map

EndC
trace−−−→ HH(C)

from the moduli space of endomorphisms in C (see Observation 3.1.4(1)).1 In particular, 
there results a composite map

Obj(C) c  �→  idc−−−−−−→ EndC
trace−−−−→ HH(C) (0.1.1)

from the moduli space of objects in C (see Observation 3.1.4(2)).

Theorem B (Theorem   4.3.1(2)). The map (0.1.1) is canonically invariant with respect to 
the W op-action of Theorem A: it canonically lifts to a map

Obj(C) −→ HH(C)hW
op
. (0.1.2)

The map (0.1.2) in Theorem B may be referred to as a non-stable cyclotomic trace
map (as discussed further in §0.2). To make this connection precise, we give the following 
description of ModW op(S) in terms of equivariant homotopy theory.

Theorem C (Corollary   A.0.8). The ∞-category ModW op(S) of W op-modules is equivalent 
to the ∞-category of N×-fixed proper-genuine T -modules:

ModW op(S) � 
(
Modg<

T (S)
)hN×

=: Cycunst(S) .

In particular, via Theorem A, the Hochschild homology of an ∞-category C may be 
canonically regarded as an N×-fixed proper-genuine T -module:

HH(C) ∈ 
(
Modg<

T

)hN×

.

1 This map can reasonably be regarded as a trace map: HH(C) is a universal receptacle of traces of 
endomorphisms in C.
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Thus, the ∞-category ModW op(S) of W op-modules is a non-stable version of the ∞
category

Cyc(Sp) := 
(
Spg<

T

)hN×

of cyclotomic spectra (where the action N×
↷ Spg<

T is via geometric fixedpoints) [10].

0.2. Motivation: K-theory and traces

Let us briefly contextualize this study. For an associative algebra A over a commutative 
ring k, a trace (on A) is a k-linear map

A
t  −−→ V

to a k-vector space V with the property that t(ab) = t(ba) for all a, b ∈ A. The universal 
(specifically, initial) trace is the canonical map

A
quotient−−−−−−→ A 

[A,A] =: HH0(A)

to the quotient by the commutator. This association A �→ HH0(A) fails to preserve 
projective resolutions; consequently, it fails to enjoy a host of desirable properties. Such 
failure can be corrected by entertaining, not the quotient A/[A,A], but a suitably derived
quotient: Hochschild homology is the universal derived trace:

A
(derived) quotient−−−−−−−−−−−−→ HH(A) .

Again, for computational advantage among other reasons, it is desirable for the input A
to Hochschild homology to be extended to derived associative algebras. In fact, one can 
take A to be an associative algebra in any symmetric monoidal ∞-category X (satisfying 
some mild conditions).

For trace methods in algebraic K-theory (see [19], for instance), it is desirable to 
extend the input of Hochschild homology yet further: one may wish to entertain the 
Hochschild homology HH(C) of an (∞, 1)-category C that is enriched in a symmetric 
monoidal ∞-category X. Provided suitable conditions on X, one may then expect the 
following features of such an extension.

(1) It is indeed an extension: in the case that C = BA is the one-object X-enriched 
∞-category corresponding to an algebra object A, we have HH(BA) � HH(A).

(2) There is a cyclotomic structure on HH(C). In other words, there is a proper-genuine 
T -module structure on HH(C) that is invariant with respect to the isogenetic N×
action on such.
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(3) There is a map Obj(C) → HH(C) from the moduli space of objects in an enriched 
∞-category to its Hochschild homology. This map is invariant with respect to the 
cyclotomic structure of the previous point.

Indeed, in the situation of spectral enrichment, such features immediately produce the
cyclotomic trace map

K(C) cyclotomic trace−−−−−−−−−−−→ HH(C)hCyc =: TC(C)

from the algebraic K-theory of C to its cyclotomic invariants (known as the topological 
cyclic homology of C): point (1) is achieved in the subsequent work [3]; point (2) is 
achieved in its follow-up [7]; and point (3) is achieved in its subsequent follow-up [6].

In the present work, we achieve points (1)-(3) for C a category-object in an ∞
category X. (Note that (∞, 1)-categories dfine category-objects in the ∞-category S
of spaces.) We use the decorated terms ``non-stable Hochschild homology'' and ``non
stable cyclotomic'' to emphasize working with category-objects in an ∞-category X, 
leaving the undecorated terms for the general notions. As developed in [3,7,6], working 
in X = Cat(∞,1) affords the ``macrocosm'' framework whose ``microcosm'' application 
amounts to working with enriched ∞-categories; in that way, those works are founded 
on the present work.

0.3. Parametrizing (∞, 1)-categories via quivers

As explained in §0.4, our approach to proving Theorems A and B rests on an addi
tional main theorem, stated as Theorem D below: a characterization of (∞, 1)-categories 
given by probing them with quivers. Specifically, consider the category diGraphsfin :=
Fun(Δop

≤1,Fin) of finite directed graphs. One can contemplate the free ∞-category on a 
finite directed graph, and we dfine the ∞-category of quivers to be the fully faithful 
image of this functor:

diGraphsfin Cat(∞,1)

Quiv

Free

f.f.
.

In fact, Quiv is an ordinary category (see Lemma 1.2.15), and relatedly each quiver 
is an ordinary category that admits an explicit description in terms of the underlying 
category generating it (see Corollary 1.2.11). Now, given an (∞, 1)-category C, each 
quiver Γ determines a moduli space RepC(Γ) := homCat(∞,1)(Γ,C) of representations of Γ
in C. (See Definition 1.3.4.) This assembles as a functor
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spectra (∞, 1)-categories 
coordinatized {En ∈ S∗}n≥0 with En � ΩEn+1 complete Segal spaces Δop → S

coordinate-free reduced excisive functors Sfin
∗ → S univalent closed sheaves Quivop → S

Fig. 1. Just as one can present spectra by probing them either by all finite pointed spaces or merely by 
spheres, one can present (∞, 1)-categories by probing them either by all quivers or merely by nonempty 
linear quivers.

Cat(∞,1) PShv(Quiv)

∈ ∈

C (Γ �−→ RepC(Γ))

Rep(−)

.

Moreover, for each (∞, 1)-category C, the functor Quivop RepC−−−→ S has the following local
to-global property.

Closed sheaf. For each finite directed graph Γ, and for each pair of subgraphs Γ−,Γ+ ⊂
Γ for which Γ− ∪ Γ+ = Γ, the canonical square among spaces of representations of 
the quivers associated to these directed graphs,

RepC(Γ) RepC(Γ+)

RepC(Γ−) RepC(Γ− ∩ Γ+)

is a pullback.

Theorem D (Theorem   1.4.6). The functor

Cat(∞,1)
Rep(−)−−−−→ PShv(Quiv)

is fully faithful. Moreover, its image consists of those functors Quivop → S that satisfy 
the closed sheaf condition as well as a univalence condition.

Theorem D may be seen as a version of Rezk’s presentation of (∞, 1)-categories as 
complete Segal spaces [20]: the inclusion Δ ↪→ Quiv determines a restriction functor 
PShv(Quiv) → PShv(Δ), under which the closed sheaf condition corresponds to the Segal 
condition and the univalence conditions agree. More specifically, we view Theorem D as 
giving a ``coordinate-free'' presentation of (∞, 1)-categories, analogously to how reduced 
excisive functors give a ``coordinate-free'' presentation of spectra, as indicated in Fig. 1.

0.4. Universal Hochschild homology

Theorem D provides a convenient context for defining the Hochschild homology of an 
(∞, 1)-category C. Namely, there is a standard functor
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Δ χ −→ Quiv (0.4.1)

that carries each object [n] to the cyclically-directed quiver with n + 1 vertices (see 
Notation 3.1.1).2 The Hochschild homology of an (∞, 1)-category C is the colimit

HH(C) := colim
(
Δop χop

−−→ Quivop RepC−−−→ S

)
(see Definition 3.1.2 and Observation 3.1.3).

Given this definition of Hochschild homology, we can now describe our approach to 
proving Theorems A and B. For this, we generalize from the context of (∞, 1)-categories 
to the slightly more general context of category-objects in an ∞-category X (satisfy
ing mild conditions); note that an (∞, 1)-category is an example of a category-object 
in the ∞-category S of spaces. We prove an analog of Theorem D in this context as 
Theorem 1.5.5. In fact, it is not hard to see that one can restrict to connected quivers 
(see Notation 3.2.1), so that a category-object C in X can be equivalently codfied as a 
functor

Quivcon RepC−−−→ X

satisfying a closed sheaf condition.
Now, to prove Theorems A and B, we construct a universal ∞-category equipped with 

a category-object and its Hochschild homology: this is the pushout

Δop (Quivcon)op

(Δop)� Mcon

χop

( see Definition 3.3.1) .

We suggestively write S1 ∈ Mcon for the image of the cone point. (This notation will be 
elucidated in §0.5.) So, given a category-object C in X, we obtain a unique extension

(Quivcon)op X

Mcon

RepC

R̃epC

(0.4.2)

that preserves Hochschild homology objects (namely the left Kan extension), i.e. such 
that the canonical morphism is an equivalence:

HH(C) ∼ −→ R̃epC(S1) .

2 Specifically, this functor Δ χ−→ Quiv carries [n] ∈ Δ to the cyclically-directed quiver given by adjoining 
a morphism n → 0 to the quiver associated to the linearly-directed graph [n] = {0 → · · · → n}.
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In general, pushouts among ∞-categories can be highly nontrivial, and the pushout 
defining Mcon is no exception. Nevertheless, we give a complete description of Mcon (see 
Corollary 3.3.11). In particular, in view of the canonical extension (0.4.2), Theorem A
follows from the computation

EndMcon(S1) � W op (0.4.3)

of the monoid of endomorphisms of S1,3 while Theorem B follows from the computation 
that the hom-space homMcon(pt,S1) is contractible.

Remark 0.4.1. The crux of the computation (0.4.3) amounts to factoring the functor 
Δ χ−→ Quivcon through the parasimplex, cyclic, and epicyclic categories as in the com
mutative diagram

Δ Quivcon

Δ↺ Λ Λ̃

pt BT BW

χ

(0.4.4)

and showing that the functor Δ → Δ↺ is initial, both squares are pullbacks, and the 
functor Λ̃ → BW is both a cartesian fibration and a localization (see Lemma 2.4.5 and 
Corollary 2.5.2).

0.5. Connection with factorization homology

Although we dfined the Witt monoid algebraically as the semidirect product W :=
T ⋊ N×, it also arises in differential topology, namely as the (topological) monoid of 
framed self-covering maps of the circle. Hence, Theorem A can be seen as articulating a 
contravariant functoriality of Hochschild homology for framed self-covers of the circle.

Of course, the connection between Hochschild homology and the circle is not new. 
Classically, this connection is manifested e.g. by Connes’ cyclic operator on Hochschild 
homology (see e.g. [14]), which records the action of the (maximal) subgroup T ⊂ W . 
More recently, Hochschild homology has been recognized as factorization homology over 
S1: for E1-algebras in [15, Sect. 5.5.3] (under the name ``topological chiral homology''), 
and for (∞, 1)-categories in [4].

3 Nontrivial endomorphisms of S1 arise from the fact that the functor Δop → (Quivcon)op is not fully 
faithful. (By contrast, adjoining the colimit of a fully faithful inclusion results in a formally adjoined object 
with trivial endomorphism monoid.)
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In more detail, the work [4] constructs for any dimension n an ∞-category cMfdsfr
n

of compact solidly n-framed stratfied spaces, whose morphisms accommodate a wide va
riety of notions in differential topology -- in particular, framed self-covers of compact 
framed n-manifolds. This ∞-category is specifically tailored towards the construction of 
factorization homology, which gives a way of ``integrating'' an (∞, n)-category C over 
compact framed n-manifolds (and more generally over compact solidly n-framed strati
fied spaces)4:

cMfdsfr
n S

∈ ∈

M

∫
M

C

.

The paper [4] establishes this construction of factorization homology of (∞, n)-categories 
for n ≤ 2; for n > 2, this construction has yet to be established.

To state our last main theorem, we introduce the notation M for the ∞-category 
obtained from Mcon by freely adjoining finite products.5

Theorem E. There is a canonical equivalence

M
∼ −→ cMfdsfr

1 ,

which carries S1 to S1 (the framed circle). Under this equivalence, for any (∞, 1)-category 
C, the functor R̃epC is naturally equivalent to factorization homology: there is a canonical 
commutative triangle

M

S

cMfdsfr
1

R̃epC

∼

∫
C

.

Remark 0.5.1. From the point of view of manifolds afforded by Theorem E, the diagram 
(0.4.4) has a natural interpretation: the category Λ̃ can be regarded as a moduli category 
of (non-trivially) stratfied framed circles, in which the non-invertible morphisms classify 
isogenies. Namely, there is a fully faithful functor Δ↺

� ↪→ cMfdsfr
1/S1 whose image consists 

of rfinement morphisms to S1, and the (left lax) action by W op arises through W op �

4 Actually, in general one must require that C has adjoints: that is, for every 0 < k < n, every k-morphism 
in C admits both adjoints. Of course, this condition is vacuous when n = 1.
5 In other words, the functor Quivop → M admits an analogous universal property in Cat× (the ∞-category 

of ∞-categories with finite products) to that of the functor (Quivcon)op → Mcon in Cat.
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EndcMfdsfr
1
(S1). In particular, there is a fully faithful functor Λ̃ ↪→ cMfdsfr

1 whose image 
consists of those solidly 1-framed stratfied spaces with more than one stratum and whose 
underlying topological space is a circle.

Remark 0.5.2. Remark 0.5.1 gives a geometric explanation for why, among all diagrams 
in (Quivcon)op, it is natural to formally adjoin the colimit of

χ : Δop (0.4.1)−−−−→ (Quivcon)op .

In that spirit, it would be interesting to give a characterization of the parsimplex, cyclic, 
or epicyclic category that is entirely intrinsic to the full subcategory Quiv ⊂ Cat(∞,1) (ie, 
blind to the geometric context of Remark 0.5.1).

In view of Remark 0.5.2, Theorem E clarfies the manifold-theoretic origins of the 
parasimplex, cyclic, and epicyclic categories (which were originally dfined combinato
rially). On the other hand, Theorem E is a completely algebraic characterization of the 
∞-category cMfdsfr

1 despite its differential topology origins, in the spirit of the celebrated 
cobordism hypothesis [18]. More broadly, we are inspired by the idea that some suitable 
∞-category of ``n-quivers'' (ie, a suitable version of n-computads [21,8])6 analogously 
extends to give cMfdsfr

n .

0.6. Conventions

We set the following conventions throughout this work.

• We work within the context of ∞-categories, taking [17] and [15] as our standard 
references. We work model-independently (for instance, we make no reference to the 
simplices of a quasicategory), and we omit all technical uses of the word ``essentially'' 
(for instance, we shorten the term ``essentially surjective'' to ``surjective'').

• We write Cat for the ∞-category of ∞-categories and S for the ∞-category of spaces. 
These are related by the adjoint functors

Cat S

|−|

(−)�

⊥
⊥

.

• Let Y be an ∞-category. For T a continuous monoid, the ∞-category of (left T
modules (in Y) is that of functors:

ModT (Y) := Fun(BT,Y) .

6 Note that quivers are precisely 1-computads.
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Restricting along the unique functor BT
!−→ ∗ dfines a functor Y = Mod∗(Y) →

ModT (Y). When they exist, the left- and right-adjoints to this functor are respectively 
the T -coinvariants and the T -invariants, and are respectively denoted

(−)hT : ModT (Y) −→ Y and (−)hT : ModT (Y) −→ Y .
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1. Parametrizing higher categories by quivers

In this section, we characterize (∞, 1)-categories as copresheaves on a category of 
quivers. Specifically, as Definition 1.2.4 we construct a category Quiv in which an object 
is a finite directed graph; as Theorem 1.4.6, we construct a fully faithful functor between 
∞-categories,

Cat(∞,1) −→ PShv(Quiv) ,

and characterize its image.
Informally, this is to say an (∞, 1)-category is characterized by quiver representa

tions into it. The work of Rezk ([20]) implements such a characterization in terms of 
linear quivers. So, in this sense, the characterization presented here is more versatile. 
For instance, it accommodates representations of cyclically-directed quivers.

1.1. Recollections of Cat(∞,1)

Definition 1.1.1. The simplex category is the category Δ in which an object is a fi
nite nonempty linearly ordered set, and a morphism between two is a (weakly) order
preserving map, with composition given by composing maps. Such a morphism is idle if 
it is convex7; such a morphism is closed if it is a convex inclusion; such a morphism is 

7 A morphism I f−→ J between linearly ordered sets is convex if, for each i−, i+ ∈ I and each j ∈ J for 
which f(i−) ≤ j ≤ f(i+), the preimage f−1(j) is nonempty.
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creation if it is a convex surjection; such a morphism is active if it preserves minima and 
maxima. The subcategories

Δcls , Δcr , Δidl , Δact ⊂ Δ

consist of all objects and those morphisms that are respectively closed, creation, idle, 
and active.

Remark 1.1.2. An object in Δ can be regarded as a linear quiver.

Remark 1.1.3. The morphisms in Δ that we call ``closed'' are elsewhere called ``inert'' 
(e.g. in [15]). We choose our terminology to remain consistent with that surrounding the 
∞-category cMfdr

1, discussed in §B.

Observation 1.1.4. The pair of subcategories (Δact,Δcls) is a factorization system on 
Δ. In other words, each morphism in Δ uniquely factors as a composition of an active 
morphism followed by a closed morphism.

Definition 1.1.5. A basic closed cover (in Δ) is a diagram in Δcls of the form

{1} {1 < · · · < p}

{0 < 1} [p]

for some p > 1. A presheaf Δop F−→ S is a closed sheaf (on Δ) if it carries (the opposites 
of) each basic closed cover in Δ to a limit diagram in S. A closed cover (in Δ) is a 

diagram K� → Δcls for which, for each closed sheaf, Δop F−→ S, the composite functor

(Kop)� = (K�)op → (Δcls)op ↪→ Δop F−→ S

is a limit diagram.

Recall the definition of the ∞-category Cat(∞,1) of (∞, 1)-categories (see, for in
stance, [20]). Recall from [1] the definition of the ∞-category fCat(∞,1) of flagged 
(∞, 1)-categories, an object in which is a functor C0 → C1 from an (∞, 0)-category 
(ie, an ∞-groupoid) to an (∞, 1)-category with the property that the functor is surjec
tive on objects (ie, the resulting map between sets of isomorphism classes of objects, 
π0Obj(C0) → π0Obj(C1), is surjective). Consider the restricted Yoneda functor along the 
standard fully faithful functor Δ ↪→ Cat(∞,1) ⊂ fCat(∞,1):

Cat(∞,1) ⊂ fCat(∞,1) −→ PShv(Δ) , C �→
(
[p]◦ �→ HomfCat(∞,1)([p],C)

)
. (1.1.1)
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The work of Rezk ([20]), followed by the work [1], implies each of the functors (1.1.1)
is fully faithful, and that the image of fCat(∞,1) consists of those presheaves Δop F−→ S

that are closed sheaves (on Δ), while the image of Cat(∞,1) consists of those presheaves 
Δop F−→ S that further satisfy a univalent-completeness condition. Each of the fully 
faithful restricted Yoneda functors (1.1.1) is a right adjoint in a Boufield localization 
between presentable ∞-categories:

PShv(Δ) ⇄ fCat(∞,1) ⇄ Cat(∞,1) . (1.1.2)

Remark 1.1.6. One can take the definitions of the ∞-categories Cat(∞,1) and fCat(∞,1)
as the images of these fully faithful functors (1.1.1).

1.2. Quivers

The main outcome of this subsection is Corollary 1.2.11, which gives an explicit iden
tfication of the free (∞, 1)-category on a quiver (also known as a finite directed graph).

In the next definition, the full subcategory Δ≤1 ⊂ Δ consists of those finite nonempty 
linearly ordered sets with cardinality at most 2.

Definition 1.2.1. The category of finite directed graphs is

diGraphsfin := Fun(Δop
≤1,Fin) .

Terminology 1.2.2. Let Γ be a finite directed graph. Its set of vertices is Γ(0) := Γ([0]); 
its set of edges is Γ(1) := Γ([1]) \ Γ([0]); there is the evident span of sets

Γ(0) s ←− Γ(1) t −→ Γ(0)

arising from the cospan {0} → [1] ← {1} in Δ; for v ∈ Γ(0) a vertex, its set of 
exiting edges is the preimage OutΓ(v) := t−1(v) ∩ Γ(1), its set of entering edges is 
the preimage InΓ(v) := s−1(v) ∩ Γ(1), and its directed-valence is the ordered pair 
of cardinalities 

(
Card

(
OutΓ(v)

)
,Card

(
InΓ(v)

))
. Say Γ is connected if the quotient set 

(Γ(0))/ ∼ is a singleton, where the equivalence relation is generated by declaring v ∼ w

if (s, t)−1(v, w) �= ∅. A finite directed graph is cyclically-directed if it is connected and 
each vertex has directed-valence (1, 1) (i.e. each vertex has exactly one exiting edge and 
exactly one entering edge). A finite directed graph is linearly-directed if it is connected 
and each vertex has at most one entering edge and at most one exiting edge, and there 
is some vertex with no exiting edges (or, equivalently, no entering edges).

A morphism Γ f−→ Ξ between finite directed graphs is non-degenerate if it carries 
edges to edges, which is to say the diagram among sets
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Γ([0]) Ξ([0])

Γ([1]) Ξ([1])

f[0]

Γ(!) Ξ(!)

f[1]

is a pullback.

An object in diGraphsfin can be regarded as a quiver, which can in turn be regarded 
as a category. We make this precise in what follows.

Consider the composite adjunction:

PShv(Δ≤1)
LKE 
⇄  

restriction
PShv(Δ) ⇄  

(1.1.2)
Cat(∞,1) . (1.2.1)

This results in a functor

Free : diGraphsfin := Fun(Δop
≤1,Fin) ⊂ Fun(Δop

≤1, S)

= PShv(Δ≤1)
(1.2.1)−−−−−→ Cat(∞,1) , (1.2.2)

whose value on a finite directed graph Γ is the free (∞, 1)-category on Γ, hence the 
notation.

Remark 1.2.3. For Γ a finite directed graph, the free category generated by Γ may be 
familiar: an object is a vertex in Γ, a morphism is a finite sequence of directed edges, 
each consecutive pair of which that match up head-to-tail. Unfortunately, the definition 
of Free(Γ) just above is a priori an (∞, 1)-category, and as so, it may not admit such 
a description. (Necessarily, though, such describes the homotopy category of Free(Γ).) 
However, Corollary 1.2.11 below ensures Free(Γ) is, in fact, an ordinary category, and it 
admits such a description. Corollary 1.2.13, further, supplies an explicit commensurable 
description of morphisms between values of Free.

Definition 1.2.4. A quiver is an (∞, 1)-category that is the free (∞, 1)-category on a 
finite directed graph. The ∞-category Quiv is the full (∞, 1)-subcategory

Quiv ⊂ Cat(∞,1)

consisting of those (∞, 1)-categories that are quivers.8

8 Note that some authors dfine a morphism of quivers to be a morphism of finite directed graphs. The 
notion that we study is strictly more general: in view of Corollary 1.2.13, Lemma 1.2.15, and Corollary 1.2.16, 
the ∞-category Quiv is actually an ordinary category and contains the former as a (1-full) subcategory 
containing the same (groupoid of) objects.
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Observation 1.2.5. By Definition 1.2.4, there is a factorization, which is unique, in a 
diagram among ∞-categories:

Quiv

diGraphsfin Cat(∞,1)

f.f.Free

Free

.

Furthermore, this factorizing functor,

Free : diGraphsfin −→ Quiv ,

is surjective on objects.

Observation 1.2.6. The diagram among ∞-categories

S PShv(Δ≤1)

Cat(∞,1)

|−|

(1.2.1)|−|

involving geometric realizations / ∞-groupoid-completions canonically commutes, be
cause the diagram among their right adjoints canonically commutes. In particular, for 
each object Free(Γ) ∈ Quiv, the ∞-groupoid-completion∣∣Free(Γ)

∣∣ � |Γ|

is the geometric realization of its generating finite directed graph, which canonically 
admits the structure of a 1-dimensional finite CW complex.

Observation 1.2.7. By definition of Quiv, both of the functors

Free : diGraphsfin −→ Quiv and Free : diGraphsfin −→ Cat(∞,1)

preserve cobase-change along monomorphisms. Indeed, the case of the former follows 
from the latter. Next, the fully faithful functor Fun(Δop

≤1,Fin) ↪→ Fun(Δop
≤1, S) preserves 

cobase-change along monomorphisms. The assertion follows from the definition of Free
as a composition (1.2.2), using that both of the rightward functors in (1.2.1) are left 
adjoints and therefore preserve pushouts. In particular, Quiv admits finite coproducts, 
which are given by disjoint unions of finite directed graphs.

Lemma 1.2.8. The simplex category is the full ∞-subcategory

Δ ⊂ Cat(∞,1)
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consisting of those categories that are the values of Free on finite nonempty linearly
directed graphs (in the sense of Terminology 1.2.2). In particular, there is a canonical 
fully faithful functor (between ∞-subcategories of Cat(∞,1)),

Δ ↪→ Quiv ,

the image of which consists of the finite nonempty linearly-directed graphs.

Notation 1.2.9. The fully faithful functor

ρ : Δ Lem 1.2.8−−−−−−−→ Quiv ,

is dfined so that the composite fully faithful functor Δ ρ−→ Quiv ↪→ fCat(∞,1) is the 
standard fully faithful functor. The value of ρ on an object [p] ∈ Δ is denoted ρ(p) ∈ Quiv
or simply [p] ∈ Quiv.

Proof of Lemma 1.2.8. Let p ≥ 0. Consider the linearly ordered set [p] ∈ Δ, re
garded as a category in the standard manner. Consider the linearly directed graph 
Ap := A{0,...,p} := (0 → 1 → · · · → p). Consider the map between finite directed 
graphs

Ap −→ [p]

to the underlying directed graph of [p] -- this is the unique map that is the identity map 
on sets of vertices. From the definition of Free in terms of a left adjoint, map between 
finite directed graphs determines a functor between (∞, 1)-categories

Free(Ap) −→ [p] . (1.2.3)

We next prove this functor (1.2.3) is an equivalence, which implies the lemma.
We proceed by induction on p ≥ 0. Suppose p ≤ 1. Note that Ap = [p] ∈ Δ≤1, 

in these cases. Using that the left Kan extension PShv(Δ≤1)
LKE−−→ PShv(Δ) restricts to 

representables as representables, then LKE([p]) ∈ PShv(Δ) is the representable simplicial 
space on [p]. Generally, representable simplicial spaces satisfy the Segal and univalence
completeness conditions. We conclude that (1.2.3) is an equivalence for p ≤ 1.

Next, assume that p > 1. Observe the pushout diagram among directed graphs

A{1} A{1,...,p}

A{0,1} Ap.
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The first statement of Observation 1.2.7 implies the resulting diagram among (∞, 1)
categories

Free(A{1}) Free(A{1,...,p})

Free(A{0,1}) Free(Ap),

is also a pushout. Meanwhile, the Segal condition is just so that the diagram among 
(∞, 1)-categories

{1} {1 < · · · < p}

{0 < 1} [p]

is a pushout. The result follows by induction. �
The next technical result gives an explicit description of the values of Free. It is 

phrased in terms of the following notation. For [p] ∈ Δ, and Γ ∈ diGraphsfin, an object 
in the under-over-category,(

Δidl
/Γ

)[p]/
:= Δ[p]/ ×

Δ 
Δidl × 

diGraphsfin
diGraphsfin

/Γ ,

is a pair of morphisms: [p] σ−→ [q] in Δ and [q] f−→ Γ in diGraphsfin; the full subcategory

(
Δidl

/non.degΓ

)[p]/act

⊂ 
(
Δidl

/Γ

)[p]/

consists of those objects (σ,Γ) in which σ is active (in the sense of Definition 1.1.1) and 
f is non-degenerate (in the sense of Terminology 1.2.2).

Lemma 1.2.10. Let Γ ∈ diGraphsfin be a finite directed graph. For each [p] ∈ Δ, there is 
a canonical equivalence between spaces,

HomCat(∞,1) ([p],Free (Γ)) � Obj
((

Δidl
/non.degΓ

)[p]/act)
,

involving the maximal ∞-subcategory of the (active) undercategory (in Δ) of the (non
degenerate) overcategory (in diGraphsfin). Furthermore, through this composite identfi
cation, the unit morphism between directed graphs

unitΓ : Γ −→ Free(Γ)
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evaluates on [p] ∈ Δ≤1 as the monomorphism between spaces

Γ([p]) � Obj
((

Δidl
/non.degΓ

)[p]/cr)
↪→ Obj

((
Δidl

/non.degΓ

)[p]/act)
� HomCat(∞,1) ([p],Free (Γ)) .

Proof. We establish a sequence of equivalences between spaces:

HomCat(∞,1) ([p],Free (Γ)) �  ←−−colim
(((

Δidl)[p]/)op forget−−−→
(
Δidl)op

(1.2.14)−−−−−→
(
diGraphsfin

)op HomdiGraphsfin (−,Γ)
−−−−−−−−−−−→ S

)
(1.2.4)

� 

∣∣∣∣(Δidl
/Γ

)[p]/
∣∣∣∣ (1.2.5)

�  ←−−
∣∣∣∣(Δidl

/non.degΓ

)[p]/act∣∣∣∣ (1.2.6)

�  ←−−Obj
((

Δidl
/non.degΓ

)[p]/act)
. (1.2.7)

We first establish the identfications (1.2.5), (1.2.6), and (1.2.7). So let [p] ∈ Δ. First, 
recall that, for B F−→ S a functor from an ∞-category, there is a canonical identfication 
of its colimit as the ∞-groupoid-completion of its unstraightening:∣∣∣Un(F )

∣∣∣ � colim(F ) .

Next, note that, for K f−→ B a functor, the unstraightening of the composite F ◦ f is 
identical with the base-change along f of the unstraightening of F :

Un(F ◦ f) � Un(F )|K .

Next, note that, for F = HomB(−, b) representable, then the unstraightening of F is the 
∞-overcategory:

B/b � Un(F ) .

Putting these observations together reveals a canonical identfication:

colim
(((

Δidl)[p]/)op forget−−−→
(
Δidl)op (1.2.14)−−−−−→

(
diGraphsfin

)op HomdiGraphsfin (−,Γ)
−−−−−−−−−−−→ S

)
� 

∣∣∣∣((Δidl)[p]/)
/Γ

∣∣∣∣
� 

∣∣∣∣(Δidl
/Γ

)[p]/
∣∣∣∣ ,
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in which the second identfication is direct from the definition of these over-under
categories. This establishes the identfication (1.2.5).

Next, the active-closed factorization system on Δ determines a left adjoint localization

(
Δidl

/Γ

)[p]/
−→

(
Δidl

/Γ

)[p]/act

. (1.2.8)

The surjective-injective factorization system on Sets determines a further right adjoint 
localization

(
Δidl

/Γ

)[p]/act

−→
(
Δidl

/non.degΓ

)[p]/act

. (1.2.9)

The identfication (1.2.6) then follow because adjoint functors implement equivalences 
between ∞-groupoid-completions.

Next, by the injective-surjective factorization system on sets, the definition of non
degenerate is such that the projection

Δidl
/non.degΓ −→ Δidl

factors through the subcategory Δcls ⊂ Δidl of closed morphisms. Meanwhile, the defi
nition of active is such that the projection

(Δidl)[p]/
act −→ Δidl

factors through the subcategory Δcr ⊂ Δ of creation morphisms. Therefore the canonical 
projection

(
Δidl

/non.degΓ

)[p]/act

−→ Δidl

factors through Obj(Δ) �−→ Δcls ∩ Δcr ⊂ Δidl. Now, both of these projections are full 
subcategories of the respective right and left fibrations, each with 0-type fibers:

Δidl
/Γ −→ Δidl and (Δidl)[p]/ −→ Δidl .

Because Obj(Δ) is a 0-type, we conclude that the ∞-category 
(
Δidl

/non.degΓ

)[p]/act

is, in fact, 
a 0-type. In particular, both of the functors

Obj
((

Δidl
/non.degΓ

)[p]/act)
�  −−→

(
Δidl

/non.degΓ

)[p]/act
�  −−→

∣∣∣∣(Δidl
/non.degΓ

)[p]/act∣∣∣∣ (1.2.10)

are equivalences. This establishes the identfication (1.2.7).
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Now, consider the simplicial space

∣∣∣∣(Δidl
/Γ

)[•]/
∣∣∣∣ : Δop −→ S . (1.2.11)

Through the identfication (1.2.5), proved above, this simplicial space (1.2.11) witnesses 
a left Kan extension:

(
Δidl)op

(
diGraphsfin

)op
S

Δop

=⇒

(1.2.14) HomdiGraphsfin (−,Γ)

∣∣∣∣(Δidl
/Γ

)[•]/
∣∣∣∣

.

In particular, there is a canonical morphism between simplicial spaces

∣∣∣∣(Δidl
/Γ

)[•]/
∣∣∣∣ −→ HomCat(∞,1) ([•],Free (Γ)) , (1.2.12)

which extends the unit morphisms between directed graphs. So the equivalence (1.2.4) is a 
consequence of this morphism (1.2.12) being an equivalence. By definition of the functor 
Free in terms of left adjoints, this morphism (1.2.12) is initial among all morphisms 
from (1.2.11) to a simplicial space that satifies the Segal and univalent-completeness 
conditions. So, the result follows upon showing the simplicial space (1.2.11) satifies the 
Segal and univalent-completeness conditions.

We first show (1.2.11) satifies the Segal condition. So let [p] ∈ Δ. We must show that 
the commutative square

(
Δidl

/Γ

)[p]/ (
Δidl

/Γ

){1<···<p}/

(
Δidl

/Γ

){0<1}/ (
Δidl

/Γ

){1}/

(1.2.13)

among categories induces a pullback diagram among ∞-groupoid-completions. Note that, 
through the adjoint localizations (1.2.8) and (1.2.9), and the equivalence (1.2.10), we 
obtain a commutative diagram among spaces (in fact, 0-types),
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Obj
((

Δidl
/non.degΓ

)[p]/act)
Obj

((
Δidl

/non.degΓ

){1<···<p}/act)

Obj
((

Δidl
/non.degΓ

){0<1}/act)
Obj

((
Δidl

/non.degΓ

){1}/act) ,

that is identical with the diagram among ∞-groupoid-completions of (1.2.13). Now, 
by direct inspection, this commutative square among 0-types induces an equivalence 
between horizontal fibers. Therefore, this diagram among spaces is a pullback.

Finally, direct inspection reveals that the simplicial space (1.2.11) satifies the com
pleteness condition. �
Corollary 1.2.11. For each finite directed graph Γ, the (∞, 1)-category Free(Γ) has the 
following properties.

(1) Its space of objects is a finite 0-type. In fact, the canonical map between spaces,

unitΓ([0]) : Γ(0) := Γ([0]) −→ Obj (Free (Γ)) ,

is an equivalence. In particular, for each v ∈ Obj (Free (Γ)), the group AutFree(Γ)(v) �
{idv} is trivial.

(2) It is an ordinary category: for each pair vs, vt ∈ Obj (Free (Γ)), the unit map fol
lowed by the composition map for the (∞, 1)-category Free (Γ) dfines an equivalence 
between spaces:

∐
q≥0

{
(e1, . . . , eq) ∈ (Γ(1))×q | s(e1) = vs and t(eq) = vt and 

for 0 < i < q, s(ei) = t(ei+1)
}

�  −−→ HomFree(Γ)(vs, vt) .

In particular, HomFree(Γ)(vs, vt) is a 0-type, a point in which is a sequence of directed 
edges in Γ from vs to vt.

(3) It is gaunt.

Proof. Statement (3) follows from Statements (1) and (2).
Statement (1) follows immediately from Lemma 1.2.10, as the case p = 0, using that 

the only active morphism [0] → [q] in Δ is an isomorphism.
Statement (2) follows from Lemma 1.2.10, through the case p = 1, as we now 

explain. Observe, through direct inspection, that the fiber over [q] of the projection 

Obj
((

Δidl
/non.degΓ

)[1]/act)
→ Obj(Δidl) is canonically identfied as the 0-type
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(e1, . . . , eq) ∈ (Γ(1))×q | s(e1) = vs and t(eq) = vt and 

for 0 < i < q, s(ei) = t(ei+1)
}

⊂ Γ([1])q . �
Remark 1.2.12. Let Γ be a finite directed graph. Corollary 1.2.11(1) states that the space 
of objects Obj

(
Free(Γ)

)
is the 0-type of vertices Γ(0). Corollary 1.2.11(2) states that, for 

vs, vt ∈ Γ(0) vertices, the space of morphism in Free(Γ) is the 0-type of directed paths
in Γ from vs to vt, a point in which is an � ≥ 0 together with a sequence of � directed 
edges in Γ: (

vs
a1−→ u1

a2−→ u2
a3−→ · · · a�−1−−−→ u�−1

a�−→ vt

)
.

Corollary 1.2.11 lends the following.

Corollary 1.2.13. Let Γ and Ξ be finite directed graphs. The space of morphisms 
HomQuiv

(
Ξ,Γ

)
is the 0-type consisting of the following data.

• A map f (0) : Ξ(0) → Γ(0) between sets of vertices.

• For each non-degenerate directed edge (s(e) e−→ t(e)) ∈ Ξ(1), a directed path in Γ,

f (1)(e) = 
(
f (0)(s(e)) b1(e)−−−→ y1(e)

b2(e)−−−→ y2(e)
b3(e)−−−→ · · ·

b�e−1(e)−−−−−→y�e−1(e)
b�e (e)−−−−→ f (0)(t(e))

)
,

from f (0)(s(e)) to f (0)(t(e)).

Lemma 1.2.14. There is a canonical pullback diagram among ∞-categories

Δidl diGraphsfin

Δ Quiv
Free . (1.2.14)

Proof. Let Ap and Aq be the finite linearly-directed graphs for which Free(Ap) = [p] and 
Free(Aq) = [q]. Let [p] σ−→ [q] be a morphism in Δ. The morphism f is idle if and only if, 
for each generating morphism (i− 1) fi−→ i in [p] (ie, for each edge in Ap), the morphism 

σ(i − 1) σ(fi)−−−→ σ(i) in [q] is either a generating morphism or an identity morphism (ie, 
an edge in Aq). The result then follows from Corollary 1.2.13. �
Lemma 1.2.15. The ∞-category Quiv has the following features.

(1) Quiv is an ordinary category.
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(2) Both of the functors

Free : diGraphsfin −→ Quiv and Free : diGraphsfin −→ Cat(∞,1)

are monomorphisms.

Proof. Corollary 1.2.11(3) implies the defining fully faithful inclusion Quiv ↪→ Cat(∞,1)
factors through Cat(1,1) ⊂ Cat(∞,1). Corollary 1.2.11 also implies that, for each Γ,Ξ ∈
Quiv, the 1-groupoid HomCat(1,1) (Free(Ξ),Free(Γ)) is in fact a 0-type. It follows that Quiv
is an ordinary category, which is statement (1).

We now prove statement (2). Because Quiv ⊂ Cat(∞,1) is a full ∞-subcategory, it 
is sufficient to prove that Free : diGraphsfin → Cat(∞,1) is a monomorphism. For this, 
it’s enough to show that the unit of the adjunction (1.2.1) evaluates on each object 
Γ ∈ diGraphsfin ⊂ PShv(Δ≤1) as a monomorphism in PShv(Δ≤1):

Γ −→ Free(Γ) is a monomorphism .

This is implied by Corollary 1.2.11(1)&(2). �
After Observation 1.2.5, Lemma 1.2.15 implies the following.

Corollary 1.2.16. The functor diGraphsfin Free−−→ Quiv restricts as an equivalence between 
moduli spaces of objects:

Obj(Free) : Obj(diGraphsfin) �  −−→ Obj(Quiv) .

Notation 1.2.17. In light of Corollary 1.2.16, we do not distinguish in notation or termi
nology between an object in Quiv and its corresponding finite directed graph.

Observation 1.2.18. Regarding each finite set as a finite directed graph with no (non
degenerate) edges dfines a functor

Fin ↪→ diGraphsfin

which is fully faithful. Inspecting the values of Free(Γ) of Corollary 1.2.11 reveals that 
the composite functor

Fin ↪→ diGraphsfin Free−−−→ Quiv

is fully faithful.

Definition 1.2.19. The subcategories of idle, closed, and creation morphisms,

Quiv ⊃ Quividl ⊃ Quivcls , Quivcr ,
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are the respective image under the monomorphism diGraphsfin Free−−→ Quiv and the images 
of the monomorphisms, and of the epimorphisms.9 A morphism Γ F−→ Ξ is active if for 
every edge g ∈ Ξ, there exists an edge f ∈ Γ such that g is a factor of F (f). A morphism 

Γ F−→ Ξ is a generating rfinement morphism if F is fully faithful, the complement 
of whose image consists of a single object in Ξ that has directed-valence (1, 1).10 A 

morphism Γ F−→ Ξ is a rfinement morphism if it is a composite of generating rfinement 
morphisms. We denote by

Quiv ⊃ Quivact ⊃ Quivref ,

the subcategories of active and rfinement morphisms.

Observation 1.2.20. Using Lemma 1.2.14, the fully faithful functor Δ ρ−→ Quiv respects 
the subcategories:

Δcls = Δ ∩ Quivcls and Δcr = Δ ∩ Quivcr and Δidl = Δ ∩ Quividl .

Furthermore,

Δact = Δ ∩ Quivact .

1.3. Closed covers and closed sheaves

Definition 1.3.1. A basic closed cover (in Quiv) is a diagram in (diGraphsfin)mono � Quivcls

of the form

Γ0 Γ+

Γ− Γ

that witnesses a pushout in diGraphsfin.11 A presheaf Quivop F−→ S is a closed sheaf (on 
Quiv) if F(∅) = ∗ and it carries (the opposites of) each basic closed cover in Quiv to a 
limit diagram in S. A closed cover (in Quiv) is a diagram K� → Quivcls for which, for 
each closed sheaf, Quivop F−→ S, the composite functor

(Kop)� = (K�)op → (Quivcls)op ↪→ Quivop F−→ S

9 In other words, the functors diGraphsfin Free−−→ Quividl and diGraphsfin,mono Free−−→ Quivcls and diGraphsfin,epi Free−−→
Quivcr are equivalences between categories.
10 In other words, Ξ is obtained from Γ by replacing a directed edge by two composable directed edges, as 
it is canonically equipped with a morphism from Γ.
11 Warning: it need not be a pushout in (diGraphsfin)mono
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is a limit diagram. The ∞-category of closed sheaves (on Quiv) is the full ∞-subcategory

Shvcls(Quiv) ⊂ PShv(Quiv)

consisting of the closed sheaves (on Quiv).

Remark 1.3.2. The data of a basic closed cover in Quiv is equivalently that of a pullback 
diagram in diGraphsfin in which each morphism is a monomorphism. In particular, a 
basic closed cover in Quiv is the data of a finite directed graph Γ together with a pair 
Γ−,Γ+ ⊆ Γ of subgraphs whose union Γ− ∪ Γ+ = Γ is entire.

Observation 1.3.3. The fully faithful functor Δ ρ−→ Quiv carries basic closed covers in Δ
to basic closed covers in Quiv.

Definition 1.3.4. Let Γ be a finite directed graph (Fig. 2).

(1) The exit-path category (of Γ) is the full subcategory

E(Γ) ⊂ (Δ≤1)cls/Γ := (Δ≤1)cls × 
diGraphsfin

diGraphsfin
/Γ

consisting of those objects, which are morphisms between directed graphs [p] σ−→ Γ, 
in which σ is a monomorphism.1213

(2) For C : Δop → X a simplicial object in an ∞-category X that admits finite limits, 
the C-valued representations of Γ is the limit

RepC(Γ) := lim
(
E(Γ)op forget−−−→ (Δcls

≤1)op ↪→ Δop C−→ X
)

∈ X .

Observation 1.3.5. For each finite directed graph Γ, its exit-path category E(Γ) is a finite 
category. Specifically, E(Γ) is a gaunt category with

Obj
(
E(Γ)

)
= Γ(0) � Γ(1)

and, for x, y ∈ Obj
(
E(Γ)

)
,

12 This terminology aligns with more common use of ``exit-path category'' (see, for example [22]). Specifi
cally, one can regard the geometric realization |Γ| of Γ as a stratfied space: each vertex and the interior of 
each edge is a stratum. As so, E(Γ) dfined here agrees with the exit-path category of this stratfied space.
13 The exit-path category E(Γ) is sometimes referred to as the subdivision sd(Γ).
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Fig. 2. A graph Γ and its exit path category. 

HomE(Γ)(x, y) = 

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
s−1(x) ∩ 

Γ(1)
{y}

)∐(
t−1(x) ∩ 

Γ(1)
{y}

)
,

if x ∈ Γ(0) and y ∈ Γ(1)

∗, if x = y

∅, if x �= y and either x ∈ Γ(1) or y ∈ Γ(0)

.

In particular, the non-identity morphisms in E(Γ) are precisely those from a vertex 
x ∈ Γ(0) to an edge y ∈ Γ(1) for x is either the source or the target of y. Furthermore, 
there are no non-trivial composites in E(Γ). Moreover, E(Γ) is a poset if and only if Γ
has no self-loops (ie, for each edge in Γ, its source is distinct from its target).

Observation 1.3.6. For Γ a finite directed graph, the functor

(
E(Γ)

)� −→ Quivcls , 

⎧⎨⎩
(
[p] σ−→ Γ

)
�−→ ρ(p)

+∞ �−→ Γ
(1.3.1)

is a closed cover in Quiv.

1.4. Parametrizing (∞, 1)-categories by finite directed graphs

The main outcome of this subsection is Theorem 1.4.6, which characterizes an (∞, 1)
category in terms of quiver representations into it.

Lemma 1.4.1. The diagram among ∞-categories, which involves right Kan extension 
along ρ and restriction to Quiv,
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fCat(∞,1) PShv(fCat(∞,1))

PShv(Δ) PShv(Quiv)

(1.1.1)

Yo

restriction

ρ∗

, (1.4.1)

canonically commutes.

Proof. By definition of the functor (1.1.1), it factors as a composite,

(1.1.1) : fCat(∞,1)
Yo−−→ PShv(fCat(∞,1))

restriction−−−−−−−→ PShv(Δ) ,

where the restriction functor above is along the standard fully faithful inclusion 
Δ ↪→ fCat(∞,1). Now, Lemma 1.2.8 grants that this fully faithful inclusion factors: 
Δ ρ−→ Quiv ↪→ fCat(∞,1). So we have a commutative diagram among ∞-categories:

fCat(∞,1) PShv(fCat(∞,1))

PShv(Δ) PShv(Quiv)

(1.1.1)

Yo

restriction
ρ∗

.

Evoking the adjunction (ρ∗, ρ∗) supplies a canonical morphism in 
Fun

(
fCat(∞,1),PShv (Quiv)

)
,

restriction ◦ Yo −→ ρ∗ ◦ (1.1.1) .

The value of this morphism on a flagged (∞, 1)-category C ∈ fCat(∞,1) is the canonical 
morphism in PShv(Quiv), whose value on Γ ∈ Quiv is the map between spaces:

restriction ◦ Yo(C)(Γ) = HomfCat(∞,1) (Free(Γ),C)

−→ lim
(

(Δ/ Free(Γ))op forget−−−→ Δop
HomfCat(∞,1) ([•],C)
−−−−−−−−−−−−→ S

)
� lim

(
(Δop)Γ/ forget−−−→ Δop

HomfCat(∞,1) ([•],C)
−−−−−−−−−−−−→ S

)
� ρ∗ ◦ (1.1.1)(Γ) ,

in which the arrow is obtained by the functor HomfCat(∞,1)(−,C) to the canonical mor
phism in fCat(∞,1):

colim
(
Δ/ Free(Γ)

forget−−−→ Δ ↪→ fCat(∞,1)

)
−→ Free(Γ) .

This canonical morphism in fCat(∞,1) is an equivalence because the functor Δ ↪→
fCat(∞,1) strongly generates. �
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Notation 1.4.2. The functor

ρ∗ : fCat(∞,1) −→ PShv(Quiv)

is the unambiguous diagonal functor of (1.4.1).

Observation 1.4.3. The functor ρ∗ : fCat(∞,1)
(1.1.1)−−−−→ PShv(Δ) ρ∗−→ PShv(Quiv) of Nota

tion 1.4.2 is fully faithful. Indeed, the functor (1.1.1) is fully faithful, and fully faithfulness 
of ρ implies fully faithfulness of ρ∗.

The values of the fully faithful functor fCat(∞,1)
ρ∗−→ PShv(Quiv) are rather simple, as 

in the following.

Observation 1.4.4. By definition of the functor Free in terms of a left adjoint, for each 
finite directed graph Γ, the space of functors is canonically identfied as the space of 
maps between graphs:

ρ∗C(Γ) � 
Lem 1.4.1

HomfCat(∞,1)

(
Free(Γ),C

)
� HomPShv(Δ≤1)

(
Γ,C|Δ≤1

)
� lim

⎛⎜⎜⎝ Mor(C)Γ
(1)

Obj(C)Γ
(0)

Obj(C)Γ
(0) × Obj(C)Γ

(0)
Obj(C)Γ

(1) × Obj(C)Γ
(1)

(s,t)

diagonal s∗×t∗

⎞⎟⎟⎠
= Obj(C)Γ

(0) × 
Obj(C)Γ(1)×Obj(C)Γ(1)

Mor(C)Γ
(1)

.

In particular, the space ρ∗C(Γ) is a finite limit in which each term is Obj(C) or Mor(C).

Remark 1.4.5. Observation 1.4.4 articulates that ρ∗C(Γ) is the moduli space of C-labels 
of Γ, a point in which is an object in C for each vertex in Γ, a morphism in C for each 
(non-degenerate) edge in Γ, together with source-target compatibilities.

For the next result, recall the Definition 1.3.1 of a closed sheaf on Quiv.

Theorem 1.4.6. The functor

fCat(∞,1)
ρ∗−−−→ PShv(Quiv)

is fully faithful; the image consists of the closed sheaves on Quiv:

ρ∗ : fCat(∞,1) � Shvcls(Quiv) : ρ∗ .
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Proof. Restriction and right Kan extension dfine an adjunction

ρ∗ : PShv(Quiv) ⇄ PShv(Δ) : ρ∗ .

We first show that this adjunction restricts as an adjunction between the full ∞
subcategories:

ρ∗ : Shvcls(Quiv) ⇄ fCat(∞,1) : ρ∗ . (1.4.2)

So let F ∈ Shvcls(Quiv). We must show the restriction ρ∗F|(Δcls)op : (Δcls)op ↪→ Δop ρ∗F−−→ S

carries (the opposites of) basic closed covers in Δ to limit diagrams in S. Note that this 
restriction is identical with the composite functor:

ρ∗F|(Δcls)op : (Δcls)op ρ|(Δcls)op
−−−−−→ (Quivcls)op F|(Quivcls)op

−−−−−−→ S .

By Observation 1.3.3, the first functor carries basic closed covers in Δ to basic closed 
covers in Quiv. By assumption the second functor preserves limits.

Next, let C ∈ fCat(∞,1) be a flagged (∞, 1)-category. Clearly, the value ρ∗C(∅) � ∗ is 
final. We must show the restriction

ρ∗C|(Quivcls)op : (Quivcls)op ↪→ Quivop ρ∗C−−→ S

carries basic closed covers to pullbacks. By Lemma 1.4.1, it is sufficient to show that the 
composite inclusion

Quivcls ↪→ Quiv −→ fCat(∞,1)

carries basic closed covers to pushout diagrams. By Definition 1.2.19, this is implied by 
Observation 1.2.7.

Now, the proposition is implied by the adjunction (1.4.2) being an equivalence, which 
is implied by both its unit and counit being by equivalences. So let C ∈ fCat(∞,1). The 
counit evaluates as the morphism in fCat(∞,1):

ρ∗ρ∗C
counit−−−−−→ C .

This morphism evaluates on [p] ∈ Δ as the canonical equivalence between spaces:

ρ∗ρ∗C([p]) � ρ∗C(ρ(p)) � 
Lem 1.4.1

HomfCat(∞,1)

(
ρ(p),C

) �  −−→ HomfCat(∞,1)

(
[p],C

)
� C([p]) ,

obtained by applying HomfCat(∞,1)

(
,C
)

to the canonical identfication [p] �−→ ρ([p]) that 
dfines the cellular realization (see Notation 1.2.9). Therefore, the counit of the adjunc
tion 1.4.2 is by equivalences.
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Next, let F ∈ Shvcls(Quiv). We seek to show the unit of the adjunction (1.2.5),

F
unit−−−−→ ρ∗ρ

∗F , (1.4.3)

is by equivalences. Let Γ ∈ Quiv. The unit morphism (1.4.3), together with its naturality, 
evaluates on Γ ∈ Quiv as the top horizontal map in a diagram among spaces,

F(Γ) ρ∗ρ
∗F(Γ)

lim
((

E(Γ)op)� (1.3.1)−−−−−→ (Quivcls)op F−→ S
)

lim
((

E(Γ)op)� (1.3.1)−−−−−→ (Quivcls)op ρ∗ρ∗F−−−−−→ S
)

unit

lim unit

, (1.4.4)

in which the downward maps are given by applying F to (1.3.1). Using the hypothesis that 
F is a closed sheaf on Quiv, the first part of this proof ensures the functor Quivop ρ∗ρ

∗F−−−−→ S

is a closed sheaf on Quiv. So by Observation 1.3.6, which ensures (1.3.1) is a closed cover, 
the vertical maps in (1.4.4) are both equivalences. Therefore, the top horizontal map is 
an equivalence if and only if the bottom horizontal map is an equivalence. The bottom 
horizontal map is an equivalence provided, for each [p] ∈ Δ≤1, the unit morphism (1.4.3) 
evaluated on ρ(p) ∈ Quiv,

ρ∗unit : ρ∗F([p]) � F
(
ρ(p)

) unit−−−−→ ρ∗ρ
∗F
(
(ρ(p)

)
� ρ∗ρ∗ρ∗F([p]) ,

is an equivalence. This unit morphism fits into a commutative diagram among spaces:

ρ∗F([p]) ρ∗F([p])

ρ∗ρ∗ρ
∗F([p])

ρ ∗
unit

id

cou
nit

ρ
∗ .

The upward map was already shown to be an equivalence. It follows that the downward 
map is an equivalence, as desired. �
Remark 1.4.7. Theorem 1.4.6 allows us to regard an (∞, 1)-category C as a functor 
C : Quivop → S satisfying certain descent conditions. In particular, an (∞, 1)-category C
is characterized by its spaces of ``Γ-points'' C(Γ) := ρ∗C(Γ), as Γ ranges through finite 
directed graphs.

The following result presents the limit expression of Observation 1.4.4 in more con
ceptual terms.

Proposition 1.4.8. Let C ∈ fCat(∞,1) ⊂ 
(1.1.1)

PShv(Δ) be a flagged (∞, 1)-category. For 

each finite directed graph Γ, there is a canonical equivalence between spaces:

ρ∗(C)(Γ) �  −−→ RepC(Γ) .
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Proof. We explain the following sequence of equivalences among spaces:

ρ∗(C)(Γ) �  −−→ lim
(
E(Γ)op Observation 1.3.6−−−−−−−−−−−→ Quivop ρ∗(C)−−−→ S

)
(1.4.5)

�  ←−− lim
(
E(Γ)op forget−−−→ (Δcls

≤1)op ↪→ Δop C−→ S
)

=: RepC(Γ) . (1.4.6)

Using the second statement of Theorem 1.4.6, the equivalence (1.4.5) follows from Ob
servation 1.3.6. By inspection, the functor E(Γ) → Quivcls of Observation 1.3.6 factors 
through the fully faithful functor (Δcls

≤1)op ρ−→ Quivcls. Using this, the equivalence (1.4.6) 
is the fact that the counit of the (ρ∗, ρ∗)-adjunction is an equivalence. �
1.5. Category-objects in X

In this subsection, we extend the main result Theorem 1.4.6 of the earlier subsections 
from (∞, 1)-categories to category-objects in an ambient ∞-category.

Recall from §1.1 the full ∞-subcategories

Cat(∞,1) ⊂ fCat(∞,1) ⊂ PShv(Δ) = Fun(Δop, S) .

An object in the smaller full ∞-subcategory is an (∞, 1)-category also known as a
complete Segal space, while an object in the intermediate fully ∞-subcategory is a
flagged (∞, 1)-category also known as a Segal space. In this section, we recall a simple 
generalization of these notions, as the following.

Definition 1.5.1. Let X be an ∞-category. The ∞-category of category-objects in X is 
the full ∞-subcategory

fCat1[X] ⊂ Fun(Δop,X)

consisting of those functors

C : Δop −→ X

for which the composite functor (Δcls)op ↪→ Δop C−→ X carries (the opposites of) basic 
closed covers to pullbacks.

Remark 1.5.2. We explain the notation of Definition 1.5.1. A category-object in S is a
Segal space:

fCat(∞,1) := PShvSegal(Δ) = fCat1[S] .

The work [1] proves that a Segal space is precisely the same data as a flagged (∞, 1)
category, which is a functor G → C from an ∞-groupoid to an (∞, 1)-category that is 
surjective on isomorphism-classes of objects.
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Notation 1.5.3. Let X be an ∞-category. Consider the full ∞-subcategory

Shvcls
X (Quiv) ⊆ Fun(Quivop,X)

consisting of those functors Quivop F−→ X for which the restricted functor (Quivcls)op ↪→
Quivop F−→ X maps (the opposites of) basic closed covers to pullbacks.

Observation 1.5.4. Let X f−→ Y be a functor that preserves finite limits. Postcomposition 
with f dfines the upper horizontal functors in commutative squares

fCat1[X] fCat1[Y]

Fun(Δop,X) Fun(Δop,Y)

fCat1[f ]

f.f. f.f.

Fun(Δop,f)

and

Shvcls
X (Quiv) Shvcls

Y (Quiv)

Fun(Quivop,X) Fun(Quivop,Y)

Shvcls
f (Quiv)

f.f. f.f.

Fun(Quivop,f)

.

Furthermore, if f is fully faithful, then so are each of the horizontal functors in these 
diagrams.

Recall from Notation 1.2.9 the functor Δ ρ−→ Quiv.

Theorem 1.5.5. Let X be an ∞-category with finite limits. Restriction along ρ is an 
equivalence between ∞-categories:

ρ∗ : Shvcls
X (Quiv) �  −−→ fCat1[X] .

The value of its inverse on C ∈ fCat1[X] evaluates as the finite limit in X:

ρ∗(C) : Γ �−→ RepC(Γ) .

Proof. Observation 1.3.3 implies the restriction functor ρ∗ : Fun(Quivop,X) → Fun(Δop, 
X) indeed restricts as a functor ρ∗ : Shvcls

X (Quiv) → fCat1[X]. It remains to show this func
tor is an equivalence. Applying Observation 1.5.4 to the Yoneda functor X → PShv(X), 
which preserves finite limits, affords the commutative diagram among ∞-categories:
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Shvcls
X(Quiv) Shvcls

PShv(X)(Quiv) Fun
(
Xop, fCat(∞,1)

)

fCat1[X] fCat1
[
PShv(X)

]
Fun(Xop, Shvcls(Quiv))

ShvclsYo(Quiv)

ρ∗

�

Shvcls
ρ∗ (Quiv) Fun

(
Xop,ρ∗

)

fCat1[Yo] �

,

in which the right two horizontal functors are equivalences via the standard adjunction 
Fun(B,Fun(A,C)) � Fun(B × A,C) � Fun(A × B,C) � Fun(A,Fun(B,C)). Because the 
Yoneda functor is fully faithful, all of the horizontal functors in this diagram are fully 
faithful. By Theorem 1.4.6, the right vertical functor is an equivalence. We conclude that 
the left vertical functor ρ∗ is fully faithful.

Now, the universal property of limits is such that the Yoneda functor preserve limits. 
By definition of fCat1[−] and Shvcls

− (Quiv), it follows that the left two horizontal functors 
preserve limits, and thereafter all of the horizontal functors preserve limits. Theorem 1.4.6
also gives that the inverse of the right vertical functor evaluates as finite limits, as asserted 
in the present proposition. Consequently, the left vertical functor ρ∗, which we already 
established is fully faithful, is an equivalence, with inverse as asserted in the present 
proposition. �

2. Cyclically-directed graphs

Here, we recall the epicyclic category, cyclic category, and paracyclic category, and 
collect some facts about them.

2.1. Symmetries of a circle

Here, we record the symmetries of a circle, and introduce the Witt monoid.

Notation 2.1.1. 

• The monoid Z× is that of integers with multiplication. 
The monoid N× is the submonoid of natural numbers with multiplication.

• The circle group is T ⊂ C× is the unit complex numbers with multiplication, regarded 
as a group-object in topological spaces, thusly presenting a group-object in S.

Observation 2.1.2. The circle group T presents the group-object in spaces BZ, which is 
the deloop of the commutative group Z of integers:

T � BZ 
(

in Alg(S) 
)
.
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Consider the natural action of the monoids N× and Z× on the circle group14:

N× ↪→ Z× −→ EndGps(T ) , r �−→
(
u �−→ ur

)
. (2.1.1)

With respect to the action Z×
↷ 

(2.1.1)
T , consider the semi-direct product monoid-object 

in S:

T ⋊ Z× .

It is presented by the topological monoid whose underlying topological space is T ×Z×, 
and whose multiplication rule is the continuous map(

T × Z
)
×
(
T × Z

)
−→

(
T × Z

)
, 

(
(w, r), (z, s)

)
�−→ (wzr, rs) .

Proposition 2.1.3. The map

T ⋊ Z× �  −−→ EndS(S1) , (z, r) �−→
(
u �→ zur

)
, (2.1.2)

canonically dfines an equivalence between monoid-objects in S.

Proof. Evidently, the indicated map canonically lifts along the forgetful morphism 

EndTop(S1) forget−−−→ EndS(S1), where Top is a convenient category of topological spaces. It 
follows that the indicated map is a morphism between monoid-objects in S.

Next, using the topological group structure of T = S1, the map

EndS(S1) �  −−→ S1 × ΩS1 , (S1 f−→ S1) �−→
(
f(1) , f(1)−1f

)
,

is an equivalence between spaces. Direct inspection reveals that the composite map 

T ⋊ Z× (2.1.2)−−−−→ EndS(S1) �−→ S1 × ΩS1 is a product of equivalences, and is therefore an 
equivalence. �
Observation 2.1.4. The diagram

T ⋊ Z× EndS(S1)

Z× EndAb(Z)

(2.1.2)

pr deg

r �−→(d�→rd)

among monoid-objects in S commutes, where the right downward morphism is given by 
applying H1, 1st integral homology.

14 Through Observation 2.1.2, this action agrees with the functor B applied to the action N× r �→(i�→ri)  −−−−−−−−→
End(Z).
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Definition 2.1.5. The Witt monoid15 is the semi-direct product monoid-object in S,

W := T ⋊N× ,

with respect to the action N×
↷ 

(2.1.1)
T . Specifically, W is presented by the topological 

monoid whose underlying topological space is T × N, and whose multiplication rule is 
the continuous map

(
T ×N

)
×
(
T ×N

)
−→

(
T ×N

)
, 

(
(w, r), (z, s)

)
�−→ (wzr, rs) .

Observation 2.1.6. Using that both of the monoids T and N× are commutative, there is 
a canonical identfication between monoids:

W op � N×
⋉ T .

Observation 2.1.7. The canonical projection

BW
pr−−→ BN×

is a left fibration. It straightens as the composite functor BN×

〈
N× ↷ 

(2.1.1)
T
〉

−−−−−−−−→ Groups B−→ S.

Observation 2.1.8. In light of Observation 2.1.4, there is a canonical pullback square 
among monoid-objects in S:

W EndS(S1)

N× EndAb(Z)

pr deg

r �−→(d�→rd)

.

Furthermore, because the bottom horizontal morphism is a monomorphism, so is the top 
horizontal morphism.

Remark 2.1.9. In fact, the Witt monoid can be recognized as the monoid of framed 
self-coverings of the circle:

Immfr(S1) � W .

15 The notation W stems from the fact that this will keep track of Frobenius and Verschiebung operators, 
along the lines of [13].
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2.2. The epicyclic category

Here, we recall the epicyclic category Λ̃, and construct a natural functor from it to 
BW .

Recall from Terminology 1.2.2 the definition of a cyclically-directed graph.

Definition 2.2.1. The epicyclic category is the ∞-subcategory

Λ̃ ⊂ Cat(∞,1)

consisting of those (∞, 1)-categories that are the values of Free on finite directed graphs 
that are cyclically-directed, and non-constant functors between such. 16

Observation 2.2.2. There is a canonical monomorphism (between ∞-subcategories of 
Cat(∞,1)):

Λ̃ ↪→ Quiv .

Observation 2.2.3. The finite directed graph consisting of a single vertex and no (non
degenerate) edges is the final object ∗ ∈ Quiv. Consequently, the monomorphism 

Λ̃ Observation 2.2.2
↪→ Quiv admits a final extension

Λ̃� ↪→ Quiv ,

which is a monomorphism, whose value on the cone point is ∗ ∈ Quiv.

Through a series of observations, we make the category Λ̃ more explicit.

Observation 2.2.4. Let Γ be a finite cyclically-directed graph. Both of the maps from the 
set of non-degenerate edges to the set of vertices,

Γ(0) s  ←−− Γ(1) t  −−→ Γ(0) ,

are bijections between finite sets.

Recall from Remark 1.2.12 the notion and notation of directed paths in a directed 
graph.

16 In the small handful of places that it has appeared in the literature, Λ̃ is actually dfined as the opposite 
of what we have indicated here. (See e.g. [9] for a foundational survey, which attributes the definition to an 
unpublished letter from Goodwillie to Waldhausen dating back to 1987.) We have chosen our convention in 
the interest of uniformity.
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Observation 2.2.5. Let Γ be a finite cyclically-directed graph. Let u, v ∈ Γ(0) be vertices. 
A directed path from u to v determines, and is determined by, the number of times it 
passes through u. More precisely, the map from the set of directed paths in Γ from u to 
v to the set of non-negative integers,∐

k≥0

{
u → x1 → · · · → xk → v

}
−→ Z≥0 ,

(
u → x1 → · · · → xk → v

)
�−→ Card

{
i | xi = u

}
,

is a bijection.

Notation 2.2.6. Let Γ be a cyclically-directed graph. Let v ∈ Γ(0) be a vertex. Denote by 
ev ∈ Γ(1) the unique non-degenerate edge in Γ whose source is v.

Observation 2.2.7. Let Γ and Ξ be finite cyclically-directed graphs. By Corollary 1.2.13, 
and using Observation 2.2.4 and Observation 2.2.5, the set HomCat

(
Free(Γ),Free(Ξ)

)
is 

the 0-type in which a point is the following data:

• a map f (0) : Γ(0) → Ξ(0) between sets of vertices;

• a map d : Γ(0) � �→d�−−−→ Z≥0 .

Indeed, given Free(Γ) f−→ Free(Ξ), for v ∈ Γ(0), the value dv ∈ Z≥0 is that corresponding 
through the bijection of Observation 2.2.5 to the directed path f (1)(ev) in Ξ, where ev
is as in Notation 2.2.6.

Definition 2.2.8. Let Γ and Ξ be finite cyclically-directed graphs. The degree map is 
dfined through Observation 2.2.7 as

deg : HomCat
(
Free(Γ),Free(Ξ)

)
−→ N , (f (0), d) �−→ 1 +

∑
v∈Γ(0)

dv .

Observation 2.2.9. The degree map is multiplicative. Specifically, for Γ, Ξ, and χ finite 

cyclically-directed graphs, and for Free(Γ) f−→ Free(Ξ) g−→ Free(χ), there is an equality 
between numbers

deg(g ◦ f) = deg(g)deg(f) .

Observation 2.2.9 enables the following.

Definition 2.2.10. The degree functor

deg : Λ̃ −→ BN×
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is given by, for each pair of objects Γ,Ξ ∈ Λ̃, the degree map on spaces of morphisms: 
HomΛ̃

(
Γ,Ξ

) deg−−→ N.

Observation 2.2.11. 

(1) By Definition 2.2.1, the space Obj(Λ̃) is that of finite cyclically-directed graphs. 
Consequently, by Observation 1.2.6, for each object Γ ∈ Λ̃ ⊂ Cat, its ∞-groupoid
completion |Γ| � S1 is non-canonically equivalent with a circle.

(2) The previous point implies there is a unique filler in the diagram among ∞-categories,

Λ̃ Cat

BEndS(S1) S

|−| |−| , (2.2.1)

in which the downward functor is given by taking ∞-groupoid-completion.

(3) The diagram among ∞-categories

Λ̃ BEndS(S1)

BN× BZ×

|−|

deg deg

commutes.

(4) After Observation 2.1.8, the previous point gives that the factorization (2.2.1)
uniquely factors further:

Λ̃ |−|−−→ BW . (2.2.2)

Construction 2.2.12. Let Γ be a finite cyclically-directed graph. Let C g−→ |Γ| be a mor
phism in BW ⊂ BEndS(S1) to the geometric realization of |Γ|. By definition, this 
geometric realization fits into a coequalizer diagram among spaces:

Γ(1) s 
⇒
t 

Γ(0) −→ |Γ| .

Base change along C
g−→ |Γ| results in a coequalizer diagram among spaces:

(g∗Γ)(1)
s 
⇒
t 

(g∗Γ)(0) −→ C .

Both of the spaces (g∗Γ)(0) and (g∗Γ)(1) are finite 0-types, and therefore (g∗Γ)(1)
s 
⇒
t 

(g∗Γ)(0) is a finite directed graph g∗Γ. By its construction, g∗Γ is cyclically-directed, and 
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it is equipped with a morphism g∗Ξ → Ξ between directed graphs for whose geometric 
realization is identical with C

g−→ |Ξ|.

Lemma 2.2.13. The functor Λ̃ |−|−−→ BW is a Cartesian fibration. A Cartesian morphism 
with target Γ, over a morphism C

g−→ |Γ| in BW , is g∗Γ → Γ of Construction 2.2.12.

Proof. Let Γ be a finite cyclically-directed graph. Let D h−→ C
g−→ |Γ| be a pair of 

composable morphisms in BW . Because base change composes, there is a canonical 
identfication (g ◦ h)∗Γ � h∗(g∗Γ) between directed graphs. We are therefore reduced to 

showing Λ̃ |−|−−→ BW is a locally Cartesian fibration, with locally Cartesian morphisms 
as stated.

Let Ξ f−→ Γ be a morphism in Λ̃. Consider the resulting morphism c1
〈|Ξ|

|f|−−→|Γ|〉−−−−−−−→ BW . 
We seek to show there is a unique morphism Ξ f̃−→ |f |∗Γ in Λ̃|c1 . Well, the morphism 

f determines a map Ξ(0) � Obj (Free(Ξ)) Obj(f)−−−−→ Obj (Free(Γ)) � Γ(0) that fits into the 
diagram among spaces:

Ξ(0) |Ξ|

Γ(0) |Γ|

Obj(f) |f | .

By the universal property of pullbacks, this commutative diagram supplies a unique 

map Obj (Free(Ξ)) � Ξ(0) Obj(f̃)−−−−→ Γ(0) � Obj (Free(Γ)). By Observation 2.2.7, the space of 

morphisms Ξ f̃−→ |f |∗Γ in Λ̃ is therefore the space of maps Ξ(0) d−→ Z≥0. Now, because deg
is multiplicative (Observation 2.2.9), deg(f̃) = 1. Consequently, the space of morphisms 

Ξ f̃−→ |f |∗Γ in Λ̃|c1 is contractible, since there is a unique map Ξ(0) d−→ Z≥0 for which 
1 +

∑
x∈Ξ(0)

dx = 1. �

2.3. The cyclic category

Here, we dfine the cyclic category, originally dfined by Connes, in terms of the 
epicyclic category.

Observation 2.2.9 enables the following.

Definition 2.3.1 ([11]). The cyclic category is the subcategory

Λ ⊂ Λ̃

consisting of all of the objects, which are finite cyclically-directed graphs, and those 
morphisms f for which deg(f) = 1.
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Observation 2.3.2. Observation 2.2.7 implies each morphism Γ → Ξ in Λ is determined 
by its values on vertices. In other words, the functor

Obj : Λ −→ Sets

induces monomorphisms between spaces of morphisms.

Observation 2.3.3. There is a canonical diagram among ∞-categories in which each 
square is a pullback:

Λ BT ∗

Λ̃ BW BN×

|−|

|−|
(2.2.2) pr

.

In other words, for Γ and Ξ finite cyclically-directed graphs, a morphism Free(Γ) f−→
Free(Ξ) belongs to Λ if and only if the induced map between ∞-groupoid-completions 
|Γ| |f |−−→ |Ξ| is an equivalence.

2.4. The paracyclic category

We recall the definition of the paracyclic category and some of its properties and 
symmetries.

For B and P linearly ordered sets, the P -fold join of B is the linearly ordered set B�P

whose underlying set is the product P ×B of underlying sets of P and of B, and whose 
linear order is the dictionary order: (p, b) < (p′, b′) means either p < p′ or p = p′ and 
b < b′.

Definition 2.4.1 ([12]). An object in the paracyclic category Δ↺ is a nonempty linearly 
ordered set I for which, for each i < j in I the interval [i, j] ⊂ I is finite, equipped 
with an action by the additive group Z for which, for each i ∈ I, there is a relation 
i < 1 · i for all i ∈ I. A morphism in Δ↺ is a Z-equivariant (weakly) order-preserving 
map. Composition is composition of maps. Identities are identity maps.

Example 2.4.2. For each � ∈ N, consider the subset 1� Z ⊂ Q. This subset inherits a linear 
order from the standard linear order on Q. This subset is evidently invariant under the 
translation action Z ↷ Q, which is order-preserving. In this way, 1� Z is an object in Δ↺.

Lemma 2.4.3. Every object in Δ↺ is non-canonically isomorphic with 1� Z for some � ∈ N.

Proof. Let (Z ↷ I) ∈ Δ↺. Using that I is assumed nonempty, choose i0 ∈ I. Take � ∈ N

such that 
[
i0 , 1 · i0

]
= {i0 = j0 < j1 < · · · < j� = 1 · i0}. Consider the map
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1
� 
Z −→ I , a �−→ (�a�) · j�(a−�a�) (2.4.1)

where �a� is the floor of the rational number a. The proof is complete upon showing this 
map (2.4.1) is an isomorphism in Δ↺.

This map (2.4.1) is evidently Z-equivariant. Let a, b ∈ 1
� Z such that (�a�) · j�(a−�a�) =

(�b�) · j�(b−�b�). Then (�a� − �b�) · j�(a−�a�) = j�(a−�a�). This is an element in both of the 
half-open intervals

[
(�a� − �b�) · i0, (�a� − �b� · +1) · i0

)
and 

[
i0, 1 · i0

)
.

Note that, for each 0 < c ∈ Z, there are relations in I:

(−c) · i0 < · · · (−1) · i0 < i0 < 1 · i0 < · · · < c · i0 .

Consequently, because the intersection of the above half-open intervals is not empty, 
then �a� − �b� = 0. It then follows that �(a− �a�) = �(b− �b�), which implies a = b. We 
conclude that the map (2.4.1) is injective.

We next prove that the map (2.4.1) is surjective. Let i ∈ I. Assume i0 ≤ i. Using that 
intervals in I are assumed finite, enumerate the interval [i0, i] = {i0 = k0 < k1 < · · · <
kr = i]. The division algorithm in Z implies there exists integers a, μ ∈ Z with 0 ≤ μ < �

such that r = a�+μ. Then i = a · jμ. Establishing the case in which i0 ≥ i is similar. �
Observation 2.4.4. 

(1) Let λ = (Z ↷ I) ∈ Δ↺ be an object. Consider the poset Funsurj(I, [1]) of surjective 
functors from the poset I to the poset [1]. This poset is in fact linearly ordered. Via 
pre-composition, the action Z ↷ I determines an action Z = Zop

↷ Funsurj(I, [1]). 
In fact, λ∨ :=

(
Z ↷ Funsurj(I, [1])

)
is an object in Δ↺.

(2) The assignment λ �→ λ∨ dfines a functor

Δ↺ −→ Δop
↺ , λ �→ λ∨ .

This functor is an equivalence between categories, with inverse given by μ◦ �→ (μ∨)◦.

Observe the functor

Δ −→ Δ↺ , [p] �→ [p]★Z , (2.4.2)

in which [p]�Z is the Z-fold join, regarded as a linearly ordered set with Z-action given 
by shifting the joinands. We record the following well-known technical assertion.

Lemma 2.4.5 (Proposition   4.2.8 of   [16]). The functor (2.4.2) is initial.



42 D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 

Using that the category Δop is sifted, Lemma 2.4.5 and Observation 2.4.4(2) imply 
the following.

Corollary 2.4.6. The category Δ↺ is both sifted and cosifted. In particular, the ∞
groupoid-completion |Δ↺| � ∗ is final.

Observation 2.4.7. Let λ = (Z ↷
αλ

I) ∈ Δ↺ be an object.

• Using commutativity of the group Z, the order-preserving automorphism αλ of I is 
canonically Z-equivariant, which is to say it dfines an automorphism

αλ ∈ AutΔ↺(λ) .

• For each r ∈ N×, the consider the linearly ordered set {1 < · · · < r}�I with order
preserving Z-action given by

αϕr(λ) : (i, k) �→
{

(i, k + 1) , if 1 ≤ k < r

(αλ(i), k) , if k = r
,

which we regard as an object ϕr(λ) ∈ Δ↺.

Lemma 2.4.8. The associations of Observation 2.4.7 assemble as an action

N×
⋉ T �  

Observation 2.1.6
W op

↷ Δ↺

of the opposite of the Witt monoid on the paracyclic category Δ↺.

Proof. The automorphism αλ, as well as, for each r ∈ N×, the object ϕr(λ), are each 
functorial in λ ∈ Δ↺, which is to say they dfine lifts:

Fun(BZ,Δ↺)

Δ↺ Δ↺

fgtα

=

and
Fun(N×,Δ↺)

Δ↺ Δ↺

ev1

=

ϕ .

The lefthand lift canonically assembles as an action T ↷ Δ↺. The righthand lift, 
together with the canonical identfications ϕr ◦ ϕs

∼ = ϕrs supplied by the unique iden
tfication between linearly ordered sets {1 < · · · < r}�{1<···<s} ∼ = {1 < · · · < sr}, 
canonically assemble as an action N×

↷ Δ↺. Furthermore, for each r ∈ N×, the identi
fication between functors (αϕr

)◦r ∼ = ϕr(α), canonically extend the actions T ↷ Δ↺ and 
N×

↷ Δ↺ as an action W op � 
Observation 2.1.6

N×
⋉ T ↷ Δ↺. �
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2.5. Comparing the paracyclic, cyclic, and epicyclic categories

Here, we observe an action of the Witt monoid on the paracyclic category, and identify 
the right-lax coinvariants of this action as the epicyclic category.

Observe the canonical functor

Δ↺ −→ Λ̃ , (Z ↷ I) �→ IhZ , (2.5.1)

where IhZ is the finite cyclically-directed graph that is the Z-quotient of the ifinite 
linearly-directed graph whose set of vertices is the underlying set of I and whose set of 
non-degenerate directed edges is that of consecutive relations in I.

Lemma 2.5.1. The square

Δ↺ Λ̃

∗ BW

(2.5.1)

! |−| (2.5.2)

among ∞-categories canonically commutes. Furthermore, this square is a pullback.

Proof. We first establish commutativity of the square (2.5.2). Let (Z ↷ I) ∈ Δ↺. 
Consider the canonical maps among spaces:

BZ � ∗hZ
!hZ←−−− |I|hZ −→ |IhZ| ,

in which I is regarded as the free category on the directed graph in which a vertex is 
an element in I and a directed edge is a consecutive pair of elements in I. As so, ob
serve that its Z-coinvariants is the free category on the cyclically-directed graph IhZ. 
Because ∞-groupoid-completion |− | is a left adjoint, it preserves Z-coinvariants. There
fore, the rightward map is an equivalence. Because I is nonempty and linearly ordered, 
the ∞-groupoid-completion |I| � ∗ is contractible. Therefore, the leftward map is an 
equivalence. In summary, there is a canonical equivalence

BZ � |IhZ| . (2.5.3)

This equivalence between spaces is evidently functorial in (Z ↷ I) ∈ Δ↺, thereby 
assembling as the sought commutativity of the square (2.5.2).

Using Observation 2.3.3, the commutative square (2.5.2) supplies the commutative 
square among ∞-categories:

Δ↺ Λ

∗ BT
! |−| . (2.5.4)
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Furthermore, because the base-change is associative, Observation 2.3.3 implies (2.5.2) is 
a pullback provided (2.5.4) is a pullback. We now show that (2.5.4) is a pullback.

Tautologically, the functor (2.5.1) canonically carries, for each λ ∈ Δ↺, the automor
phism λ

αλ−−→ λ in Δ↺ to the identity automorphism λ
idλ−−→ λ in Λ ⊂ Λ̃. Consequently, 

the functor (2.5.1) is T = BZ-invariant, thereby extending as a functor from the T
coinvariants: (

Δ↺
)
hT −→ Λ . (2.5.5)

Moreover, the identfication BZ
(2.5.3)
� |λ| is invariant with respect to the automorphism 

|αλ|. Consequently, the commutative square of (2.5.4) descends as a commutative square

(Δ↺)hBZ Λ

∗hBZ BT

(2.5.5)

!hBZ
|−|

�

. (2.5.6)

As the bottom horizontal functor is an equivalence between connected ∞-groupoids, 
(2.5.4) is a pullback if and only if the functor (2.5.5) is an equivalence.

By inspection, the functor (2.5.1) is surjective on spaces of objects. It follows that the 
functor (2.5.5) is surjective on spaces of objects. So it remains to show the functor (2.5.5) 
is fully faithful.

By inspection, the functor Δ↺ → Λ is surjective on spaces of morphisms. There
fore, the functor (2.5.5) is surjective on spaces of morphisms. So the functor (2.5.5) is 
fully faithful provided it induces a monomorphism on spaces of morphisms. Observe the 
canonically commutative diagram among categories:

Δ↺ Λ

ModZ(Set) Set

(2.5.4)

fgt Obj

(−)hZ

.

Now let λ = (Z ↷ I) and μ = (Z ↷ J) be objects in Δ↺. Choose convex fundamental 
domains C ⊂ I and D ⊂ J . By definition of objects in Δ↺, there are canonical identfi
cations between underlying Z-sets: Z× C ∼ = I and Z×D ∼ = J . Therefore, the forgetful 
functor Δ↺ → ModZ(Sets) induces monomorphisms between spaces of morphisms:

HomΔ↺(λ, μ) ↪→ HomModZ(Sets)(I, J) � HomSets(C,D) × Z .

It follows that the canonical map between spaces of morphisms,

Hom(Δ↺)hBZ([λ], [μ]) � HomΔ↺(λ, μ)hZ ↪→ HomSets(C,D) ,
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is a monomorphism. It follows from Observation 2.3.2 that Hom(Δ↺)hBZ([λ], [μ]) (2.5.6)−−−−→
HomΛ(λ, μ) is a monomorphism, as desired. �
Corollary 2.5.2. There is a diagram among ∞-categories,

Δ↺ Λ Λ̃

∗ BT BW

loc loc loc , (2.5.7)

with the following properties.

(1) Each square is a pullback.

(2) The downward functors are Cartesian fibrations.

(3) The downward functors are localizations.

(4) The horizontal functors are surjective.

(5) The right horizontal functors are monomorphisms.

Proof. Lemma 2.5.1 implies the outer square is a pullback; Observation 2.3.3 implies 
the right square is a pullback. By the universal property of pullbacks, it follows that the 
left square is a pullback as well, thereby establishing property (1). Consequently, because 
Cartesian fibrations are closed under the formation of base-change, Lemma 2.2.13 implies 
all of the downward functors are Cartesian fibrations, thereby establishing property (2).

Lemma 2.4.5 gives that the ∞-groupoid-completion of the paracyclic category 
|Δop

↺ | � ←− |Δop| � ∗ is contractible. This is to say that the left vertical functor is a 
localization. Properties (1)-(2) thereafter imply all of the vertical functors are localiza
tions, thereby establishing property (3).

Because the lower horizontal functors are surjective, with the right functor a monomor
phism, properties (1)-(2) imply the upper horizontal functors are surjective, and the 
upper right horizontal functor is a monomorphism, thereby establishing properties (4)
(5). �
Observation 2.5.3. The actions T ↷ Δ↺ and W op

↷ Δ↺ codfied by Corollary 2.5.2
agree with the actions of Lemma 2.4.8:

(Δ↺)hT
�  −−→ Λ and (Δ↺)r.laxW

�  −−→ Λ̃ .

Furthermore, the latter equivalence is implemented by, for each r ∈ N×, the natural 
transformation

πr : ϕr −→ (2.5.1) ,
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that evaluates on each λ = (Z ↷
αλ

I) ∈ Δ↺, the functor between categories

πr(λ) : ϕr(λ) :=
(
{1 < · · · < r}�I

)
hZ

(!�I)hZ−−−−−→ (∗�I)hZ = IhZ =: λ .

2.6. Directed cycles in directed graphs

In this technical subsection, we identify, for each finite directed graph Γ, the ∞
groupoid-completion of the overcategroy Δ↺/Γ in terms of the Witt monoid and a set 
of directed cycles in Γ.

Recall from Terminology 1.2.2 the notion of a finite cyclically-directed graph.

Terminology 2.6.1. Let Γ ∈ diGraphsfin be a finite directed graph.

(1) An directed cycle (in Γ) is a morphism χ
γ−→ Γ in diGraphsfin with the following 

properties.

• χ is either cyclically-directed or χ = ∗ is final.

• For any factorization

χ Γ

χ′

γ

q
γ

in diGraphsfin in which χ′ is either cyclically-directed or χ′ = ∗, the morphism q
is an isomorphism.

(2) The set of directed cycles (in Γ) is

Zdir(Γ) := 
{

directed cycles in Γ
}
/∼

,

where ∼ is the equivalence relation of isomorphism between cyclically-directed graphs 
over Γ.

Observation 2.6.2. For Γ a finite directed graph, there is a monomorphism between sets

Γ(0) −→ Zdir(Γ)

selecting the elements represented by those χ → Γ in which χ = ∗ has a single vertex 
and no (non-degenerate) edges.

Notation 2.6.3. Let Γ be a finite directed graph.
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(1) Denote by

Λ̃/ncΓ ⊂ Λ̃/Γ

the full subcategory consisting of those χ → Γ that are not constant.

(2) Denote by

(Δ↺)/ncΓ := Δ↺ ×
Λ̃

Λ̃/ncΓ ⊂ (Δ↺)/Γ

the full subcategory consisting of those (λ, λ f−→ Γ) in which f is not constant.

Observation 2.6.4. Let Γ be a finite directed graph.

(1) By definition of a directed cycle, the full subcategory of diGraphsfin
/Γ consisting of 

the directed cycles is, in fact, a groupoid. Furthermore, the group of automorphisms 
of each object in this category is trivial. As the isomorphism-classes this full subcat
egory are evidently indexed by the set Zdir(Γ), there results a fully faithful functor

Zdir(Γ) ↪→ diGraphsfin
/Γ

whose image consists of the directed cycles.

(2) The resulting composite monomorphism

Zdir(Γ) ↪→ diGraphsfin
/Γ

Free
↪→ 

Observation 1.2.5
Quiv/Γ

factors through Λ̃�
/Γ

Observation 2.2.3
⊂ Quiv/Γ and, in fact, does so fully faithfully,

Zdir(Γ) fully faithful−−−−−−−−−→ Λ̃�
/Γ , (2.6.1)

with image consisting of those χ → Γ that are directed cycles.

(3) With respect to Observation 2.6.2, the fully faithful functor (2.6.1) restricts as a 
fully faithful functor

Zdir(Γ) \ Γ(0) fully faithful−−−−−−−−−→ Λ̃/ncΓ , (2.6.2)

whose image consists of those directed cycles χ → Γ that are not constant.

Lemma 2.6.5. Let Γ be a finite directed graph. The functor (2.6.2) is a right adjoint.
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Proof. Denote the set Z :=
(
Zdir(Γ) \ Γ(0)). Let (ζ f−→ Γ) ∈ Λ̃/ncΓ. We must show that 

the undercategory Zf/ has an initial object.
By Observation 2.6.4, an object in this undercategory Zf/ is a non-constant directed 

cycle χ
γ−→ Γ together with a morphism ζ

q−→ χ in Λ̃ over Γ:

ζ Γ

χ

f

q γ
. (2.6.3)

By Corollary 1.2.13, the functor f is the datum of a map f (0) : ζ(0) → Γ(0) and, 
for each pair of cyclically adjacent vertices z, suc(z) ∈ ζ(0), a linearly-directed graph 
{z → y1(z) → · · · → y�z−1(z) → suc(z)} together with a non-degenerate extension in 
diGraphsfin:

{z, suc(z)} Γ

{z → y1 → · · · → y�z−1 → suc(z)}

f(0)

f(z→
suc(

z)) .

Consider the cyclically-directed graph χ̃ obtained by cyclically gluing the linearly
directed graphs {z → y1 → · · · → y�z−1 → suc(z)}:

χ̃ := ζ(0)
∐

ζ(0) ∐ ζ(0)

( ∐
z∈ζ(0)

{z → y1 → · · · → y�z−1 → suc(z)}
)
.

By construction of χ̃, there is a canonical morphism ζ
q′−→ χ̃ in Cat, and a canonical mor

phism χ̃
γ̃−→ Γ in diGraphsfin, fitting into a commutative diagram among gaunt categories:

f : ζ q′−−→ χ̃
γ̃−−→ Γ

in which γ̃ is non-degenerate. By construction, the morphism q has degree 1. With 
respect to the canonical homomorphism G := Aut/Γ(χ̃) → Aut(χ̃), there is a canonical 
factorization in diGraphsfin:

γ̃ : χ̃ quotient  −−−−−−−→ χ̃/G =: χ γ−−→ Γ .

Because the group of automorphisms of a cyclically-directed graph is a finite cyclic 
group, then G is a finite cyclic group. Because γ̃ is non-degenerate, the map γ is also 
non-degenerate; because f is not constant, then γ is not constant. Furthermore, by 

construction, the map γ is a directed cycle. We have a factorization f : ζ q:=quotient◦q′−−−−−−−−−→
χ

γ−→ Γ as in diagram (2.6.3). In particular, the undercategory Zf/ is nonempty. Lastly, 
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the construction of this object is such that it is initial in the undercategory Zf/, as 
desired. �
Corollary 2.6.6. Let Γ be a finite directed graph. There is a W op-equivariant functor(

Zdir(Γ) \ Γ(0))×W −→ (Δ↺)/ncΓ

that is a right adjoint.

Proof. Consider the general set-up. Let E0
ρ 
↪→ E be a fully faithful right adjoint between 

∞-categories. Denote its left adjoint as E0
λ ←− E and its unit as idE

η−→ ρλ. Let E π−→ B

be a Cartesian fibration between ∞-categories. Let b ∈ B. Consider the span among 
∞-categories:

E0 ×
B 
Bb/ π←−− E0 ×

E 
Ar(E)E|b =: Ar(E)E|b

|E0

evs−−−→ E|b .

Because π is a Cartesian fibration, the leftward functor is a left adjoint localization, with 
right adjoint given by selecting the π-Cartesian morphisms. Because E0

ρ−→ E is a right 
adjoint, the rightward functor is a right adjoint, with left adjoint given by η. Using that 
the composition of right adjoints is a right adjoint, we have a right adjoint functor among 
∞-categories:

E0 ×
B 
Bb/ −→ E|b . (2.6.4)

Furthermore, this functor is evidently EndB(b)op-equivariant.
Now, specialize these parameters as follows.

• Take 
(
E0

ρ−→ E
)

=
(
Zdir(Γ) \ Γ(0) (2.6.2)−−−−→ Λ̃/ncΓ

)
. Observation 2.6.4(3) ensures the 

named functor is indeed fully faithful; Lemma 2.6.5 ensures the named functor is 
indeed a right adjoint.

• Take 
(
E

π−→ B
)

=
(
Λ̃/ncΓ

|−|◦forget−−−−−−→ BW
)
. Using that, by definition, each morphism 

in Λ̃ is a non-constant functor, the forgetful functor Λ̃/ncΓ
forget−−−−→ Λ̃ is a right fibration. 

Lemma 2.2.13 states that the functor Λ̃ |−|−−→ BW is a Cartesian fibration. Because 
the composition of Cartesian fibrations is a Cartesian fibration, the named functor is 
indeed a Cartesian fibration.

• Take (b ∈ B) = (∗ ∈ BW ).

Using that Zdir(Γ) \Γ(0) is a 0-type, there is a non-canonical identfication between W op

spaces:(
Zdir(Γ) \ Γ(0))×W � 

(
Zdir(Γ) \ Γ(0))× EndBW (∗) � 

(
Zdir(Γ) \ Γ(0)) × 

BW
BW ∗/ .
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Using Lemma 2.5.1, there is a canonical identfication (Δ↺)/ncΓ
�−→ (Λ̃/ncΓ)|∗. So the 

equivariant right adjoint (2.6.4) can be identfied as a W op-equivariant right adjoint

(
Zdir(Γ) \ Γ(0))×W −→ (Δ↺)/ncΓ ,

as desired. �
Corollary 2.6.7. Let Γ be a finite directed graph. The ∞-groupoid-completion of the over
category Δ↺/Γ := Δ↺ × 

Quiv
(Quiv)/Γ, as it is equipped with the resulting W op-module 

structure, is canonically identfied as the W op-space

Γ(0)
∐((

Zdir(Γ) \ Γ(0))×W
)

� 
∣∣Δ↺/Γ

∣∣ ,
where Γ(0) is the set of vertices of Γ, Zdir(Γ) is the set of directed cycles in Γ, and W is 
the underlying space of the Witt monoid.

Proof. The proof is complete upon explaining the following sequence of equivalences 
among W op-spaces: ∣∣Δ↺/Γ

∣∣ � 
∣∣Δ↺/cΓ � Δ↺/ncΓ

∣∣
� 

∣∣Δ↺/cΓ
∣∣� ∣∣Δ↺/ncΓ

∣∣
� |Γ(0) × Δ↺| �

∣∣Δ↺/ncΓ
∣∣

� Γ(0) × |Δ↺| �
∣∣Δ↺/ncΓ

∣∣
� Γ(0) �

∣∣Δ↺/ncΓ
∣∣

� Γ(0)
∐((

Zdir(Γ) \ Γ(0))×W
)
.

Consider the full subcategories

Δ↺/cΓ , Δ↺/ncΓ ⊂ Δ↺/Γ

consisting of those pairs 
(
λ, λ

f−→ Γ
)

in which f is respectively constant and not constant. 
Note, also, that every object in Δ↺/Γ belongs to one of these two full subcategories. Note 
that there are no morphisms in Δ↺/Γ from an object in one of these full subcategories 
to an object in the other. Therefore, the canonical functor

Δ↺/cΓ � Δ↺/ncΓ −→ Δ↺/Γ (2.6.5)

is an equivalence. This implies the first equivalence. The second equivalence follows from 
the fact that ∞-groupoid-completion preserves coproducts.
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Observe that the canonical functor

Δ↺ × Γ(0) �  −−→ Δ↺/cΓ , (λ, v) �−→
(
λ, λ

constv−−−−→ Γ
)
,

is an equivalence between categories. This implies the third equivalence. The fourth 
equivalence follows from the fact that ∞-groupoid-completion preserves products, and 
that Γ(0) is a set. Corollary 2.4.6 implies the fifth equivalence. Corollary 2.6.6 implies the 
last equivalence, since adjunctions induce equivalences on ∞-groupoid-completions. �
3. Universal Hochschild homology

One might reasonably regard the functor Δop ρ−→ Quivop as a category-object in Quivop. 
Regarded as so, we contemplate its Hochschild homology HH(ρ). The category Quivop

admits very few colimits, and this Hochschild homology does not exist in Quivop. In this 
section, we formally adjoin HH(ρ) to Quivop, keeping that finite products exits, resulting 
in an ∞-category M. By construction, for X an ∞-category that admits finite limits and 
geometric realizations such that products distribute over geometric realizations, then for 
C a category-object in an ∞-category X there is a unique extension

(Quiv)op X

M

RepC

R̃epC

such that R̃epC preserves finite products and R̃epC : HH(ρ) �→ HH(C). Remarkably, we 
give an explicit ``object & morphism'' description of this universal M. As so, the en
domorphisms of HH(ρ) in M codify universal (possibly non-invertible) symmetries of 
Hochschild homology of any (∞, 1)-category.

3.1. Definition of Hochschild homology

For this subsection, we fix an ∞-category X that admits finite limits and geometric 
realizations. We are now positioned to dfine Hochschild homology of an (∞, 1)-category, 
and more generally of a category-object in X.

Notation 3.1.1. Consider the composite functor

Δ↺
(2.5.1)−−−−−→ Λ̃ Observation 2.2.2−−−−−−−−−−−−→ Quiv , (Z ↷ I) �−→ IhZ , (3.1.1)

whose image consists of the cyclically-directed quivers. We write

χ : Δ (2.4.2)−−−−−→ Δ↺
(3.1.1)−−−−−→ Quiv ,
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[p] �−→ 

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 · · · p− 1

0 p

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for the resulting composite functor.

Definition 3.1.2. (Non-stable) Hochschild homology is the functor

HH : fCat1[X] −→ X , C �−→ colim
(
Δop

↺
(3.1.1)−−−−→ Quivop RepC−−−→ X

)
.

Observation 3.1.3. The functor HH of Definition 3.1.2 exists. Indeed, Lemma 2.4.5 states 
that the functor Δ (2.4.2)−−−−→ Δ↺ is initial. Therefore, for each category-object C in X, its 
(non-stable) Hochschild homology can be computed as a geometric realization. Specifi
cally, the canonical morphism is an equivalence:

colim
(
Δop χop

−−→ Quivop RepC−−−→ X

)
�  −−→ HH(C) .

Observation 3.1.4. Let C be a category-object in X.

(1) The value of the functor Δ χ−→ Quiv on [0] is the cyclically-directed quiver χ([0])
with a single object. This quiver χ([0]) corepresents endomorphisms in C:

RepC (χ ([0])) � EndC .

Consequently, there is a canonical morphism in X:

EndC −→ HH(C) . (3.1.2)

(2) The quiver ∗ with a single object and no non-identity morphisms is a final object in 
Quiv. This quiver ∗ corepresents objects in C:

RepC(∗) � Obj(C) .

As so, the unique morphism χ ([0]) !−→ ∗ in Quiv corepresents the morphism

Obj(C) “c �→ idc''−−−−−−−→ EndC

that selects identity endomorphisms. Consequently, there is a canonical composite 
morphism in X:

Obj(C) “c �→ idc''−−−−−−−→ EndC
(3.1.2)−−−−−→ HH(C) .
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3.2. Connected quivers

Notation 3.2.1. The full ∞-subcategory

Quivcon ⊂ Quiv

consists of those quivers that are connected (ie, those finite directed graphs Γ whose 
geometric realization |Γ| is connected).

Proposition 3.2.2. The full ∞-subcategory Quivcon ⊂ Quiv freely generates Quiv via finite 
categorical coproducts. More precisely, the following assertions are true.

(1) The ∞-category Quiv admits finite coproducts.

(2) Let Γ be a quiver. There is a finite set A and an A-indexed sequence of connected 
quivers (Γα)α∈A together with an equivalence in Quiv:∐

α∈A

Γα
�  −−→ Γ .

(3) Let Γ and Γ′ be quivers. Let Ξ be connected quivers. The canonical map between 
spaces

HomQuiv(Ξ,Γ)
∐

HomQuiv(Ξ,Γ′) �  −−→ HomQuiv(Ξ,Γ � Γ′)

is an equivalence.

Proof. Observation 1.2.7 immediately implies Quiv admits finite coproducts.
We now show that Quivcon ⊂ Quiv generates Quiv via finite coproducts. Let Γ ∈ Quiv

be an object. Through Observations 1.2.5, Γ is the datum of a finite directed graph. As 
a finite directed graph, there is a unique identfication as a coproduct in diGraphsfin,∐

Γα∈π0(|Γ|)
Γα

�  −−→ Γ ,

in which each Γα is a connected finite directed graph. Observation 1.2.7 implies the 
canonical morphism in Quiv is an equivalence:∐

Γα∈π0(|Γ|)
Γα

�  −−→ Γ .

This shows that Quivcon ⊂ Quiv generates Quiv via finite categorical coproducts.
We now show that Quivcon ⊂ Quiv freely generates Quiv via finite categorical coprod

ucts. For this, it remains to show that the restricted Yoneda functor
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Quiv −→ PShv
(
Quivcon) , Γ �→

(
Ξ �→ HomQuiv(Ξ,Γ)

)
,

preserves finite coproducts. So let Γ,Γ′ ∈ Quiv and let Ξ ∈ Quivcon. We must show the 
canonical map HomQuiv(Ξ,Γ)

∐
HomQuiv(Ξ,Γ′) → HomQuiv(Ξ,Γ � Γ′) is an equivalence 

between spaces. Well, this canonical map canonically factors as a composition of maps:

HomQuiv(Ξ,Γ � Γ′) �  −−→ HomCat(∞,1)

(
Free(Ξ),Free(Γ � Γ′)

)
�  ←−− HomCat(∞,1)

(
Free(Ξ),Free(Γ) � Free(Γ′)

)
�  ←−− HomCat(∞,1)

(
Free(Ξ),Free(Γ)

)∐
HomCat(∞,1)

(
Free(Ξ),Free(Γ′)

)
�  ←−− HomQuiv(Ξ,Γ)

∐
HomQuiv(Ξ,Γ′) .

The first and last maps are equivalences because Quiv ⊂ Cat(∞,1) is a full ∞-subcategory. 
The second map is an equivalence because, as Observation 1.2.7 implies, the functor the 
inclusion Quiv ↪→ Cat(∞,1) preserves finite coproducts. It is a feature of Cat(∞,1) that 
the third map is an equivalence, using that any two objects in Free(Ξ) are related by a 
zig-zag of morphisms in Free(Ξ). �
Corollary 3.2.3. The category Quiv has the following features.

(1) Each object in Quiv is canonically identfied as a finite coproduct of connected quivers. 
More precisely, there is a canonical equivalence between commutative monoids:

Obj(Quiv) � FreeCom

(
Obj(Quivcon)

)
�  

Corollary 1.2.16
FreeCom

( ∐
[Γ]∈π0Obj(diGraphfin.con)

BAutdiGraphfin.con(Γ)
)
.

(2) Let Γ,Ξ ∈ Quiv be objects. Through the previous point, there are canonical finite 
sets A and B together with an A- and a B-indexed sequence (Γα)α∈A and (Ξβ)β∈B

of connected quivers together with identfications 
∐

α∈A

Γα � Γ and 
∐

β∈B

Ξβ � Ξ in 

Quiv. Through these identfications, there is a canonical identfication of the space 
of morphisms in Quiv from Γ to Ξ:

HomQuiv
(
Γ,Ξ

)
� 

∏
β∈A

∐
α∈B

HomQuivcon(Γα,Ξβ) .

3.3. The category Mcon

Recall from Notation 3.2.1 the full ∞-subcategory Quivcon ⊂ Quiv consisting of those 
quivers that are connected. Note that the functor Λ̃ Observation 2.2.2−−−−−−−−−−−→ Quiv factors through 
the full ∞-subcategory Quivcon ⊂ Quiv. The functor (2.5.1) and Observation 2.2.2 supply 
a composite functor:
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Δ↺ −→ Λ monomorphism−−−−−−−−−→ Λ̃ monomorphism−−−−−−−−−→
Observation 2.2.2

Quivcon , λ �−→ λ . (3.3.1)

Definition 3.3.1. The ∞-category Mcon, as it is equipped with a functor

(Quivcon)op δ−−→ Mcon ,

is initial among all such for which the colimit of the composite functor Δop
↺

(3.3.1)−−−−−→
(Quivcon)op δ−−→ Mcon exists. The oriented circle is the colimit

S1 := colim
(
Δop

↺
(3.3.1)−−−−→ (Quivcon)op δ−→ Mcon

)
�  

Notation
colim
μ◦∈Δop

↺
μ ∈ Mcon .

Remark 3.3.2. After Lemma 2.4.5, Definition 3.3.1 grants the existence of a colimit of 
the composite functor

Δop (2.4.2)−−−−−→ Δop
↺

(3.3.1)−−−−→ (Quivcon)op δ−−→ Mcon .

Definition 3.3.1 immediately yields the following.

Observation 3.3.3. Let (Quivcon)op F−→ X be a functor to an ∞-category with geometric 
realizations.

(1) There is a canonical extension among ∞-categories, initial among all such:

(Quivcon)op X

Mcon

∀ F

δ

∃ initial
 F̃

.

(2) This functor F̃ has the property that it preserves the colimit of Δop
↺

(3.3.1)−−−−→
(Quivcon)op, which is to say the canonical morphism in X,

colim
(
Δop

↺
(3.3.1)−−−−→ (Quivcon)op F−→ X

)
�  −−→ F̃

(
colim

(
Δop

↺
(3.3.1)−−−−→ (Quivcon)op δ−→ Mcon))

is an equivalence.

Definition 3.3.1 lends the following.
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Observation 3.3.4. 

(1) The restricted Yoneda functor

Mcon M �→  HomMcon
(
δ(−),M

)
−−−−−−−−−−−−−−−−→ PShv((Quivcon)op) (3.3.2)

is the functor of Observation 3.3.3 applied to (Quivcon)op Yo−→ PShv((Quivcon)op).

(2) In particular, this restricted Yoneda functor (3.3.2) preserves the colimit of the func
tor Δop

↺
(3.3.1)−−−−→ (Quivcon)op Yo−→ PShv((Quivcon)op).

(3) Furthermore, this functor (3.3.2) is fully faithful; its image is the smallest full ∞
subcategory that contains (Quivcon)op ⊂ 

Yo
PShv((Quivcon)op) and that contains the 

colimit of Δop
↺

(3.3.1)−−−−→ (Quivcon)op Yo−→ PShv((Quivcon)op).

(4) In particular, the canonical functor (Quivcon)op δ−→ Mcon is fully faithful.

Each cyclicly directed graph is, in particular, connected. Therefore, the functor 
Λ̃ Observation 2.2.2−−−−−−−−−−−→ Quiv factors through the full ∞-subcategory Quivcon ⊂ Quiv. Re
call the Definition 2.1.5 of the continuous monoid W , and the functor Λ̃ → BW from 
Observation 2.2.11(4).

Observation 3.3.5. After Corollary 2.5.2, Definition 3.3.1 immediately grants the exis
tence of a left Kan extension:

Λ̃op (Quivcon)op Mcon

BW op

loc

Observation 2.2.2

⇐

δ

(3.3.3)

Definition 3.3.6. For A ← X → B a span among ∞-categories, their parametrized join
is the ∞-category:

A★
X 
B := A

∐
X×{s}

X× c1
∐

X×{t}
B .

Observation 3.3.7. Let A ← X → B be a span among ∞-categories. Let Z be an ∞
category. Unwinding the universal property of pushouts defining the parametrized join 
A★

X 
B, the data of a functor

A★
X 
B −→ Z

is the data of a lax-commutative diagram:
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X A

B Z

⇐
.

Observation 3.3.8. Through Observation 3.3.7, the lax-commutative diagram (3.3.3) is 
precisely the data of a functor between ∞-categories17:

(Quivcon)op★ 
Λ̃op

BW op −→ Mcon . (3.3.4)

Proposition 3.3.9. The functor between ∞-categories (3.3.4) is an equivalence.

Lemma 3.3.10. Let A ← X → B be a span among ∞-categories. The ∞-category A★
X 
B

is characterized by the following properties:

(1) There are fully faithful functors,

A ↪→ A★
X 
B ←↩ B ,

which are jointly surjective on objects.

(2) Let a ∈ A and b ∈ B, regarded as objects in A★
X 
B. The space of morphisms

HomA★
X 
B(b, a) = ∅

while the space of morphisms

HomA★
X 
B(a, b) = 

∣∣∣Xa/
/b := Aa/ ×

A 
X×

B 
B/b

∣∣∣
is the ∞-groupoid-completion of the over-under ∞-category, with the evident (A,B)
bimodule structure.

(3) If, for each b ∈ B, the functor X/b → A is a Cartesian fibration, then

HomA★
X 
B(a, b) = 

∣∣∣X|a
/b := {a} ×

A 
X×

B 
B/b

∣∣∣ .
If, for each a ∈ A, the functor Xa/ → B is a coCartesian fibration, then

17 Equivalently, this is a functor

BW★
Λ̃

Quivcon −→ (Mcon)op
.
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HomA★
X 
B(a, b) = 

∣∣∣Xa/
|b := {a} ×

A 
X×

B 
{b}

∣∣∣ .
If A ← X → B is a bfibration, then

HomA★
X 
B(a, b) = 

∣∣∣X|a
|b := {a} ×

A 
X×

B 
{b}

∣∣∣ .
Proof. Statement (3) follows from (2), using that the respective fully faithful functors 
X

|a
/b ↪→ X

a/
/b and Xa/

|b ↪→ X
a/
/b are adjoints if the functors X → A and X → B respectively 

satisfy the named conditions.
Consider the Cartesian fibration

Cylr(A ← X) := A
∐

X×{0}
X× {0 < 1} pr−−→ {0 < 1}

that is the unstraightening of the functor {0 < 1}op 〈A←X〉−−−−−→ Cat. Consider the coCarte
sian fibration

Cyl(X → B) := X× {1 < 2}
∐

X×{2}
B

pr−−→ c1 = {1 < 2}

that is the unstraightening of the functor {1 < 2} 〈X→B〉−−−−−→ Cat. Consider the functor 
between pushouts:

E := Cylr(A ← X)
∐

X×{1}
Cyl(X → B) −→ {0 < 1}

∐
{1} 

{1 < 2} = [2] .

By definition of exponentiable fibrations (see [4, Sect. 5.3]), this functor E → [2] is an 
exponentiable fibration. By construction, there is a canonical functor filling a diagram 
among ∞-categories,

A
∐

B A★
X 
B E

{s}
∐
{t} c1 [2]〈0<2〉

,

in which both squares are pullbacks. Statement (1) follows from the left square being 
pullback. Statement (2) follows from Lemma 5.16 of [4]. �
Proof of Proposition 3.3.9. We use the description of parametrized joins given in 
Lemma 3.3.10. Namely, we show that the canonical functors (Quivcon)op → Mcon and 
BW op → Mcon are fully faithful, then identify the spaces of morphisms in Mcon be
tween objects in (Quivcon)op and BW op. Observation 3.3.4 implies the canonical functor 
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(Quivcon)op → Mcon is fully faithful. We next show the functor BW op → Mcon of Ob
servation 3.3.5 is fully faithful. Through Observations 3.3.5 and 3.3.4, this functor is the 
left Kan extension along the localization of Corollary 2.5.2:

Λ̃op (Quivcon)op PShv((Quivcon)op)

BW op

loc

Observation 2.2.2

⇐

Yo

.

By the universal property of left Kan extensions, the above lax-commutative diagram 
factors as the lax-commutative diagram

Λ̃op PShv(Λ̃op) PShv((Quivcon)op)

BW op PShv(BW op)

loc

Yo

⇐

PShv(Observation 2.2.2)

Yo

restriction . (3.3.5)

Now, the Yoneda lemma gives that the two functors labeled as so are fully faithful. 
The upward functor is fully faithful because it is restriction along the localization of 
Corollary 2.5.2 The top right horizontal functor is fully faithful because it is induced by 
the functor Λ̃op → (Quivcon)op that Observation 2.2.2 states is fully faithful. We conclude 
that the composite functor BW op → PShv((Quivcon)op) from the bottom left term to the 
top right term in (3.3.5) is fully faithful, as desired.

Now, let Γ ∈ Quivcon be a connected quiver. Recall from Definition 3.3.1 the object 
S1 ∈ BW op ⊂ Mcon, which represents the unique equivalence class of an object in 
BW op. We now show HomMcon(S1,Γ) = ∅ for all Γ ∈ Quivcon. By Definition 3.3.1, 
S1 := colim(Δop

↺ → Λop → Λ̃op ⊂ (Quivcon)op ⊂ Mcon). So HomMcon(S1,Γ) is the space 
of extensions as in the diagram among ∞-categories:

Δop
↺ � {Γ} Λop � (Quivcon)op Λ̃op � (Quivcon)op (Quivcon)op

(Δop
↺ )�

.

It is therefore sufficient to show there are no extensions as in the diagram among ∞
categories:

Δ↺ Λ Λ̃ Quivcon

(Δ↺)�
∄

. (3.3.6)



60 D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 

Consider the ∞-category I := (− ⇒ +) consisting of two objects and two parallel non

identity morphisms. Consider the functor I → Δ↺ selecting [1]�Z
top 
⇒ 

bottom
[1]�Z in which 

top(i, k) := (i, 1) and bottom(i, k) := (i, 0). By explicit computation, observe that the 
equalizer of top and bottom is empty:

lim
(
I → Δ↺ → Λ → Λ̃ → Quivcon → Cat(∞,1)

)
= ∅ .

Recall that, for C ∈ Cat(∞,1), the space HomCat(∞,1)(C, ∅) �= ∅ is nonempty if and only if 
C = ∅ is initial. Using this, the existence of the canonical functor

lim
(
Δ↺ → Λ → Λ̃ → Quivcon → Cat(∞,1)

)
−→ lim

(
I → Δ↺ → Λ → Λ̃ → Quivcon → Cat(∞,1)

)
therefore implies

lim
(
Δ↺ → Λ → Λ̃ → Quivcon → Cat(∞,1)

)
= ∅ .

Using this recollection again, in turn, implies there are no extensions as in dia
gram (3.3.6).

We now show that the canonical map between spaces,

Hom(Quivcon)op ★ 
Λ̃op

BW op
(
Γ,S1) −→ HomMcon(Γ,S1) , (3.3.7)

is an equivalence. We now explain that this map canonically factors as a composite 
equivalence:

Hom(Quivcon)op ★ 
Λ̃op

BW op
(
Γ,S1)

�  ←−−
∣∣(Λ̃op)Γ//S1

∣∣ (3.3.8)
�  ←−−

∣∣(Λ̃op
|S1)Γ/

∣∣ (3.3.9)
�  ←−−

∣∣(Δop
↺ )Γ/

∣∣ (3.3.10)
�  −−→

(
(Δop

↺ → (Quivcon)op)̂r.fib

)
|Γ

(3.3.11)

�  ←−−HomRFib(Quivcon)op

(
((Quivcon)op)/Γ, (Δop

↺ → (Quivcon)op)̂r.fib

)
(3.3.12)

�  −−→HomPShv((Quivcon)op)

(
Γ,St

(
(Δop

↺ → (Quivcon)op)̂r.fib
))

(3.3.13)

�  −−→HomPShv((Quivcon)op)

(
Γ,S1

)
(3.3.14)

�  ←−−HomMcon

(
Γ,S1

)
. (3.3.15)
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The equivalence (3.3.8) is the characterization of hom-spaces in parametrized joins 
(Lemma 3.3.10(2)). The equivalence (3.3.9) is the reduction of hom-spaces of 
parametrized joins (Lemma 3.3.10(3)) facilitated by Corollary 2.5.2 which implies the 
functor Λ̃op → BW op is a coCartesian fibration. The equivalence (3.3.10) follows from the 
outer square of Corollary 2.5.2 being a pullback. The ∞-category (Δop

↺ → (Quivcon)op)̂r.fib
is the domain of the righ-fibrationing of the functor Δop

↺ → (Quivcon)op. It is a local
ization of the Cartesia-fibrationing of the functor Δop

↺ → (Quivcon)op, which is the 
composite functor18

Ar ((Quivcon)op) × 
(Quivcon)op

Δop
↺

pr−−→ Ar ((Quivcon)op) evs−−−→ (Quivcon)op .

The fiber of this Cartesio-fibrationing over Γ ∈ (Quivcon)op therefore the ∞
undercategory (Δop

↺ )Γ/. Proposition 3.25 of [2] states that the fiber over Γ ∈ (Quivcon)op of 
this righ-fibrationing is the ∞-groupoid-completion of this ∞-undercategory (Δop

↺ )Γ/. 
The righ-fibrationing of ∗ 〈Γ〉−−→ (Quivcon)op is ((Quivcon)op)/Γ

forget−−−−→ (Quivcon)op. The 
equivalence (3.3.11) then follows from the universal property of righ-fibrationing. The 
equivalence (3.3.12) is a consequence of the fact that the Straightening construction is 
fully faithful. The equivalence (3.3.13) is an instance of the fact that the straightening 
of a righ-fibrationing is identical with the colimit:

St
(
K̂r.fib → C

)
� colim

(
K → C

Yo−→ PShv(C)
)
.

The equivalence (3.3.14) is the definition of the object S1 ∈ Mcon ⊂ 
Observation 3.3.4(3)

PShv
(
Quivcon)op) from Definition 3.3.1. The equivalence (3.3.15) follows from Obser

vation 3.3.4(3). Finally, the sequence of maps indeed factors the map (3.3.7) because, 
from the definition of S1 as a colimit in Mcon ⊂ PShv

(
(Quivcon)op) � RFib(Quivcon)op , the 

diagram among spaces

∣∣(Δop
↺)Γ/

∣∣

(3.3.8)-(3.3.10)

(3.3.11) (
(Δop

↺ → (Quivcon)op )̂r.fib

)
|Γ

(3.3.12)

HomRFib(Quivcon )op

(
((Quivcon)op)/Γ, (Δop

↺ → (Quivcon)op )̂r.fib

)

(3.3.13)-(3.3.15)

Hom(Quivcon)op ★ 
Λ̃op

BW op
(
Γ, S1) (3.3.7)

HomMcon (Γ, S1)

commutes. This completes the proof of the proposition. �
Corollary 3.3.11. The ∞-category Mcon has the following explicit description.

(1) Mcon is a (2, 1)-category.

18 The implicit functor in this pullback is Ar ((Quivcon)op) evt−−→ (Quivcon)op, target evaluation.
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(2) Each object in Mcon is either a connected finite directed graph or equivalent with S1.

(3) For M,N ∈ Mcon, the space of morphisms in Mcon is canonically identfied as

HomMcon (M,N) � 

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(0) ∐(

Zdir(M) \ M(0))×W , if M ∈ Quivcon & N � S1

HomQuiv(N,M) , if M,N ∈ Quivcon

W , if M,N � S1

∅ , if M � S1 & N ∈ Quivcon

,

where, if M is a finite directed graph, M (0) is the set of vertices of M and Zdir(M)
is the set of directed cycles in M .

(4) Through these identfications, the evident W op = EndMcon(S1)-module structure 
agrees with that on HomMcon(−,S1) given by post-composition.

Proof. To prove statement (1) is to prove that, for each pair M,N ∈ Mcon of objects, 
the space HomMcon(M,N) is a 1-type. Through statements (2) &(3), this is to show that 
each of named spaces of morphisms is a 1-type. Because the circle T is a 1-type, the 
continuous monoid W op � 

Observation 2.1.6
N×

⋉T is a continuous monoid-object in 1-types. 

For each pair Γ,Ξ of finite directed graphs the spaces Γ(0) and Zdir(Γ) are 0-types, and 
Lemma 1.2.15(1) implies HomQuiv(Γ,Ξ) is a 0-type. In summary, statement (1) follows 
from statements (2)&(3). It remains to establish statements (2)-(4).

Proposition 3.3.9 implies the functor (Quivcon)op★ 
Λ̃op

BW op → Mcon is surjective on 

spaces of objects. This implies statement (2).
Proposition 3.3.9 implies the functors (Quivcon)op → Mcon and BW op → Mcon are 

fully faithful. This establishes the middle two identfications of hom spaces in state
ment (3). Proposition 3.3.9 also implies the last identfication of the hom space in state
ment (3). It remains to establish the first identfication of the hom space in statement (3). 
So let Γ be a connected quiver. Statement (3) is therefore proved upon establishing the 
following sequence of equivalences among spaces:

Γ(0)
∐(

Zdir(Γ) \ Γ(0))×W �  
Corollary 2.6.7

∣∣Δ↺/Γ
∣∣

�  
Corollary 2.5.2

∣∣(Λ̃/Γ
)
|S1

∣∣
�  

Corollary 2.5.2 & Lemma 3.3.10(3)

∣∣Λ̃S1/
/Γ

∣∣
� HomBW★

Λ̃

Quivcon
(
S1,Γ

)
�  

(-)op
Hom(Quivcon)op ★ 

Λ̃op
BW op

(
Γ,S1)

�  
Proposition 3.3.9

HomMop
(
Γ,S1)
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The first equivalence is Corollary 2.6.7. The second equivalence follows from the 
base-change statement of Corollary 2.5.2. The third equivalence is a consequence of 
Lemma 3.3.10, using the Cartesian fibration statement of Corollary 2.5.2. The unla
beled equivalence follows from the characterizing definition of spaces of morphisms in a 
parametrized join. The penultimate equivalence follows from the definitional fact that, 
for K an ∞-category, and for x, y ∈ K objects, then HomK(x, y) � HomKop(y, x). The 
last equivalence follows from the fully faithfulness of Proposition 3.3.9.

Statement (4) follows from the fact that the identfication of Corollary 2.6.7 is as a 
W op-module. �
3.4. The category M

Just as the category Quiv can be constructed from the category Quivcon by freely 
adjoining finite coproducts (Proposition 3.2.2), here we freely adjoint finite products to 
the ∞-category Mcon of Definition 3.3.1.

Definition 3.4.1. The ∞-category M, as it is equipped with a functor Quivop δ−→ M, is 
initial among all such for which

(1) the colimit of the composite functor Δop
↺

(3.3.1)−−−−−→ Quivop δ−−→ M exists;

(2) M admits finite products, and the functor δ preserves finite products.

The smooth oriented circle is the colimit

S1 := colim
(
Δop

↺
(3.3.1)−−−−→ Quivop δ−→ M

)
�  

Notation
colim
μ◦∈Δop

↺
μ ∈ M .

The 0-disk and the 1-disk are, respectively, the objects

D0 := δ
(
ρ(0)

)
∈ M and D1 := δ

(
ρ(1)

)
∈ M .

Definition 3.3.1 immediately yields the following.

Observation 3.4.2. Let Quivop F−→ X be a finite-product-preserving functor to an ∞
category with finite products and geometric realizations.

(1) There is a finite-product-preserving extension among ∞-categories, initial among all 
such:

Quivop X

M

∀ F (×-preserving)

δ

∃ initial F̃
(×-preserv

ing)
.
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(2) This functor F̃ has the property that it preserves the colimit of Δop
↺

(3.3.1)−−−−→ Quivop, 
which is to say the canonical morphism in X,

colim
(
Δop

↺
(3.3.1)−−−−→ Quivop F−→ X

)
�  −−→ F̃

(
colim

(
Δop

↺
(3.3.1)−−−−→ Quivop δ−→ M

))
is an equivalence.

Definition 3.3.1 can be rephrased as follows.

Observation 3.4.3. 

(1) The restricted Yoneda functor

M
M �→  HomM

(
δ(−),M

)
−−−−−−−−−−−−−−−→ PShv(Quivop) (3.4.1)

is the functor of Observation 3.4.2.

(2) In particular, this functor (3.4.1) preserves finite products and the colimit of the 

diagram Δop
↺

(3.3.1)−−−−→ Quivop.

(3) Furthermore, this functor (3.4.1) fully faithful; with image the smallest full ∞
subcategory that contains Quivop ⊂ 

Yo
PShv(Quivop), that is closed under finite prod

ucts, and that contains the colimit of Δop
↺

(3.3.1)−−−−→ Quivop Yo−→ PShv(Quivop).

(4) In particular, the canonical functor Quivop δ−→ M is fully faithful.

Notation 3.4.4. In light of Observation 3.4.3(4), we often do not distinguish in notation 
an object Γ ∈ Quiv and its image δ(Γ) ∈ M.

Observation 3.4.5. By Definition 3.3.1, there is a canonical functor

Mcon −→ M , (3.4.2)

which has the following properties.

(1) This functor (3.4.2) is initial among such functors under (Quivcon)op.

(2) This functor (3.4.2) preserves the colimit of the diagram Δop
↺

(3.3.1)−−−−→ (Quivcon)op:

Mcon � 
Definition 3.3.1

S1 �−→ S1 ∈ 
Definition 3.4.1

M .

(3) This functor (3.4.2) is fully faithful since the functor PShv((Quivcon)op) → 
PShv(Quivop), given by left Kan extension along the fully faithful inclusion 

(Quivcon)op ↪→ Quivop Yo−→ PShv(Quivop), is fully faithful.
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Notation 3.4.6. For M,N ∈ M, we denote their categorical product in M as M � N ∈
M.19

Remark 3.4.7. We use Notation 3.4.6 because we believe it averts needless confusion. 
Indeed, with that notation, the defining condition that Quivop δ−→ M preserves finite 
products implies, for each Γ,Ξ ∈ Quiv, there is an identfication in M:

δ (Γ � Ξ) � δ(Γ) � δ(Ξ) .

Observation 3.4.8. Let Γ be a quiver. Let C be a finite set. Since products in PShv(Quivop)
distribute over colimits in each variable, we have that the canonical morphism in 
PShv(Quivop),

colim
(μc)c∈C∈(Δop

↺)×C

((∏
c∈C

μc

)
× Γ

)
�  −−→ (S1)×C × Γ ,

is an equivalence.20 In particular, the lefthand term belongs to M,21 and as so witnesses 
a colimit in M.

For the next result, let Ξ,Γ ∈ Quiv. Consider the functor

(Δ↺)×C −→ Quiv , (μc)c∈C �−→
(∐
c∈C

μc

)
� Γ . (3.4.3)

With respect to this functor, consider the ∞-overcategory: 
(
(Δ↺)×C

)
/Ξ := (Δ↺)×C × 

Quiv
Quiv/Ξ.

Corollary 3.4.9. Let Ξ,Γ ∈ Quiv. The canonical functor(
(Δ↺)×C

)
/Ξ −→ HomM

(
δ(Ξ), (S1)�C � δ(Γ)

)
, (3.4.4)((∐

c∈C

μc

)
� Γ f−→ Ξ

)
�−→

(
δ(Ξ) δ(f)−−−→

(�
c∈C

δ(μc)
)
� δ(Γ) canonical−−−−−−→ (S1)�C � δ(Γ)

)
,

witnesses an ∞-groupoid-completion: 
∣∣((Δ↺)×C

)
/Ξ

∣∣ �−→ HomM

(
δ(Ξ), (S1)�C � δ(Γ)

)
.

Proof. The functor (3.4.4) canonically factors as the following sequence functors,(
(Δ↺)×C

)
/Ξ

19 Warning: M � N is not the coproduct of M and N in M.
20 This product ∏

c∈C

μc ×Γ in PShv(Quivop) is the value of the C-indexed coproduct 
( ∐
c∈C

μc

)
�Γ in Quiv by 

the Yoneda functor Quivop Yo−→ PShv(Quivop).
21 Through Notation 3.4.6, this object is denoted (S1)�C � Γ ∈ M.
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localization−−−−−−−−→ colim
(
(Δop

↺ )×C (3.4.3)−−−−→ Quivop HomQuiv(−,Ξ)−−−−−−−−→ S
)

�  −−→ HomPShv(Quivop)

(
Ξ, colim

(
(Δop

↺ )×C (3.4.3)−−−−→ Quivop Yo−→ PShv(Quivop)
))

�  −−→ HomPShv(Quivop)

(
Ξ, (S1)×C

∏
Γ
)

�  ←−− HomM

(
δ(Ξ), (S1)�C � δ(Γ)

)
,

which we explain. The ∞-category 
(
(Δ↺)×C

)
/Ξ over (Δ↺)×C is the unstraightening 

of the functor (Δop
↺ )×C (3.4.3)−−−−→ Quivop HomQuiv(−,Ξ)−−−−−−−−→ S. Therefore, there is a canonical 

functor 
(
(Δ↺)×C

)
/Ξ → colim

(
(Δop

↺ )×C (3.4.3)−−−−→ Quivop HomQuiv(−,Ξ)−−−−−−−−→ S
)

witnessing an 
∞-groupoid-completion. The second map between spaces is an equivalence because the 
evaluation functor PShv(Quivop) evΞ−−→ S preserves colimits. The first statement of Ob
servation 3.4.8 gives that the third map between spaces is an equivalence. The second 
statement of Observation 3.4.8 gives that the last map between spaces is an equiva
lence. �
Lemma 3.4.10. Let C be a finite set. Let Γ be a quiver. The functor

(Δop
↺ )×C −→ Quivop

/(S1)
C�Γ := Quivop × 
M

M/(S1)�C�Γ , (μc)c∈C �−→
(�
c∈C

μc

)
� Γ ,

(3.4.5)
is final. In particular, Corollary 2.4.6 implies the ∞-category Quivop

/(S1)�C�Γ is sifted.

Proof. Let Ξ ∈ Quiv. Let Ξ f−→ (S1)�C � Γ be a morphism in M, regarded as an ob
ject in Quivop

/(S1)�C�Γ. With respect to the functor (3.4.5), consider the ∞-undercategory (
(Δop

↺ )×C
)f/ := (Δop

↺ )×C × 
Quivop

/(S1)�C�Γ

(Quivop
/(S1)�C�Γ)f/. Observe the commutative dia

gram among ∞-categories:

(
(Δop

↺ )×C
)f/ (

(Δop
↺ )×C

)Ξ/

∗ HomM

(
Ξ, (S1)�C � Γ

)(3.4.4)

〈f〉

. (3.4.6)

Taking ∞-groupoid-completions results in a commutative diagram among ∞-groupoids:

∣∣∣((Δop
↺ )×C

)f/∣∣∣ ∣∣∣((Δop
↺ )×C

)Ξ/
∣∣∣

∗ HomM

(
Ξ, (S1)�C � Γ

)
〈f〉

. (3.4.7)



D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 67

Notice that the diagram (3.4.6) is a pullback. Using that the bottom right term in 
the diagram (3.4.6) is an ∞-groupoid, it follows that the diagram (3.4.7) is also a 
pullback. Therefore, the top left ∞-groupoid in (3.4.7) is contractible for each f ∈
HomM

(
Ξ, (S1)�C � Γ

)
if and only if the right vertical map is an equivalence. By Quil

len’s Theorem A, this is to say that the functor (3.4.5) is final if and only if the right 
vertical map in (3.4.7) is an equivalence, which Corollary 3.4.9 ensures. �
3.5. An explicit description of M

The next results give an explicit description of the ∞-category M.
The next result characterizes the spaces of morphisms in M.

Lemma 3.5.1. Let A, B, C, and D be finite sets. Let (Γα)α∈A, and let (Ξβ)β∈B, be 
an A-indexed, and a B-indexed, sequence of connected quivers. Consider the objects 
M := (S1)�C � �

α∈A
Γα ∈ M and N := (S1)�D � �

β∈B
Ξβ ∈ M. There is a canonical 

identfication of the space of morphisms in M:

HomM

(
M,N

)
� 
(
HomMcon(S1,S1)�C �

∐
α∈A

HomMcon(Γα,S
1)
)×D

×
∏
β∈B

(∐
α∈A

HomMcon(Γα,Ξβ)
)
.

Proof. Denote Γ :=
∐

α∈A

Γα ∈ Quiv and Ξ :=
∐

β∈B

Ξβ ∈ Quiv. We explain the following 

sequence of equivalences among spaces:

HomM

(
M,N

)
� HomM

(
(S1)�C � Γ, (S1)�D � Ξ

)
(3.5.1)

�  ←−−HomM

(�
c∈C

(
colim

λc
◦∈Δop

↺
λc

)
� Γ, (S1)�D � Ξ

)
(3.5.2)

�  −−→HomM

(
colim

(λc)∈(Δop
↺)×C

(�
c∈C

λc � Γ
)
, (S1)�D � Ξ

)
(3.5.3)

�  −−→ lim
(λc)c∈C∈(Δ↺)×C

HomM

(�
c∈C

λc � Γ, (S1)�D � Ξ
)

(3.5.4)

�  −−→ lim
(λc)c∈C∈(Δ↺)×C

(
HomM

(�
c∈C

λc � Γ,S1
)×D

× HomM

(�
c∈C

λc � Γ,Ξ
))

(3.5.5)

� 
(

lim
(λc)c∈C∈(Δ↺)×C

HomM

(�
c∈C

λc � Γ,S1
))×D

× lim
(λc)c∈C∈(Δ↺)×C

HomM

(�
c∈C

λc � Γ,Ξ
)

(3.5.6)
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�  ←−−
(

lim
(λc)c∈C∈(Δ↺)×C

HomM

(�
c∈C

λc � Γ, colim
μ◦∈Δop

↺
μ
))×D

× lim
(λc)c∈C∈(Δ↺)×C

HomM

(�
c∈C

λc � Γ,Ξ
)

(3.5.7)

�  ←−−
(

lim
(λc)c∈C∈(Δ↺)×C

colim
μ◦∈Δop

↺
HomQuiv

(
μ,Γ �

∐
c∈C

λc

))×D

× lim
(λc)c∈C∈(Δ↺)×C

HomM

(�
c∈C

λc � Γ,Ξ
)

(3.5.8)

�  ←−−
(

lim
(λc)c∈C∈(Δ↺)×C

colim
μ◦∈Δop

↺
HomQuiv

(
μ,Γ �

∐
c∈C

λc

))×D

× lim
(λc)c∈C∈(Δ↺)×C

HomQuiv

(
Ξ,Γ �

∐
c∈C

λc

)
(3.5.9)

�  ←−−
(

lim
(λc)c∈C∈(Δ↺)×C

colim
μ◦∈Δop

↺
HomQuiv

(
μ,Γ �

∐
c∈C

λc

))×D

×
∏
β∈B

lim
(λc)c∈C∈(Δ↺)×C

HomQuiv

(
Ξβ ,Γ �

∐
c∈C

λc

)
(3.5.10)

�  ←−−X×D ×
∏
β∈B

Yβ . (3.5.11)

The equivalence (3.5.1) is the definitions of M,N ∈ M. The equivalence (3.5.2) is 
a direct consequence of Observation 3.4.5(1). The equivalence (3.5.3) is a direct conse
quence of Observation 3.4.8. The equivalence (3.5.4) is the universal property of colimits, 
which corepresent limits of spaces of morphisms. The equivalence (3.5.5) is the universal 
property of products, which represent products of spaces of morphisms. The equiva
lence (3.5.6) is the fact that limits commute with products. The equivalence (3.5.7) is 
the Definition 3.4.1 of S1 ∈ M. The equivalence (3.5.8) follows from Observation 3.4.3, 
using that, for x ∈ K an object in an ∞-category, the evaluation functor PShv(K) evx−−→ S

preserves colimits. The equivalence (3.5.9) is a direct consequence of the defining functor 
Quivop δ−→ M being fully faithful (see Observation 3.4.3(4)). The equivalence (3.5.10) 
is the definition of Ξ ∈ Quiv as a coproduct, and the fact that limits commute with 
products. The equivalence (3.5.11) is just notation, which will be explained below.

Next, we explain the following sequences of equivalences among spaces:

X := lim
(λc)c∈C∈(Δ↺)×C

colim
μ◦∈Δop

↺
HomQuiv

(
μ,Γ �

∐
c∈C

λc

)
(3.5.12)

�  ←−− lim
(λc)c∈C∈(Δ↺)×C

colim
μ◦∈Δ

op
↺

( ∐
c∈C

HomQuivcon
(
μ, λc

)
�

∐
α∈A

HomQuivcon
(
μ,Γα

))
(3.5.13)

� lim
(λc)c∈C∈(Δ↺)×C

( ∐
c∈C

(
colim

μ◦∈Δ
op
↺

HomQuivcon
(
μ, λc

))
�

∐
α∈A

(
colim

μ◦∈Δ
op
↺

HomQuivcon
(
μ,Γα

)))

(3.5.14)



D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 69

�  ←−−
∐
c∈C

(
lim

λc∈Δ↺
colim

μ◦∈Δ
op
↺

HomQuivcon
(
μ, λc

))
�

∐
α∈A

(
colim

μ◦∈Δ
op
↺

HomQuivcon
(
μ,Γα

))
(3.5.15)

�  −−→
∐
c∈C

(
lim

λc∈Δ↺
HomM

(
λc,S

1
))

�
∐
α∈A

HomM

(
Γα,S

1) (3.5.16)

�  ←−−
∐
c∈C

HomMcon

(
colim

λc
◦∈Δop

↺
λc,S

1
)
�
∐
α∈A

HomMcon
(
Γα,S

1) (3.5.17)

�  ←−−HomMcon(S1,S1)�C �
∐
α∈A

HomM

(
Γα,S

1) . (3.5.18)

The equivalence (3.5.12) is the definition of the space X. The equivalence (3.5.13) is a 
direct consequence of Corollary 3.2.3, using that the quiver μ is connected. The equiv
alence (3.5.14) is an instance of the fact that colimits commute with coproducts. The 
equivalence (3.5.15) follows from the fact that the paracyclic category Δ↺ is cosifted (see 
Corollary 2.4.6)). The equivalence (3.5.16) follows from Observation 3.4.3(2), using that, 
for x ∈ K an object in an ∞-category, the evaluation functor PShv(K) evx−−→ S preserves 
colimits. The equivalence (3.5.17) is the universal property of colimits, which corepre
sent limits of spaces of morphisms. The equivalence (3.5.18) follows from the definition 
of S1 ∈ Mcon (see Definition 3.3.1).

Next, let β ∈ B. We now explain the following sequences of equivalences among spaces:

Yβ := lim
(λc)c∈C∈(Δ↺)×C

HomQuiv

(
Ξβ ,�Γ

∐
c∈C

λc

)
(3.5.19)

�  ←−− lim
(λc)c∈C∈(Δ↺)×C

(
HomQuiv

(
Ξβ ,

∐
c∈C

λc

)
� HomQuiv

(
Ξβ ,Γ

))
(3.5.20)

�  ←−−
(

lim
(λc)c∈C∈(Δ↺)×C

HomQuiv

(
Ξβ ,

∐
c∈C

λc

))
� HomQuiv

(
Ξβ ,Γ

)
(3.5.21)

�  −−→
(

lim
λ∈Δ↺

HomQuiv

(
Ξβ , λ

�C
))

� HomQuiv

(
Ξβ ,Γ

)
(3.5.22)

−→
(

lim
λ∈Δ↺

HomQuiv

(
Ξβ , λ

))
� HomQuiv

(
Ξβ ,Γ

)
(3.5.23)

�  ←−− HomMcon

(
colim
λ◦∈Δop

↺
λ,Ξβ

)
� HomQuiv

(
Ξβ ,Γ

)
(3.5.24)

� HomMcon

(
S1,Ξβ

)
� HomQuiv

(
Ξβ ,Γ

)
(3.5.25)

�  −−→ ∅ � HomQuiv

(
Ξβ ,Γ

)
= HomQuiv

(
Ξβ ,Γ

)
(3.5.26)

�  ←−−
∐
α∈A

HomQuivcon

(
Ξβ ,Γα

)
(3.5.27)

�  ←−−
∐
α∈A

HomMcon

(
Γα,Ξβ

)
. (3.5.28)
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The equivalence (3.5.19) is the definition of the space Yβ . The equivalence (3.5.20) 
is a direct consequence of Corollary 3.2.3, using that the quiver Ξβ is connected. 
The equivalence (3.5.21) follows from Δ↺ being cosifted (Corollary 2.4.6); the equiv
alence (3.5.22) also follows from Δ↺ being cosifted. The map (3.5.23) is implemented 

by restriction along the codiagonal morphism λ
�C → λ in Quiv, functorially in λ ∈

Δ↺. We postpone explaining why this map (3.5.23) is an equivalence. The equiva
lence (3.5.24) is the universal property of colimits, which corepresent limits of spaces 
of morphisms. The equivalence (3.5.25) is the definition of S1 ∈ Mcon (see Defini
tion 3.3.1). The equivalence (3.5.26) follows from Proposition 3.3.9. Note that each of 
the maps (3.5.23), (3.5.24), (3.5.25), (3.5.26) respects the evident coproduct description. 
Because the left cofactor of the codomain of (3.5.26) is empty, it then follows that the 
left cofactor of the domain and codomain of (3.5.23) are both empty as well. In partic
ular, the map (3.5.23) is an equivalence, as desired. Moving on, the equivalence (3.5.27) 
uses the definition of Γ, together with Corollary 3.2.3(2). The equivalence (3.5.28) is an 
instance of the fully faithfulness of (Quivcon)op → Mcon (see Observation 3.3.4(4)). �

After Proposition 3.3.9, Lemma 3.5.1 gives the following.

Corollary 3.5.2. Let C and D be finite sets. Let Γ and Ξ be quivers. There is a canonical 
identfication of the space of morphisms in M:

HomM

(
(S1)�C � Γ, (S1)�D � Ξ

)
� 
(
W �C � Γ(0) � T ×N× ×

(
Zdir(Γ) \ Γ(0)))×D

× HomQuiv(Ξ,Γ) ,

where Γ(0) is the set of vertices of Γ and Zdir(Γ) \Γ(0) is the set of non-constant directed 
cycles in Γ.

Lemma 3.5.3. Let M ∈ M ⊂ PShv(Quivop). Let C be a finite set. The canonical morphism 
in PShv(Quivop),

colim
(μc)c∈C∈(Δop

↺)×C

((∏
c∈C

μc

)
×M

)
�  −−→ (S1)×C ×M ,

is an equivalence. In particular, the lefthand term belongs to M,22 and as so witnesses 
a colimit in M.

Proof. Through Corollary 3.5.2, choose a finite set D and a quiver Γ and an equivalence 
M � (S1)�D � Γ in M. Consider the canonical diagram in PShv(Quivop):

22 Through Notation 3.4.6, this object is denoted (S1)�C � Γ ∈ M.
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colim
(μc)c∈C∈(Δop

↺)×C

⎛⎝( ∏
c∈C

μc

)
× colim

(μc)d∈D∈(Δop
↺)×D

( ∏
d∈D

μd

)
× Γ

⎞⎠ colim
(μc)c∈C∈(Δop

↺)×C

(( ∏
c∈C

μc

)
× M

)

colim
(μe)e∈C
D∈(Δop

↺)×(C
D)

( ∏
e∈C
D

μe × Γ
)

(S1)×(C
D) × Γ (S1)×C × M

(a)

(b)

(c)

(d)

.

We seek to show the unlabeled right vertical morphism is an equivalence. Observa
tion 3.4.8, applied to the inner colimit, gives that the morphism (a) is an equivalence. The 
morphism (b) is an equivalence because the ∞-category Δop

↺ is sifted (Corollary 2.4.6). 
Observation 3.4.8 gives that the morphism (c) is an equivalence. The bottom horizontal 
equivalence is (S1)�C � − applied to the identfication (S1)�D � Γ �M . The right ver
tical morphism is therefore an equivalence by the 2-of-3 property of equivalences in an 
∞-category. �

The following three results are direct consequences of Lemma 3.5.1.

Corollary 3.5.4. The full ∞-subcategory Mcon ⊂ 
Observation 3.4.5(3)

M freely generates M

via finite categorical products. More precisely, the following assertions are true.

(1) The ∞-category M admits finite products.

(2) Let M ∈ M be an object. There is a finite set A and an A-indexed sequence (Mα)α∈A

of objects in Mcon together with an equivalence in M:

M
�  −−→ �

α∈A

Mα .

(3) Let M,M ′ ∈ M be objects. Let N ∈ Mcon. The canonical map

HomM(M,N)
∐

HomM(M ′, N) �  −−→ HomM(M �M ′, N)

is an equivalence between spaces.

Corollary 3.5.5. Each object in M is a finite disjoint union of oriented circles and con
nected quivers.23 More precisely, the moduli space of its objects is the free commutative 
monoid

Obj(M) � FreeCom

(
Obj(Mcon)

)
� FreeCom

(
BT �

∐
[Γ]∈π0Obj(diGraphfin.con)

BAutdiGraphfin.con(Γ)
)
.

23 In other words, each object in M is a finite product of colimits colim
μ◦∈Δ

op
↺
μ and connected quivers.
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After Corollary 3.3.11(1), Lemma 3.5.1 implies the following.

Corollary 3.5.6. The a priori (∞, 1)-category M is in fact a (2, 1)-category.

3.6. Rfinement morphisms in M

Here, we dfine and study the subcategory of rfinement morphisms in M.

Definition 3.6.1. A morphism f : M → N in Mcon is a rfinement morphism if one of 
the following conditions is satified.

(1) M,N ∈ (Quivcon)op and f◦ is a rfinement morphism in the sense of Definition 1.2.19.

(2) M � N � S1 and f is an isomorphism

(3) M ∈ (Quivcon)op, N � S1 and f is given by (in the identfication of Corollary 3.3.11)

Wdir(M) × T ⊂
(
Zdir(M) \M (0))×W ,

where

Wdir(M) ⊂ Zdir(M) \M (0)

is the subset of directed cycles in which every edge appears exactly once.

A morphism in M is a rfinement morphism if it is the product of rfinement morphisms 
in Mcon. We denote by

Mref ⊂ M

the subcategory consisting of rfinement morphisms.

Definition 3.6.2. Let M ∈ M. The full ∞-subcategory

Quiv(M) ⊂ Quivop
/M := Quivop × 

M
M/M

consists of those Γ → M that are rfinement morphisms.

Observation 3.6.3. Let M,N ∈ M.

(1) Taking products dfines a functor

M/M ×M/N −→ M/M�N , (M ′ → M,N ′ → N) �→ (M ′ �N ′ → M �N) .
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(2) This functor restricts as an equivalence:

M/refM ×M/refN
�  −−→ M/refM�N ,

where M/refM ⊂ M/M is the full subcategory consisting of rfinement maps to M .

(3) The above functor further restricts as an equivalence:

Quiv(M) × Quiv(N) �  −−→ Quiv(M �N) .

Observation 3.6.4. Let C be a finite set. Let Γ ∈ Quiv.

(1) Reviewing the definition of rfinement morphisms in M reveals that the func
tor (3.4.5) factors:

(Δop
↺ )×C −→ Quiv

(
(S1)�C � Γ

)
, (μc)c∈C �−→

(�
c∈C

μc

)
� Γ . (3.6.1)

(2) If Γ = ∅, then this morphism (3.6.1) is an equivalence.

(3) If C = ∅, then this morphism (3.6.1) is the inclusion of a final object.

(4) Through Observation 3.6.3(4), the functor (3.6.1) is a fully faithful right adjoint.

Lemma 3.6.5. Let M ∈ M. The canonical functor

Quiv(M) −→ Quivop
/M

is final. In particular, using Observation 3.6.4(4) and Corollary 2.4.6, both of these ∞
categories Quiv(M) and Quivop

/M are sifted.

Proof. Corollary 3.5.5 implies there is an equivalence M � (S1)�C � Γ in M for some 
finite set C and some Γ ∈ Quiv. Observation 3.6.4(1) grants a filler among ∞-categories:

Quiv
(
(S1)�C � Γ

)

(Δop
↺ )×C Quivop

/(S1)�C�Γ(3.4.5)

Obse
rva

tio
n 3

.6.
4(1

)

.

Lemma 3.4.10 states that the bottom horizontal functor is final. Observation 3.6.4(4) 
implies the diagonal upward arrow is final. By the 2-out-of-3 property of final functors, 
the diagonal downward functor is final, as desired. �
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3.7. Excision sites

The object S1 ∈ M is dfined as a colimit of a functor Δop
↺ → M. Lemma 2.4.5

implies S1 can be computed as a geometric realization:

|S1
•| = colim

(
S1
• : Δop (2.4.2)−−−−→ Δop

↺
(3.3.1)−−−−→ Quivop δ−→ M

)
� S1 ∈ M

where, for each [p] ∈ Δ, the object S1
p ∈ Quiv is the pushout in diGraphsfin:

S0 S0 D1

[p] S1
p

−1

.

Here, S0 = {±1} is the two-element set, regarded as a quiver with no non-degenerate 
edges; the horizontal map S0 → D1 is given by −1 �→ 0 and +1 �→ 1; the left vertical 
map is given by −1 �→ 0 and +1 �→ p. As Lemma 3.7.3 below, we show that M ad
mits geometric realizations of slightly more general simplicial objects in M. The general 
statement is technical, so we introduce the following.

Construction 3.7.1. Let Γ̃ be a finite directed graph. Let S be a finite set. Let

(S0)�S ϕ 
↪→ Γ̃(0)

be an injection into the set of vertices with the property that, for each s ∈ S, the vertex 
ϕs(−1) has exactly one incident edge and it is in-coming, and the vertex ϕs(+1) has 
exactly one incident edge and it is out-going. For each [p] ∈ Δ regarded as a linearly
directed graph, consider the pushout in diGraphsfin:

(S0)�S Γ̃

[p]�S Γp

ϕ

in which the left vertical map is the S-fold coproduct of the map S0 → [p] given by 
−1 �→ 0 and +1 �→ p. Using that the values [•] ∈ Quiv assemble as a functor Δ → Quiv, 
the above values assemble as a functor

Δ Γ•−−−→ Quiv , [p] �−→ Γp .

For M ′ ∈ M, taking disjoint union with M ′ determines a simplicial object in M:

M• : Δop Γ•−−−→ Quivop δ−−→ M
�M ′

−−−−→ M , [p] �−→ Mp := Γp �M ′ . (3.7.1)
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Fig. 3. An object M with an excision site and a picture of M2. 

Terminology 3.7.2. Let M ∈ M be an object (Fig. 3). An excision site (for M) is the 
data (Γ̃, S, ϕ,M ′) of Construction 3.7.1, together with an identfication M � |M•| in M
of the colimit of the resulting simplicial object (3.7.1).

Lemma 3.7.3. Consider the context (Γ̃, S, ϕ,M ′) of Construction 3.7.1. The colimit

M := colim
(
Δop M•  −−−→ M

)
∈ M

exists, and each of the canonical morphisms Mp → M is a rfinement.

Proof. We first establish the case in which M ′ = ∅, so that M• = Γ•. Observe the 
factorization
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Γ• : Δ diagonal−−−−−−−→ Δ×S Γ	•−−−→ Quiv

where, for 
(
[ps]

)
s∈S

∈ Δ×S , the value Γ([ps])s∈S
∈ Quiv is the pushout in diGraphsfin:

(S0)�S Γ̃

∐
s∈S

[ps] Γ(ps)s∈S

ϕ

.

Using that Δop is sifted, the lemma is therefore implied by the case in which S is a 
singleton. So assume S is a singleton.

Consider the largest subgraph Γ′ ⊆ Γ̃ that does not contain vertices in the image 
ϕ(S0) ⊆ Γ̃(0) of ϕ. There are two cases for the map S0 ϕ−→ Γ̃.

Case 1: the unique incoming edge to the vertex ϕ(−1) is equal to the unique outgoing 
edge to the vertex ϕ(+1). In this case, the unique such edge is necessarily a cofactor 
D1 of Γ̃, which is to say, there is an isomorphism

Γ̃ ∼ = D1 � Γ′

under S0 (via the inclusion S0 ↪→ D1). Therefore, the functor Δ Γ•−→ Quiv is isomor
phic with the composite functor

Δ (2.4.2)−−−−−→ Δ↺
(3.3.1)−−−−−→ Quiv −�Γ′

−−−−−→ Quiv .

Because Δop (2.4.2)−−−−→ Δop
↺ is final (Lemma 2.4.5), Observation 3.4.8 implies the colimit 

of the composite functor

Δop (2.4.2)−−−−−→ Δop
↺

(3.3.1)−−−−−→ Quivop −�Γ′
−−−−−→ Quivop δ−−→ M

exists. Notice that, for each [p] ∈ Δ, the morphism S1
p → S1 is a rfinement, and 

therefore the morphism Γp
∼ = S1

p � Γ′ → S1 � Γ′ ∼ = M is a rfinement. This proves 
statement (1) in this case.

Case 2. the unique incoming edge e− to the vertex ϕ(−1) is not equal to the unique 
outgoing edge e+ to the vertex ϕ(+1). Consider the maps between directed graphs 
D1

−
〈e−〉−−−→ Γ̃ 〈e+〉 ←−−− D1

+ selecting these edges. In this case, Γ̃ fits into a pushout diagram 
in diGraphsfin,

∂−D1 � ∂+D1 Γ′

D1
− �D1

+ Γ̃

,
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where ∂±D1
± = {±1} ⊂ (D1

±)(0) are the respective target/source vertices of the di
rected edge D1

±. Therefore, for each [p] ∈ Δ, the value Γp fits into a pushout in 
diGraphsfin:

∂−D1 � ∂+D1 Γ′

[p]�� Γp

,

where the vertical map selects, respectively, the initial and final cone points. Using 

Observation 1.2.7, which states that diGraphsfin Free−−→ Quiv preserves cobase-change 

along monomorphisms, the functor Δ Γ•−→ Quiv fit into a pushout among functors:

∂−D1 � ∂+D1 Γ′

[•]�� Γ•

.

Now, consider the pushout in diGraphsfin:

∂−D1 � ∂+D1 Γ′

∅�� Γ∅

. (3.7.2)

By construction, for each [p] ∈ Δ, the unique morphism ∅ → [p] in Quiv determines 
a rfinement morphism ∅�� → [p]�� in Quiv. Applying Quivop δ−→ M to this rfinement 
morphism determines a rfinement morphism [p]�� → ∅�� in M. It remains to show 
Γ∅ witnesses the sought colimit.

The unique morphism ∅ !−→ [•] induced an extension to the left-cone on Δ:

(Δ)� ∅�
 !�
−−→[•]�
−−−−−−−−→ Quiv .

Observe that this extension witnesses a limit. In other symbols, there is an identfi
cation in Quivop of the geometric realization:

|[•]��| = colim
(
Δop [•]�
−−−→ Quivop

)
�  −−→ ∅�� .

By definition of Γ∅ ∈ diGraphsfin, this identfication supplies an identfication in Quivop

of the geometric realization

|Γ•| = colim
(
Δop Γ•−→ Quivop

)
�  −−→ Γ∅ .
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Now, this geometric realization is a split geometric realization. Indeed, the functor 
Δ [•]�
−−−→ Quiv factors through the functor

Δ [•]�
−−−−→ Δ ↪→ Quiv .

It follows that the functor Δ Γ•−→ Quiv also factors through Δ [•]�
−−−→ Δ. Therefore, 
the geometric realization |Γ•| is also split. Consequently, for any functor Quivop F−→ Z

to an ∞-category, the canonical morphism in Z,

colim
(
Δop Γ•−−−→ Quivop F−−→ Z

)
�  −−→ F (Γ∅) ,

is an equivalence. In particular, there is an identfication of the colimit in M,

colim
(
Δop Γ•−−−→ Quivop δ−−→ M

)
�  −−→ δ(Γ∅) = M .

We now prove the general case, in which M ′ ∈ M is arbitrary. Denote M ′′ :=
colim

(
Δop Γ•−→ M

)
-- above, we argued that M ′′ exists, and each canonical morphism 

Γp → M ′′ is a rfinement. Using Corollary 3.5.2, choose a finite set C, a quiver Ξ, and 

an equivalence M ′ � (S1)�C �Ξ in M. Then the functor Δop M•−−→ M is equivalent with 
the composite functor

Δop Γ•�Ξ−−−→ Quivop δ−→ M
−�(S1)�C

−−−−−−−→ M . (3.7.3)

As the ∞-category Δop is sifted, colimits indexed by it distribute over products in ∞
categories of presheaves. Therefore, we have an identfication of the colimit in M:

colim
(
Δop Γ•�Ξ−−−→ Quivop δ−→ M

)
� colim

(
Δop Γ•−→ Quivop δ−→ M

)
� Ξ � M ′′ � Ξ .

(3.7.4)
By definition of S1 ∈ M, each S1 factor of the values of this functor is a paracyclic 
colimit. So consider the composite functor

Δop × (Δop)×C (Γ•�Ξ,((3.3.1)◦(2.4.2))c∈C)−−−−−−−−−−−−−−−−−→ Quivop × (Quivop)×C �−−→ Quivop δ−−→ M .

(3.7.5)
Lemma 2.4.5 implies the left Kan extension of (3.7.5) along the projection Δop ×
(Δop)×C pr1−−→ Δop is the simplicial object (3.7.3), whose colimit we seek to prove ex
ists and is M ′′ � M ′. We can compute this colimit, alternatively, as the colimit of the 
left Kan extension along the other projection Δop× (Δop)×C pr−→ (Δop)×C . The left Kan 
extension of (3.7.5) along this other projection evaluates on an object as a colimit whose 
existence was argued above; the identfication (3.7.4) supplies an identfication of the 
resulting functor as



D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 79

(Δop)×C ((3.3.1)◦(2.4.2))c∈C−−−−−−−−−−−−−−→ (Quivop)×C �−−→ Quivop δ−→ M
�M ′′�Ξ−−−−−−→ M .

Lemma 3.5.3 ensures the colimit of this functor exists, and is M ′′ � (S1)�C � Ξ �
M ′′ � M ′ =: M . Finally, because each of the canonical morphisms Γp → M ′′ is a 
rfinement, then each of the canonical morphisms Mp = Γp �M ′ → M ′′ �M ′ = M is a 
rfinement. �

Let (Γ̃, S, ϕ,M ′) be an excision site for an object M ∈ M. Denote the base-changes 
among ∞-categories:

Ar(M)|Quivop Ar(M)

Quivop M

evs evs

δ

.

Denote the base-changes among ∞-categories:

Ar(M)|Quivop

|Δop Ar(M)|Quivop

|(Δop)
 Ar(M)|Quivop

Δop (Δop)� M

evt evt evt

M•

. (3.7.6)

The right vertical functor is a coCartesian fibration, and therefore all of the vertical 
functors are coCartesian fibrations. The fiber of the right vertical functor over N ∈ M is 
Quivop

/N . Therefore, the fiber of the middle vertical functor over the cone-point is Quivop
/M . 

Because the cone-point in (Δop)� is final, coCartesian monodromy functors assemble as 
a functor

Ar(M)|Quivop

|Δop
monodromy−−−−−−−−−→ Quivop

/M . (3.7.7)

The fiber over each object [p] ∈ Δ of the left vertical functor in (3.7.6) is Quivop
/Mp

. We 
explain the composite functor:

Quiv(M ′) = ∗ × Quiv(M ′) 〈Γp〉×id−−−−−→ Quiv(Γp) × Quiv(M ′) � Quiv(M) ↪→ Quivop
/M ,

(3.7.8)

(M̃ ′ r−→ M ′) �−→
(
Dp � M̃ ′ id�r−−−→ Dp �M ′ refinement−−−−−−−→ M

)
.

Using that Γp ∈ Quiv, the category Quiv(Γp) has the identity morphism (Γp
id−→ Γp) as 

a final object (see Observation 3.6.4(3)). The first functor is the product of the functor 
that selects this final object and an identity functor. Being a product of final functors, 
the first functor is final. Using the identfication M � Γp �M ′, the middle equivalence 
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follows from Observation 3.6.3(3). The last functor is the defining fully faithful inclusion, 
which Lemma 3.6.5 states is final. We have established the composite functor (3.7.8), 
and also its finality. Now, as [p] ∈ Δ varies, these final functors canonically organize as 
a final functor η fitting into the diagram among ∞-categories:

Δop × Quiv(M ′) Ar(M)|Quivop

|Δop

Δop

η

pr evt
.

Because each of the canonical morphisms Mp → M in M is a rfinement (Lemma 3.7.3), 
there is a (necessarily unique) factorization of the composite functor

Δop × Quiv(M ′) Quiv(M)

Ar(M)|Quivop

|Δop Quivop
/M

η

(3.7.7)

. (3.7.9)

The next technical result is key for excision of factorization homology, as developed 
in the next section.

Lemma 3.7.4. Each of the functors

Δop × Quiv(M ′) (3.7.9)−−−−−→ Quiv(M) and Ar(M)|Quivop

|Δop
(3.7.7)−−−−−→ Quivop

/M

is final.

Proof. The functor η constructed above was already observed to be final. Lemma 3.6.5
asserts that the right vertical functor in (3.7.9) is final. By the 2-out-of-3 properties of 
final functors, the dashed filler in (3.7.9) is final if and only if (3.7.7) is final. We prove 
the dashed filler in (3.7.9) is final.

Observation 3.6.3(3) supplies an identfication Quiv(M) �−→ Quiv(M ′′) × Quiv(M ′), 
where M ′′ := |Γp|, which Lemma 3.7.3 ensures exists. With respect to this identfication, 
there is an identfication as a product:(

Δop × Quiv(M ′) (3.7.9)−−−−−→ Quiv(M)
)

� 
(
Δop Γ•−→ Quiv(M ′′)

)
× Quiv(M ′) .

We can therefore reduce to the case in which M ′ = ∅, which is to say M• = Γ•. Using 
that Δop is sifted, we can reduce further to the case in which S is a singleton. As in the 
proof of Lemma 3.7.3, there are then two cases to consider.

In the first case, Γ• � S1
• �Γ′. In this case, M = S1 �Γ′, and by Observation 3.6.3(3) 

there is a canonical identfication Quiv(M) �−→ Quiv(S1) × Quiv(Γ′). Through this iden
tfication, the functor Δop (3.7.9)−−−−→ Quiv(M) is a composite
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(3.7.9) : Δop (3.7.9)−−−−→ Quiv(S1) id×〈Γ′ =−→Γ′〉−−−−−−−−→ Quiv(S1) × Quiv(Γ′) � Quiv(M) ,

involving the functor (3.7.9) applied to the case of S1
•. As Γ′ is itself a quiver, Quiv(Γ′)

has a final object, which is that selected by the second factor of the above composite. 
Through the identfication Quiv(S1) � Δop

↺ of Observation 3.6.4(2), the finality of the 
above composite functor is therefore implied by Lemma 2.4.5.

In the second case, Γ• � [•]�� �
∂−D1�∂+D1

Γ′. In this case, M � δ(Γ∅) is in the image 

of Quivop δ−→ M, where the quiver Γ∅ is a pushout (3.7.2) in diGraphsfin. Base-change in 
Quiv of rfinement morphisms along each of the morphisms in the diagram (3.7.2) exist, 
and organize as a diagram among categories:

Quiv (Γ∅) Quiv (Γ′)

Quiv (∅��) Quiv
(
∂−D1 � ∂+D1) .

Furthermore, as a rfinement of the quiver Γ∅ is precisely a pair of rfinements, one of 
∅�� and one of Γ′, this diagram is a pullback:

Quiv(M) � Quiv (Γ∅)
�  −−→ Quiv (∅��) × Quiv (Γ′) .

Through this identfication, the functor Δop (3.7.9)−−−−→ Quiv(M) is a composite

(3.7.9) : Δop (3.7.9)−−−−→ Quiv(∅��) id×〈Γ′ =−→Γ′〉−−−−−−−−→ Quiv(∅��) × Quiv(Γ′) � Quiv(M) ,

involving the functor (3.7.9) applied to the case of [•]��. As Γ′ is itself a quiver, Quiv(Γ′)
has a final object, which is that selected by the second factor of the above composite. 
We are therefore reduced to showing the functor Δop (3.7.9)−−−−→ Quiv(∅��) is final. Now, 
observe an identfication Quiv(∅��) ⊂ (Δ∅�
/)op as the full subcategory consisting of 
those ∅�� → [p] that are active and injective. In other words, Quiv(∅��) is the opposite of 
the category Δ∅�
/act,inj in which an object is a finite linearly ordered sets with distinct 
minimum and maximum, and a morphism is a map between linearly ordered sets that 
preserves extrema. This identfication supplies an identfication between categories under 
Δop: (

Δop (3.7.9)−−−−→ Quiv(∅��)
)

� 
(
Δop [•]�
−−−→ (Δ∅�
/act,inj

)op
)

.

Let 
(
∅�� σ−→ [p]

)
∈ Δ∅�
/act,inj . Consider the overcategory Δ/σ := Δ × 

Δ∅�
/act,inj )(
Δ∅�
/act,inj)

)
/σ

. As every morphism [q] → [p] uniquely extends as an active mor

phism [q]�� → [p], restriction along [•] ↪→ [•]�� dfines an equivalence between 
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categories: Δ/σ
�−→ Δ/[p]. The overcategory Δ/[p] has a final object, and therefore 

its ∞-groupoid-completion is contractible. Quillen’s Theorem A can therefore be ap
plied to reveal that the functor Δ [•]�
−−−→ Δ∅�
/act,inj is initial. Therefore, the functor 
Δop (3.7.9)−−−−→ Quiv(∅��) is final, as desired. �

The simplicial object M• determined from an excision site, as in Construction 3.7.1
has a conceptual description as a cyclic bar construction.

Lemma 3.7.5. Let (Γ̃, S, ϕ,M ′) be an excision site.

(1) The composite functor

A : Δop ρ  −−→ Quivop (−)�S

−−−−−→ Quivop ↪→ M , [p] �−→ ρ(p)�S ,

is a category-object.

(2) The object Γ̃ �M ′ ∈ M has the structure of a (A,A)-bimodule.

(3) The simplicial object Δop M•−−→ M is the cyclic bar construction of A with coefficients 
in the bimodule Γ̃ �M ′.

Proof. The second functor in the definition of A is given by product with the finite set 
S. Because products with a finite set preserve basic closed cover diagrams in Quiv (which 
are certain pushouts in Cat(∞,1)), this composite functor carries basic closed covers to 
basic closed covers. Consequently, A is a category-object, which proves statement (1).

Consider the functor

F : (Δ/[1])op −→ M

given as follows. Its restriction along both of the functors Δop = (Δ/{0})op ↪→ (Δ/[1])op

and Δop = (Δ/{1})op ↪→ (Δ/[1])op is the category-object A; its restriction along the 
functor (Δ/surj[1])op ↪→ (Δ/[1])op is given by(

[p] σ−→ [1]
)
�−→ A(σ−1(0)) ×

S

(
Γ̃ �M ′

)
×
S
A(σ−1(1)) ,

where S ← Γ̃ �M ′ → S are the two closed morphisms associated with the inclusion ϕ, 
and where A(σ−1(0)) → A(Max(σ−1(0)) = S and A(σ−1(1)) → A(Min(σ−1(1)) = S. 
These specfications dfine F on a subcategory of (Δ/[1])op that contains all objects and 
all closed morphisms. Defining F on the entirety of (Δ/[1])op can be achieved by hand, 
using that Quivop is an ordinary category, or through a case-by-case analysis as in the 
proof of Lemma 3.7.3. Evidently, F carries (the opposites of) closed covers over [1] to 
closed covers in M. As so, F codfies a (A,A)-bimodule structure on Γ̃�M ′ in M. This 
establishes statement (2).
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For [p] ∈ Δ, there is a canonical morphism in Δ from the join, [p] � [p] !�!−→ ∗ � ∗ = [1], 
which fits into a commutative diagram in Δ:

[p] [p] � [p] [p]

{0} [1] {1}

,

in which the upper horizontal morphisms are the respective inclusions of the left and 
right joinands. These data organize, as [p] ∈ Δ varies, as a cospan in Fun(Δ,Δ/[1]):

([•] ↓ {0}) −→ ([•] � [•] ↓ [1]) ←− ([•] ↓ {1}) .

Taking opposites then post-composing with the functor F results in a span in 
Fun(Δop,M):

A
R←−− F ([•] � [•] ↓ [1]) L  −−→ A ,

using the defining identfications F ([•] ↓ {0}) = A = F ([•] ↓ {1}).
Inspecting the defining values of F , of A, and of M•, reveals that, for each [p] ∈ Δ, 

there is a canonical diagram in M,

Mp A([p]) F ([p] � [p] ↓ [1])cls R

L

, (3.7.10)

which in fact is −�M ′ applied to such a diagram in (diGraphsfin)op ⊂ Quivop ⊂ M. Notice 
that this diagram in (diGraphsfin)op witnesses an equalizer, and the diagram (3.7.10) in 
M is also witnesses an equalizer. The diagram (3.7.10) in M organizes as diagram in 
Fun(Δop,M), which therefore also witnesses an equalizer. In other words, M• is the 
cyclic bar construction of the (A,A)-bimodule codfied by F . �
4. Factorization homology

In this section, we fix an ∞-category X with the following properties.

(1) X admits finite limits.

(2) X admits geometric realizations.

(3) For each X ∈ X, the functor X ×− : X → X preserves geometric realizations.

We implement a purely combinatorial version of factorization homology 
∫
M

C ∈ X of 
any category-object C in X over an object M ∈ M. As Appendix §B, we show this com
binatorial version of factorization homology agrees with the geometric version, dfined 
in [4].



84 D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 

4.1. Factorization homology

Recall the Notation 1.2.9 of the functor Δ ρ−→ Quiv, and the Definition 3.4.1 of the 

functor Quivop δ−→ M.

Definition 4.1.1. Combinatorial factorization homology is the composite functor∫
: fCat1[X] ρ∗−−−→ Fun(Quivop,X) δ!−−→ Fun(M,X) , C �−→

(
M �→

∫
M

C
)
,

of right Kan extension along Δop ρ−→ Quivop followed by left Kan extension along 

Quivop δ−→ M. For C ∈ fCat1[X] and M ∈ M, the combinatorial factorization homol
ogy of C over M is the value∫

M

C := colim
(
Quivop

/M

forget−−−−→ Quivop ρ∗(C)  : Γ �→RepC(Γ)−−−−−−−−−−−−→ X
)

∈ X .

Observation 4.1.2. The assumptions on X ensure combinatorial factorization homology 
∫

exists. Indeed, by Theorem 1.5.5, these assumptions ensure that the right Kan extension 
ρ∗ exists; by Lemma 3.4.10, these assumptions ensure that the left Kan extension δ!
exists.

Recall from Definition 3.6.2 the full ∞-subcategory Quiv(M) ⊆ Quivop
/M for each M ∈

M. The following is a direct consequence of Lemma 3.6.5, which states that this ∞
subcategory is final.

Corollary 4.1.3. Let C ∈ fCat1[X] be a category-object in X. For each M ∈ M, combi
natorial factorization homology can be computed as the colimit indexed by Quiv(M): the 
canonical morphism in X,

colim
Γ

ref−→M

RepC(Γ) = colim
(
Quiv(M) ↪→ Quivop

/M

forget−−−−→ Quivop ρ∗(C)  : Γ �→RepC(Γ)−−−−−−−−−−−−→ X
)

�  −−→
∫
M

C ,

is an equivalence.

Remark 4.1.4. The full ∞-subcategory Quiv(M) ⊆ Quivop
/M consists of far fewer objects, 

and simpler morphisms, than its ambient ∞-category. In this way, Corollary 4.1.3 offers 
a simpler colimit formula for 

∫
M

C than the defining formula of Definition 4.1.1.

Remark 4.1.5. Remark 4.1.4 suggests that one might take the colimit formula of Corol
lary 4.1.3 as the working definition of 

∫
M

C. However, while M �→ Quivop
/M assembles 



D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 85

a functor M → Cat(∞,1), the association M �→ Quiv(M) is not functorial in M ∈ M. 
The full functoriality of 

∫
M

C is therefore not (obviously) available were one to take the 
formula of Corollary 4.1.3 as a definition of 

∫
M

C.

After Lemma 2.4.5, the following is a direct consequence of Lemma 3.4.10, using the 
assumed properties of X.

Corollary 4.1.6. Combinatorial factorization homology 
∫

exists. Furthermore, it preserves 
finite products in both variables:∫

M�N

C
�  −−→

∫
M

C×
∫
N

C and 
∫
M

C×D
�  −−→

∫
M

C×
∫
M

D .

The values of combinatorial factorization homology are summarized as follows. Recall 
the notation introduced in Definition 3.4.1.

Example 4.1.7. Let C ∈ fCat1[X] be a category-object in X. Combinatorial factorization 
homology of C takes the following values.

(1) For each finite directed graph Γ, the value∫
δ(Γ)

C � ρ∗(C)
(
Γ
)

=: RepC(Γ) .

Indeed, this is the fact that the unit of the (δ!, δ∗)-adjunction is an equivalence, 
which is so because δ is fully faithful (see Observation 3.4.3(4)).

(2) For each [p] ∈ Δ, the value ∫
ρ(p)

C � C([p]) .

Indeed, after the first identfication is the previous point, this follows from the fact 
that the counit of the (ρ∗, ρ∗)-adjunction is an equivalence, which is so because ρ is 
fully faithful. In particular,∫

D0

C � Obj(C) and 
∫
D1

C � Mor(C) .

(3) The value on the oriented circle is Hochschild homology:∫
S1

C � HH(C) .
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Indeed, this follows from the fact that the functor Δop
↺ → Quivop

/S1 is final (see 
Lemma 3.4.10).

(4) Let M ∈ M. Through Corollary 3.5.5 there is a finite set C and a directed graph Γ
together with an identfication M � (S1)�C � Γ in M. The value

∫
M

C � HH(C)×C × RepC(Γ) .

Indeed, after the above points, using the assumption that products in X dis
tribute over geometric realizations, this follows from the fact that Δop

↺ is sifted 
(Corollary 2.4.6) and that the functor (Δop

↺ )×C → Quivop
/(S1)�C�Γ is final (see 

Lemma 3.4.10).

Example 4.1.7 reveals that the values of combinatorial factorization homology are all 
familiar. What is novel is the functoriality among these values, and in particular the nat
ural symmetries of these values, which combinatorial factorization homology succinctly 
codfies. This is the subject of §4.3.

4.2. Excision

The next result is a version of excision for combinatorial factorization homology 
∫
. 

It is a direct consequence of Lemma 3.7.4.
We have the following immediate consequence of Lemma 3.7.5.

Corollary 4.2.1. Let (Γ̃, S, ϕ,M ′) be an excision site. Let C ∈ fCat1[X] be a category-object 
in X.

(1) The object 
∫
Γ̃�M ′ C ∈ X has the structure of a (C×S,C×S)-bimodule.

(2) The simplicial object Δop
∫
M• C

−−−−→ X is the cyclic bar construction of C×S with coeffi
cients in the bimodule 

∫
Γ̃�M ′ C.

Proposition 4.2.2. Let C ∈ fCat1[X] be a category-object in X. Let (Γ̃, S, ϕ,M ′) be an 
excision site for an object M ∈ M. The canonical morphism in X,

colim
[p]◦∈Δop

⎛⎜⎝∫
Mp

C

⎞⎟⎠ = 

∣∣∣∣∣∣
∫
M•

C

∣∣∣∣∣∣ �  −−→
∫
M

C

is an equivalence.
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Proof. We explain how the diagram (3.7.6) fits into the diagram among ∞-categories:

Ar(M)|Quivop

|Δop Ar(M)|Quivop

|(Δop)
 Ar(M)|Quivop Quivop X

Δop (Δop)� M

evs

evt

ρ∗C

M•

∫
C

⇐ . (4.2.1)

The squares in (4.2.1) are (dfined as) pullbacks. By definition of factorization homology, 
the inner lax-commutative triangle in (4.2.1) witnesses a left Kan extension. The right 
vertical functor in (4.2.1) is a coCartesian fibration. Therefore, so are the other vertical 
functors in (4.2.1) Using that left Kan extension along a coCartesian fibration is given by 
fiberwise colimit, the other resulting lax-commutative triangles in (4.2.1) also witnesses 
a left Kan extension. In particular, the left Kan extension to Δop, here, is the simplicial 

object Δop
∫
M• C

−−−−→ X. Because the cone-point in (Δop)� is final, the fiber Quivop
/M of the 

middle vertical functor over this cone-point is final in Ar(M)|Quivop

|(Δop)
 . Therefore the left 
Kan extension to (Δop)� evaluates on the cone-point as 

∫
M

C, and the colimit of this left 
Kan extension to (Δop)� is this value 

∫
M

C.
Now, regard (4.2.1) as a diagram among ∞-categories over X. Taking colimits in X

produces a diagram in X:

colim
(
Ar(M)|Quivop

|Δop
ρ∗C−−→ X

)
colim

(
Quivop

/M

ρ∗C−−→ X
)

∣∣∣∫M•
C
∣∣∣ ∫

M
C

. (4.2.2)

The left vertical morphism is an equivalence because the colimit of a left Kan extension 
is a colimit. The upper horizontal morphism is an equivalence because the functor

Ar(M)|Quivop

|Δop −→ Quivop
/M

is final (Lemma 3.7.4). The right vertical morphism is an equivalence by definition of fac
torization homology. The 2-out-of-3 property of equivalences ensures the lower horizontal 
morphism is an equivalence, as desired. �
Example 4.2.3. After Corollary 4.2.1, Proposition 4.2.2 is a local-to-global formula for 
combinatorial factorization homology. It gives a method to compute the value 

∫
M

C of 
combinatorial factorization homology on a general object M ∈ M in terms of simpler 
values. Here are some such examples.

(1) In the case that Γ• = ρ([•]��), Proposition 4.2.2 implies the canonical morphism 
given by the composition rule of C,
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◦ :
∣∣∣Mor(C)

× 
Obj(C)

•+1∣∣∣ �  −−→ Mor(C) ,

is an equivalence. Taking fibers over (c, d) ∈ Obj(C)×2 via the source-target morphism 
Mor(C) → Obj(C)×2 recovers the familiar identity: the coend of the left C-module 
HomC(c, •) with the right C-module HomC(•, d) is the object of morphisms in C from 
c to d:

HomC(c, •)
⊗
•∈C 

HomC(•, d) �  −−→ HomC(c, d) .

(2) In the case that S = {a, b} and Γ̃ is the disconnected quiver

{−a} −→ {+a} {−b} ←− {+b},

Proposition 4.2.2 implies the canonical morphism given by the composition rule of 
C,

◦ : HomC(•, •′)
⊗

(•◦,•′)∈Cop×C

HomC(•′, •) �  −−→ HH(C) ,

is an equivalence, which witnesses the (non-stable) Hochschild homology of C as the 
coend of the identity (C,C)-bimodule C with itself.

(3) In the case that Γ̃ of Construction 3.7.1 is the quiver

{−1} −→ {+1}

and S is a singleton, Proposition 4.2.2 implies the canonical morphism given by the 
composition rule of C,

◦ :
∣∣∣RepC(χ•)

∣∣∣ �  −−→ HH(C) ,

is an equivalence. Here, the cosimplicial quiver χ• : Δ (2.4.2)−−−−−→ Δ↺
(3.3.1)−−−−−→ Quiv

evaluates on [p] as the cyclically-directed quiver whose (cyclically-directed) set of 
vertices is {0, 1, . . . , p}.

4.3. Natural symmetries of Hochschild homology

Example 4.1.7(4) suggests that the most interesting value of combinatorial factoriza
tion homology is that over the oriented circle, which is Hochschild homology. In this 
subsection, we codify the natural symmetries of this value as a (non-stable) cyclotomic 
object. Namely, the value HH(C) naturally has the structure of a proper-genuine T
module that is fixed with respect to a natural N×-action on such. We refer the reader 
to Appendix A for definitions of these bolded concepts.
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Theorem 4.3.1. 

(1) The Hochschild homology functor lifts:

Cycunst(X)

fCat1[X] X

forget

HH

.

In other words, for each category-object C in X, its Hochschild homology HH(C) ad
mits the structure of a non-stable cyclotomic object in X; this structure is functorial 
in C ∈ fCat1[X].

(2) There is a canonical natural transformation Obj → HH between functors fCat1[X] →
X, which is invariant with respect to the above non-stable cyclotomic structure on 
HH:

Obj −→ HHCyc .

Proof. Denote by 〈D0,S1〉 ⊂ M the full ∞-subcategory consisting of the objects D0,S1 ∈
M. Note that the functor 

∫
S1 : fCat1[X] → X factors:∫

S1

: fCat1[X]
∫

−−→ Fun(M,X)

restriction  −−−−−−−−→ Fun
(
〈D0,S1〉,X

)
restriction  −−−−−−−−→ Fun

(
BEndM(S1),X

)
=: ModEndM(S1)(X)

evS1−−−−→ X .

Proposition 3.3.9 specializes as an identfication (BW op)� � 〈D0,S1〉 under an 
identfication W op � EndM(S1). Using this, Corollary A.0.8 gives an identfication 
ModEndM(S1)(X) � ModW op(X) � Cycunst(X). The first statement then follows from 
identfication 

∫
S1(C) � HH(C) of Example 4.1.7(3) for each C ∈ fCat1[X].

The second statement then follows upon observing that the ∞-category 
Fun((BW op)�,X) over Fun(BW op,X) =: ModW op(X) classfies a W op-module in X
equipped with a W op-invariant map to it. �
Remark 4.3.2. Theorem 4.3.1(2) can be interpreted as a non-stable cyclotomic trace map.

Appendix A. Non-stable cyclotomic objects

Here we introduce the notion of a (non-stable) cyclotomic object in X. The term non
stable is used here to rflect that X is not assumed to be a stable ∞-category, and that 
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its symmetric monoidal structure is understood as the Cartesian one. The notion of a
cyclotomic object in Sp is developed in [10]. The work [7] studies cyclotomic objects in 

some generality, and in particular explains how S
Σ∞

+−−→ Sp carries (non-stable) cyclotomic 
objects to (stable) cyclotomic objects.

In this section, we introduce (non-stable) cyclotomic objects in X and establish a few 
equivalent definitions of such (Corollary A.0.8).

Definition A.0.1. 

• The poset Ndiv is that of natural numbers with partial order given by divisibility: the 
relation r ≤ s in Ndiv means r divides s. We also denote this as r|s.

• The proper orbit category (of T ) is the ∞-category Orbit<T of transitive T -spaces 
with isotropy a proper (equivalently, finite) subgroup of T , and T -equivariant maps 
between them.

• For X an ∞-category, the ∞-category of proper-genuine T -modules (in X) is

Modg<

T (X) := Fun
(
(Orbit<T )op,X

)
.

The action N×
↷ 

(2.1.1)
T as a topological group determines an action on the proper 

orbit ∞-category:

N× � 
Observation 2.1.2

(N×)op
↷ Orbit<T , n · (T ↷ T ) := (T z �→zn

−−−−→ T ↷ T ) . (A.0.1)

Precomposition by this N×-action (A.0.1) dfines an N× = (N×)op-action on the ∞
category Modg<

T (X).

Definition A.0.2. The ∞-category of non-stable cyclotomic objects in an ∞-category X
is that of the N×-invariant proper-genuine T -modules:

Cycunst(X) := Modg<

T (X)hN
×
.

Remark A.0.3. Informally, a non-stable cyclotomic object in X consists of the following.

• A T -module 
(
T ↷

α 
X
)

in X .

• For each r ∈ N×, a morphism between T -modules in X:

r∗
(
T ↷

α 
X
)

:= 
(
T

z �→zr

−−−→ T ↷
α 

X
)

cr−−→
(
T ↷

α 
X
)

.
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• For each pair s, r ∈ N×, a 2-cell witnessing commutativity among T -modules in X:

r∗s∗
(
T ↷

α 
X
)

r∗
(
T ↷

α 
X
)

(sr)∗
(
T ↷

α 
X
) (

T ↷
α 

X
)

r∗cs

∼

cr

csr

.

• For each triple r, s, t ∈ N×, a similar commutative cube among T -modules in X whose 
faces are (possibly pulled back from) the above commutative squares.

• Etcetera.

Restriction along Orbit<T
!−→ ∗, which is evidently N×-invariant, dfines a functor

triv : X −→ Cycunst(X) .

Definition A.0.4. The cyclotomic fixed points functor is the right adjoint to triv:

(−)Cyc : Cycunst(X) −→ X .

Observation A.0.5. There is a functor

Orbit<T −→ Ndiv , (T ↷ T ) �→ |Tt| ( for some t ∈ T ) ,

whose value on a transitive T -space T with proper isotropy is the order of the isotropy of 
some element in T . Exploiting that the codomain of this functor is a poset, this functor 
is unique with the named values on objects. This functor has the following properties.

(1) Two subgroups of T with the same cardinality are identical. Therefore, the fiber of 
this functor over r ∈ Ndiv is the full ∞-subcategory of Orbit<T on T

Cr
. It follows that 

the fiber of this functor over r ∈ Ndiv is the ∞-groupoid B
(

T
Cr

)
� BT . In particular, 

this functor is conservative.

(2) The space of morphisms in Orbit<T over a morphism r|s in Ndiv is

T
Cr \MapT

( T

Cr
,
T

Cs

)
/ T

Cs

,

with the source-map an equivalence. In particular, this functor is a left fibration.

(3) The straightening of this left fibration is the functor

B
( T

C•

)
: Ndiv −→ S
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characterized by the following values on objects and generating morphisms:

• the value of this functor on each r ∈ Ndiv is the space BT � B
(

T
Cr

)
;

• the value of this functor on each morphism (r|s) in Ndiv is the map BT B(z �→z
s 
r )−−−−−−→

BT .

(4) With respect to the (N×)op-action on the poset Ndiv given by r◦ ·d := dr, this functor 
is canonically (N×)op-equivariant.

Here is the main technical result in this subsection.

Lemma A.0.6. There is a canonical identfication of the ∞-category of right-lax coinvari
ants with respect to the action (A.0.1):(

Orbit<T
)

r.laxN×

�  −−→ Ar(BW op) ,

where the codomain is regarded as a Cartesian fibration over BN× via the composite 
functor

Ar(BW op) evs−−→ BW op Bproj−−−→ BN× . (A.0.2)

Proof. Observe the unique functor between categories,

(BN×)∗/ −→ Ndiv , (∗ d−→ ∗) �→ d , (A.0.3)

whose value on each object is as depicted. Using that, for each d ∈ N×, the map 

N× r �→dr−−−→ N× is a monomorphism between spaces, the functor (A.0.3) is an equiva
lence.

Now, consider the diagram among ∞-categories:

Ar(BW op)|BT BT

Ar(BW op) BW op

(BN×)∗/ ∗

Ar(BN×) BN×

evs

Bproj

evs

Ar(Bproj)

. (A.0.4)

By definition of ∞-undercategories, the bottom square is a pullback square. The def
inition of the monoid W is such that the right square is also a pullback. It follows 
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that the left square is a pullback. Because BW op Bproj−−−→ BN× is a right fibration, so is 
Ar(BW op) Ar(Bproj)−−−−−−→ Ar(BN×). We conclude that the functor Ar(BW op)|BT → (BN×)∗/
is a right fibration. By direct inspection, the straightening of this right fibration is the 
functor

(Ndiv)op � 
(A.0.3)

(
(BN×)∗/

)op −→ S

characterized by the following values on objects and generating morphisms:

• the value of this functor on each d ∈ Ndiv is the space BT � B
(

T
Cd

)
;

• the value of this functor on each morphism (d|k) in Ndiv is the map BT B(z �→z
k
d )−−−−−−→ BT .

By Observation A.0.5, there results an equivalence over Ndiv � (BN×)∗/:

Orbit<T � Ar(BW op)|BT . (A.0.5)

By direct inspection, this equivalence (A.0.5) is canonically (N×)op-equivariant. This, 
in turn, lends to a canonical equivalence between Cartesian fibrations over BN× �
(BN×)op: (

Orbit<T
)

r.lax(N×)op
� 

(
Ar(BW op)|BT

)
r.lax(N×)op

.

The diagram (A.0.4) witnesses an identfication 
(
Ar(BW op)|BT

)
r.lax(N×)op

� Ar(BW op)

as Cartesian fibrations over BN×. �
Corollary A.0.7. There is a canonical identfication of the ∞-category of coinvariants 
with respect to the action (A.0.1):(

Orbit<T
)

hN×

�  −−→ BW op .

Proof. Through Lemma A.0.6, the corollary follows upon showing the functor

Ar(BW op) evt−−→ BW op

witnesses a localization on those morphisms in Ar(BW op) that are Cartesian with respect 
to the composite functor (A.0.2). Certainly, this functor witnesses a localization on those 
morphisms in Ar(BW op) that are Cartesian with respect to the functor Ar(BW op) evs−−→
BW op. Using that BT is an ∞-groupoid, thereby implying BW op → BN× is conserva
tive, this class of morphisms in Ar(BW op) is precisely the class of morphisms that are 
Cartesian with respect to the composite functor (A.0.2). �
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Corollary A.0.8. Let X be an ∞-category. There are canonical equivalences among ∞
categories

ModT (X)r.laxN
× � ModW op(X) � Modg<

T (X)hN
×

=: Cycunst(X) .

Furthermore, the equivalence Fun(BW op,X) =: ModW op(X) � Cycunst(X) extends as a 
canonically commutative diagram:

Fun(BW op,X) ModW op(X) Cycunst(X)

X

lim

∼

(−)hW op

∼

(−
)C
yc

.

Proof. The proof of the first statement is complete upon explaining the following se
quences of equivalences among ∞-categories:

ModT (X)r.laxN
× � Fun

(
BT ,X

)r.laxN×
� Fun

(
BT r.laxN× ,X

)
� Fun

(
BW op,X

)
� ModW op(X)

� Fun
(
(Orbit<T )hN× ,X

)
� Fun

(
Orbit<T ,X

)hN×
� Modg<

T (X)hN
×
.

The three equivalences that are not centered follow from the definition of Mod−(X), and 
the Definition A.0.1 of Modg<

T (X). It remains to prove the four aligned equivalences. For 
the first aligned equivalence, recall that the N×-action on ModT (X) is pre-composition of 
the N×-action on T . So the right-lax invariants by this N×-action on ModT (X) is functors 
from the right-lax coinvariants, which explains the first centered equivalence. For the 
second aligned equivalence, the definition of the monoid W := T ⋊N× implies BW op �
BT r.laxN× . The third aligned equivalence is Fun

(
−,X

)
applied to Corollary A.0.7. The 

fourth aligned equivalence identfies functors from N×-coinvariants as N×-invariants of 
functors.

The second statement follows upon observing that the functor X → ModW op(X) given 
by restriction along BW op → ∗ is identfied through the above sequence of equivalences 
with the functor triv : X → Cycunst(X), then using that right adjoints are unique. �
Remark A.0.9. A proper-genuine T -module in an ∞-category X consists of a considerable 
amount of homotopy coherence data, and the structure of being N×-invariant consists of 
yet more. Hence, one might expect it to be impractical to explicitly construct an object 
in Modg<

T (X)hN× . To the contrary, Corollary A.0.8 states that the requisite homotopy 
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coherence data actual cancel each other out, in a certain sense: an N×-invariant proper
genuine T -module in X is simply a W op-module in X (which entails substantially less 
homotopy coherence data).

Appendix B. Agreement of factorization homologies

The main result in this section is Theorem B.3.7, which articulates a precise sense in 
which combinatorial factorization homology as in Definition 4.1.1 agrees with the geomet
ric version of factorization homology, as dfined in [4]. To make these two constructions 
comparable, we first identify Quivop with cDisksfr

1 and M with cMfdsfr
1 .

B.1. Recollections from other works

We summarize some notions from [5] & [4].

(1) Constructed in §6.3 of [5] is the ∞-category cBun, which classfies proper con
structible bundles between stratfied spaces. This is to say, for K a stratfied space, 
the moduli space of proper constructible bundles over K is identical with the space 
of functors to cBun from its exit-path ∞-category, Exit(K) → cBun. So, an object 
in cBun is a compact stratfied space; a morphism from X0 to X1 is a proper con
structible bundle X → Δ1 (where the codomain is understood with the two strata 
Δ{0} and Δ1 \ Δ{0}) equipped with identfications X0 ∼ = X|Δ{0} and X1 ∼ = X|Δ{1} .

(2) Constructed in §6.4 of [5] is the ∞-category cExit, equipped with a functor 
cExit → cBun. For K a stratfied space, and for Exit(K) 〈X→K〉−−−−−→ cBun classifying 
a proper constructible bundle, there is a canonical identfication of the base-change 
cExit|Exit(K) � Exit(X) over Exit(K). In particular, the fiber of cExit → cBun over 
K ∈ cBun is the exit-path ∞-category Exit(K).

(3) Introduced in §2.1.2 of [4] is the ∞-category cVectinj. An object in cVectinj is a finite
dimensional R-vector space; the space of morphisms from V to W is the Stiefel space 
of injections from V to W .

(4) Constructed in §2.1.3&2.1.4 of [4] is a functor cExit τ−→ cVectinj. Its value on x ∈
Exit(X) is the R-vector space TxX, which is the tangent space at x of the stratum 
of X in which x ∈ X belongs. More generally, for X → K a proper constructible 
bundle, the resulting composite functor Exit(X) → cExit τ−→ cVectinj evaluates on 
x ∈ Exit(X) as the vertical tangent space Tfib

x X at x of the constructible bundle 
X → K.

(5) Dfined in §2.4 of [4] is the ∞-category

cMfdsfr
1 ,
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which is characterized by declaring, for K a stratfied space, the datum of a functor 
Exit(K) → cMfdsfr

1 to be that of a proper constructible bundle X → K equipped 
with a (fiberwise) solid 1-framing, which is a lift

cVectinj
/R1

Exit(X) cVectinj

forget

TfibX

.

Forgetting the solid 1-framing dfines a functor

cMfdsfr
1 −→ cBun .

So, an object M ∈ cMfdsfr
1 , termed a solidly 1-framed stratfied space, is a compact 

stratfied space X equipped with an injection TxX
ϕ 
↪→ Rn for each x ∈ X compatibly. 

In particular, for M = (X,ϕ) ∈ cMfdsfr
1 an object, the dimension of each stratum 

of X is bounded above by 1. Consequently, an object in cMfdsfr
1 is a finite disjoint 

union of oriented connected graphs and oriented circles.
The ∞-category cMfdsfr

1 admits finite products, which are given by disjoint unions 
of solidly 1-framed stratfied spaces. Keeping with Notation 3.4.6, for M,N ∈
cMfdsfr

1 , we denote their categorical product in cMfdsfr
1 as M �N ∈ cMfdsfr

1 .

(6) Constructed in §1.4 of [5] are surjective monomorphisms between ∞-categories,

Cylr : (cStratp.cbl)op −→ cBun ←− cStratref : Cylo ,

where cStratp.cbl is an ∞-category in which an object is a compact stratfied space and 
a morphism is a proper constructible bundle, and where cStratref is an ∞-category 
in which an object is a compact stratfied space and a morphism is a rfinement. 
Base-change of these monomorphisms along the forgetful functor cMfdsfr

n → cBun
dfine ∞-subcategories

cMfdsfr,cls
n , cMfdsfr,cr

n ⊂ cMfdsfr,idl
n ⊂ cMfdsfr

n ⊃ cMfdsfr,ref
n

consisting, respectively, of the images under Cylr of the proper constructible em
beddings, of the surjective proper constructible bundles, of the proper constructible 
bundles, and the image under Cylo of the rfinements.

(7) Introduced in §3.4 of [4] is the notion of a closed cover, which is a diagram in 
cBun that is the image under Cylr of (the opposite of) a finite colimit diagram in 
cStratp.emb ⊂ cStratp.cbl, the ∞-subcategory of proper constructible embeddings. A
closed cover in cMfdsfr

n is a diagram that lies over a closed cover in cBun. Closed 
covers are, in particular, limit diagrams.
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(8) Dfined in §3.5 of [4] is the full ∞-subcategory

cDisksfr
1 ⊂ cMfdsfr

1 ,

which is the smallest full ∞-subcategory that is closed under the formation of closed 
covers and that contains the closed disks D0 and D1 as they are endowed with their 
standard solid 1-framings. In particular, an object in cDisksfr

1 is a finite oriented 
graph. Consequently, Exit(D) is a finite poset of depth 1. For each object D ∈
cDisksfr

1 , assigning to each point d ∈ D the closure Dd of the stratum in D containing 
d ∈ D dfines a functor

Exit(D)op −→ (cDisksfr
1 )D/ , (d ∈ D) �→ (D cls−→ Dd) . (B.1.1)

The adjoint of this functor (Exit(D)�)op −→ cDisksfr
1 is a closed cover of D. Lastly, 

contractibility of the space AutcDisksfr
1
(D1) � Diff fr(D1) ultimately implies cDisksfr

1
is an ordinary category.

(9) Constructed in §3.8 of [4] is the cellular realization functor

〈−〉 : Δop −→ cDisksfr
1 ,

whose value on [p] is D0 if p = 0 and is D1 if p = 1 and for p > 1 is a rfinement of 
D1 with a total of p+ 1 0-dimensional strata two of which are the boundary points. 
Lemma 3.51 of [4] proves that the cellular realization functor 〈−〉 is fully faithful, 
and carries (the opposites of) Segal diagrams to closed covers.

Consider the restricted Yoneda functor along 〈−〉:

(cDisksfr
1 )op −→ PShv(Δ) , D �−→ HomcDisksfr

1
(D, 〈−〉) .

The above implies this functor is fully faithful, and factors through Cat(∞,1) ⊂
PShv(Δ),

C : (cDisksfr
1 )op −→ Cat(∞,1) ,

such that the diagram among ∞-categories

Δ

(cDiskcon,sfr
1 )op Cat(∞,1)

〈−〉
standard

C

(B.1.2)

canonically commutes.
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(10) Factorization homology is dfined in §4.3 of [4] as the composite functor

′ ∫
: Cat(∞,1)

〈−〉∗−−−→ Fun(cDisksfr
1 , S) ι!−→ Fun(cMfdsfr

1 , S) , C �−→
(
M �→

′ ∫
M

C
)
,

given by is right Kan extension along the cellular realization functor 〈−〉 followed by 
left Kan extension along the fully faithful inclusion cDisksfr

1
ι−→ cMfdsfr

1 . Explicitly, for 
C an (∞, 1)-category, and for M a solidly 1-framed stratfied space, the factorization 
homology of C over M is the colimit

′ ∫
M

C � colim
(
cDisksfr

1/M
forget−−−−→ cDisksfr

1
D �→HomCat(∞,1)

(
C(D),C

)
−−−−−−−−−−−−−−−−→ S

)
.

Notation B.1.1. In [4], factorization homology is simply denoted as 
∫
M

C, without the ′. 
In this section, we use the notation 

∫ ′
M

C for geometric factorization homology dfined 
in [4] in effort to distinguish it from the combinatorial version of factorization homology 
(Definition 4.1.1) dfined in the body of this work. The main theorem of this section 
(Theorem B.3.7) articulates a precise sense in which that these two versions of factoriza
tion homology agree. Therefore, this notation 

∫ ′
M

C, in place of 
∫
M

C, can be understood 
as temporary.

Definition B.1.2. Let M ∈ cMfdsfr
1 be a solidly 1-framed stratfied space. The full ∞

subcategory

Disk(M) ⊆ cDisksfr
1/M := cDisksfr

1 × 
cMfdsfr

1

cMfdsfr
1/M

consists of those objects (D → M) that are rfinements.

We record a technical result concerning the ∞-category cMfdsfr
1 .

Lemma B.1.3. For each object M ∈ cMfdsfr
1 , the canonical functor

Disk(M) −→ cDisksfr
1/M

is final.

Proof. We first reduce to the case in which M is connected. Suppose M ∼ = M− �M+ is 
a product in cMfdsfr

1 . Taking products in cMfdsfr
1 dfines the bottom horizontal functor 

in the solid diagram among ∞-categories:
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cDisk1(M−) × cDisk1(M+) cDisk1(M− �M+)

cDisksfr
1/M− × cDisksfr

1/M+
cDisksfr

1/M−�M+�

.

Rfinement morphisms in cMfdsfr
1 are rfinement morphisms of underlying stratfied 

spaces. Products in cMfdsfr
1 are disjoint unions of underlying stratfied spaces. So prod

ucts of rfinement morphisms are again rfinement morphisms. This observation supplies 
the filler, which is necessarily unique, in the above diagram among ∞-categories. Now, 
for (D ref−→ M−�M+) ∈ cDisk1(M−�M+), consider the active factors (D± → M±) of the 

composites D ref−→ M−�M+
pr−→ M±. In terms of stratfied spaces, D± = (M−�M+)∩M±

is the intersection of the rfinement D of M− � M+ with the union of components 
M± ⊆ M− �M+. In particular, the active morphisms (D± → M±) are, in fact, rfine
ments. The assignment (D → M− �M+) �→

(
(D− → M−), (D+ → M+)

)
is an inverse 

to the top horizontal dashed functor above. In particular, the top horizontal functor is 
final. Next, because cDisksfr

1 has finite products, the bottom horizontal functor is a right 
adjoint. Therefore, finality of the left vertical functor implies finality of the right vertical 
functor. Using that every object in cMfdsfr

1 is a finite product of connected objects, the 
lemma is implied by its case in which M is connected.

So assume M is connected. Then M ∈ cDisksfr
1 or M = S1. In the former case, the 

identity morphism determines a final object in both Disk(M) and cDisksfr
1/M , which is 

preserved by the inclusion. Thus, it remains to consider the case that M = S1.
Now by Quillen’s Theorem A, it suffices to show that for any object (D → S1) ∈

cDisksfr
1/S1 , the ∞-groupoid completion of the ∞-category

cDisk1(S1) × 
cDisksfr

1/S1

(cDisksfr
1/S1)(D→S1)/ (B.1.3)

of factorizations

D S1

D′ ref
(B.1.4)

(where D′ ∈ D) is contractible. Observe that in diagram (B.1.4), the closed-active fac
torization of the downwards morphism D → D′ must compose to the closed-active 

factorization D cls−→ D0
act−−→ S1 of the (chosen) horizontal morphism, since such factor

izations are unique. So taking closed-active factorizations dfines an equivalence between 
the category (B.1.3) and the category

cDisk1(S1) × 
cDisksfr

1/S1

(cDisksfr
1/S1)(D0→S1)/act

(B.1.5)
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of factorizations

D S1

D0 D′

cls act

act
ref

(where D′ ∈ D). Thus, it suffices to show that the groupoid completion of the category 
(B.1.5) is contractible.

To check that the groupoid completion |(B.1.5)| is contractible, it suffices to check 
that its homotopy groups vanish, and for this it suffices to show that any map to it from 
a sphere is freely nullhomotopic. We check this using the theory of stratfied spaces.

Observe first that any map

Sd−1 −→ |(B.1.5)| (B.1.6)

of ∞-groupoids is represented by a functor

Exit(Sd−1) X̃−→ (B.1.5)

of ∞-categories, where we abuse notation by also writing Sd−1 for the (d − 1)-sphere 
(thought of as a manifold) equipped with some stratfication (e.g. a triangulation).24
There exists a unique extension of this stratfication of Sd−1 to a stratfication of Dd

in which the interior is a single stratum; we likewise abuse notation by simply denoting 
this again by Dd.

Now, observe that the stratfied space C(Dd) -- the cone on Dd -- has the property that 
Exit(C(Dd)) � Exit(Sd−1)��: the cone point over Dd corresponds to the left cone point, 
while the interior of the disk corresponds to the right cone point. Hence, the functor X̃
is equivalent data to a functor

Exit(C(Dd)) � Exit(Sd−1)�� −→ M ,

equipped with certain additional structures and satisfying certain conditions, which 
amount to the following on the corresponding proper constructible bundle X ↓ C(Dd):

• its fiber over the cone point is identfied with D,

24 This can be seen through the model of (∞, 1)-categories as quasi-categories. There, the ∞-groupoid 
completion appearing as the codomain of (B.1.6) can be presented as Ex∞ applied to the quasi-category 
(B.1.5), which is the directed colimit of finite-fold iterations of Kan’s Ex functor. Meanwhile, the domain 
of (B.1.6) can be presented by the simplicial set Sd−1 associated to any triangulation of the (d− 1)-sphere. 
Using that such a triangulation is finite, the domain of (B.1.6) is a finite simplicial set. Therefore, such a 
map (B.1.6) factors through ExN (B.1.5). Using that sd and Ex are adjoint to one another, the morphism 
(B.1.6) is therefore presented by a map between quasi-categories sdN (Sd−1) → (B.1.5). Finally, note that 
the (nerve of the) poset sdN (Sd−1) is the exit-path (∞, 1)-category associated to the N-fold iterated bary
centric subdivision of the triangulated sphere Sd−1.
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• its fiber over the interior of Dd is identfied with S1,

• its restriction to any exiting path starting at the cone point is an active morphism, 
and

• its restriction to any exiting path from Sd−1 to the interior of Dd is a rfinement 
morphism.

We will use this proper constructible bundle to construct a nullhomotopy of the original 
map (B.1.6).

So, consider the link LinkD(X) of D in X; this admits a composite proper constructible 
bundle map

LinkD(X) −→ D ×X|Dd −→ D ×Dd .

We then form the ``Dd-parametrized reversed cylinder'' of this map, namely the pushout

D ×Dd Cylr
(
D ×Dd ←− LinkD(X)

)
D Y

(B.1.7)

of stratfied spaces, where the upper map is the injective constructible bundle given 
by the inclusion of the fiber over Δ{0} ⊂ Δ1 and the left map is the projection. By 
construction, the pushout square (B.1.7) maps to the defining pushout square

Δ{0} ×Dd Δ1 ×Dd

Δ{0} C(Dd)

by proper constructible bundles, and hence in particular we obtain a proper constructible 
bundle map Y ↓ C(Dd). Also by construction, we see that Y comes equipped with a 
canonical morphism Y → X of proper constructible bundles over C(Dd); unwinding the 
definitions, we see that the natural transformation

Exit(C(Dd)) M

Y

⇓

X

that this classfies determines a natural transformation
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Exit(Sd−1) (B.1.5)

Ỹ

⇓

X̃

to our originally chosen functor X̃ representing our chosen map (B.1.6).

We complete the proof by constructing a nullhomotopy of the map Sd−1 |Ỹ |−−→ |(B.1.5)|
of spaces. For this, observe first that the map LinkD(X) → X|Dd of stratfied spaces is a 
rfinement, so that the map Y → X is as well. We take the open cylinder Cylo(Y −→ X)
of the latter, and then take the pushout

D × Δ1 Cylo(Y −→ X)

D Z

(B.1.8)

of stratfied spaces, where the upper map is the inclusion of the fiber over Δ{0} × Δ1

(where Δ{0} ⊂ C(Dd) denotes the cone point) and the left map is the projection. By 
construction, the pushout square (B.1.8) maps to the pushout square

Δ{0} × Δ1 C(Dd) × Δ1

Δ{0} C(Dd × Δ1)

by proper constructible bundles, and hence in particular we obtain a proper constructible 
bundle map Z ↓ C(Dd × Δ1), which is classfied by a functor

Exit(C(Dd × Δ1)) −→ M . (B.1.9)

We now construct three maps C(Dd) → C(Dd × Δ1) of stratfied spaces:

• we write i0 for the inclusion of C(Dd × Δ{0}),

• we write i1 for any map that carries the interior to the interior, and whose restriction 
to C(Sd−1) ⊂ C(Dd) is the composite map

C(Sd−1) −→ C(D0) C(p) −→ C(Dd × Δ1)

in which D0 p−→ Dd × Δ1 selects an interior point, and

• we write i for any inclusion which extends the inclusion of C(Sd−1 ×Δ{0}) and takes 
the interior of Dd into the interior of C(Dd × Δ1).
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On exit-path ∞-categories, these evidently participate in a diagram

Exit(C(Dd)) Exit(C(Dd × Δ1))

Exit(i1)

⇑

Exit(i0)

Exit(i)

⇓

of natural transformations; unwinding the definitions, we see that this precomposes with 
the functor (B.1.9) to determine a span of diagrams

Exit(Sd−1) (B.1.5)

⇑
Ỹ

X̃

⇓

in which the upper functor is constant. This completes the proof. �
Lemma B.1.4. There is a canonical identfication between continuous monoids:

W op �  −−→ EndcMfdsfr
1
(S1) . (B.1.10)

Proof. The underlying stratfied space of S1 ∈ cMfdsfr
1 has a single stratum, which has 

dimension 1. It follows that each endomorphism S1 → S1 in cMfdsfr
1 is a idle morphism. 

By definition of idle morphisms, this is to say that the continuous monoid EndcMfdsfr
1
(S1)

is the opposite of that of framed proper fiber bundle maps S1 → S1 and composition be
tween such. This latter monoid is evidently equivalent with that of oriented self-covering 
maps of S1. Reporting the degree of a self-covering map therefore dfines a morphism 
between continuous monoids:

degree : EndcMfdsfr
1
(S1) −→ N× . (B.1.11)

For r ∈ N×, the fiber over r is thusly identfied as the space Covor
r (S1,S1) of degree r

oriented self-covers of S1. Precomposing by oriented diffeomorphisms, Diffor(S1)op
↷

Covr(S1,S1) is a torsor.
Now, the morphism (B.1.11) between continuous monoids admits a standard section: 

its value on r ∈ N× is the self-cover S1 z �→zr

−−−→ S1. Together with the rotation action 
T ↷ S1, the section extends as a morphism between continuous monoids

W op := N×
⋉ T −→ EndcMfdsfr

1
(S1) (B.1.12)
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over N×. For r ∈ N×, the fibers of this morphism over r is the map between spaces

T −→ Covor
r (S1,S1)

selecting the T -orbit (via precomposition) of the rotation action on the domain S1. Such 
rotation action dfines a map T → Diffor(S1). It is routine to verify that this map is 
an equivalence. It follows that the map (B.1.12) is an equivalence between continuous 
monoids. �
B.2. Comparing cDisksfr

1 and Quiv

The cellular realization functor Δop 〈−〉−−→ cDisksfr
1 restricts as a functor Δop

≤1
〈−〉−−→

cDiskidl,sfr
1 . Using §B.1(8), together with compactness of objects in cDisksfr

1 , the associated 
restricted Yoneda functor factors through presheaves of finite sets:

(cDiskidl,sfr
1 )op −→ diGraphsfin ⊂ PShv(Δ≤1) , D �→ ΓD := HomcDiskidl,sfr

1

(
D, 〈[•]〉

)
.

(B.2.1)

Lemma B.2.1. The functor (B.2.1) is an equivalence between categories. In particular, it 
carries (the opposites of) closed cover diagrams to colimit diagrams.

Proof. Right away, observe that the composite functor Δ≤1
〈−〉−−→ (cDiskidl,sfr

1 )op (B.2.1)−−−−→
diGraphsfin is identical with the Yoneda functor. Therefore, for each Γ ∈ diGraphsfin, the 
canonical functor (

(Δ≤1)/ΓD

)� −→ diGraphsfin (B.2.2)

is a colimit diagram.
Let D ∈ cDiskidl,sfr

1 . Consider the functor

Exit(D) −→ (Δ≤1)/ΓD
(B.2.3)

that is uniquely determined by declaring its value on the object d ∈ Exit(D) to be the 
canonical closed morphism from D to the closure of the stratum in which d ∈ D belongs, 
post-composed with the unique isomorphism

D
cls  −−−→ Dd

∼ = −−→ Di = 〈[i]〉 .

Observe that the functor (B.2.3) is fully faithful, with image consisting of those idle 
morphisms D → 〈[i]〉 that are, in fact, closed morphisms. In particular, the functor 
(B.2.3) is final. Next, notice that the functor (B.2.3) canonically fills the commutative 
diagram
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Exit(D)�
(
(Δ≤1)/ΓD

)�
(cDiskidl,sfr

1 )op diGraphsfin

(B.1.1)

(B.2.3)

(B.2.2)

(B.2.1)

.

By way of §B.1(9), it follows that the functor (B.2.1) carries the (opposite of the) limit 
diagram (Exit(D)op)� → cDiskidl,sfr

1 to a colimit diagram.
We now prove the functor (B.2.1) is fully faithful. Let D,E ∈ cDiskidl,sfr

1 . We must 
prove the map between sets,

HomcDiskidl,sfr
1

(D,E) (B.2.1)−−−−−→ HomdiGraphsfin(ΓE ,ΓD) , (B.2.4)

is a bijection. Via the functor Exit(E)� → (cDiskidl,sfr
1 )op of §B.1(9), this map fits into a 

commutative diagram among sets

HomcDiskidl,sfr
1

(D,E) HomdiGraphsfin(ΓE ,ΓD)

lim
e∈Exit(E)

HomcDiskidl,sfr
1

(D,Ee) lim
e∈Exit(E)

HomdiGraphsfin(ΓEe
,ΓD)

(B.2.1)

(B.2.1)

.

Because Exit(E)� → (cDiskidl,sfr
1 )op is a colimit diagram, the left vertical map is a bijec

tion. Established at the start of this proof is that the right vertical map is a bijection as 
well. Therefore, the upper horizontal map is a bijection if and only if the lower horizontal 
map is a bijection. For each e ∈ Exit(E), there is an isomorphism Ee

∼ = Di ∼ = 〈[i]〉 for 
i = 0, 1. Therefore, the lower horizontal map is a bijection provided the map (B.2.4) is 
a bijection in the cases that E ∼ = 〈[i]〉 for i = 0, 1. In the case that E ∼ = 〈[i]〉, bijectivity 
of (B.2.4) is an instance of the Yoneda lemma.

We now prove the functor (B.2.1) is surjective on objects, which will complete this 
proof. Let Γ ∈ diGraphsfin be a finite directed graph. Its geometric realization |Γ| is 
equipped with the structure of a 1-dimensional CW complex. Regard |Γ| as a strati
fied space, in which a 0-dimensional stratum is a 0-cell of this CW structure, and a 
1-dimensional stratum is the interior of a 1-cell. The direction of the edges of Γ supplies 
this stratfied space with the structure of a solid 1-framing. In this way, we regard |Γ|
as a solidly 1-framed stratfied space: |Γ| ∈ cMfdsfr

1 . Furthermore, as each stratum is a 
Euclidean space, |Γ| ∈ cDisksfr

1 ⊂ cMfdsfr
1 . Consider the morphism Γ → Γ|Γ| in diGraphsfin

given as follows. It is the natural transformation Γ([•]) → HomcDiskidl,sfr
1 )

(
|Γ|, 〈[•]〉

)
whose 

value on a vertex v ∈ Γ([0]) is the canonical closed morphism |Γ| cls−→ {v} ∼ = 〈[0]〉, and 
whose value on a (possibly degenerate) edge e ∈ Γ([1]) is the canonical idle morphism 

|Γ| idl−→ |Γ|e !−→ D1 ∼ = 〈[1]〉. By inspection, this morphism Γ → Γ|Γ| in diGraphsfin is an 
isomorphism. Therefore, the functor (B.2.1) is surjective on objects. �
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Lemma B.2.2. The diagram among ∞-categories

(cDiskcls.cr,sfr
1 )op (cDisksfr

1 )op

diGraphsfin Cat(∞,1)

(B.2.1)

inclusion

C

Free

canonically commutes. In particular, for D ∈ cDisksfr
1 , the value C(D) � Free(ΓD) is the 

free category on the finite directed graph ΓD.

Proof. Consider the natural transformation (B.2.1) →
(
C ◦ inclusion

)
|Δop

≤1

between 

functors from (cDiskcls.cr,sfr
1 )op to PShv(Δ≤1) given by the canonical monomorphism

HomcDiskcls.cr,sfr
1

(
−, 〈[•]〉

)
↪→ HomcDisksfr

1

(
−, 〈[•]〉

)
.

By definition of C, and using that Free is (the restriction of) a left adjoint, this supplies a 
natural transformation Free ◦ (B.2.1) → C◦ inclusion. We will show it is by equivalences 
in Cat(∞,1).

Let D ∈ cDiskcls.cr,sfr
1 . Using that the functor Cat(∞,1) ↪→ PShv(Δ) restriction−−−−−−−→

PShv(Δ≤1) is conservative, we need only show the map between spaces

HomCat(∞,1)

(
[p],Free(ΓD)

)
−→ HomCat(∞,1)

(
[p],C(D)

)
:= HomcDisksfr

1

(
D, 〈[p]〉

)
(B.2.5)

is an equivalence for p = 0, 1. Note that every morphism D → D0 = 〈[0]〉 is a closed 
morphism, which is Cylr applied to an inclusion D0 ↪→ D of a 0-dimensional stratum 
of D. This, together with inspection of the space of objects of the values of Free from 
Corollary 1.2.11, reveals that this map (B.2.5) is an equivalence in the case that p = 0.

It remains to show (B.2.5) is an equivalence in the case that p = 1. Note that 〈[1]〉 = D1

is the solidly 1-framed 1-disk. Let D f−→ D1 be a morphism in cDisksfr
1 . Given the p = 0

case above, we can assume this morphism does not factor through D0 !−→ D1, the unique 
morphism from the 0-disk. By inspection of the spaces of morphisms of the values of 
Free from Corollary 1.2.11, we must show the following:

Claim. The morphism f uniquely factors

D
Cylr(π)−−−−→ L

Cylo(γ)−−−−→ D1

in cDisksfr
1 in which L

γ−→ D1 is a solidly 1-framed rfinement map between solidly 
1-framed stratfied spaces and D π←− L is a solidly 1-framed proper constructible 
bundle map between solidly 1-framed stratfied spaces with the property that π
carries 1-dimensional strata to 1-dimensional strata.
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We first establish the existence of such a factorization. By definition of the ∞-category 
cDisksfr

1 , the morphism f is represented by a proper constructible bundle X → Δ1

equipped with a fiberwise solid 1-framing, together with identfications as solidly 1
framed stratfied spaces of the fibers: D ∼ = X|Δ{0} and D1 ∼ = X|Δ{1} . Consider the link 
L′ := LinkX|Δ{0} (X). By construction, it fits into a span among stratfied spaces

D ∼ = X|Δ{0}
π′

←−− L′ γ′

−−→ X|Δ{1} ∼ = D1 ,

in which γ′ is a rfinement map and π′ is a proper constructible bundle map. Consider 
the solid 1-framing on L′ pulled back along γ′ from the given solid 1-framing of D1. 
The fiberwise solid 1-framing on X → Δ1 supplies a solid 1-framing structure on π′, 
which is to say an identfication, for each 1-dimensional stratum Dα ⊂ D, of the solid 
1-framing pulled back along π′ from Dα to that on each (necessarily 1-dimensional) 
stratum of L′ over Dα. Next, consider the stratfied space L := L′/ ∼ obtained from 
L′ by collapsing each connected component of a preimage by π′ of a 0-dimensional 
stratum in D. By construction, L inherits a solid 1-framing from that of L′. Also, there 
remains a rfinement morphism L

γ−→ D1 and the map π′ factors through L as a proper 
constructible bundle: π′ : L′ quotient−−−−−→ L

π−→ D, both of which retain the structure of being 
solidly 1-framed. This supplies the existence of the sought factorization.

It remains to establish the uniqueness of such a factorization. Let D x−→ K
y−→ D1 be 

another such factorization. We must show there is a unique isomorphism K h−→ L together 
with identfications h◦x � Cylr(π) and y � Cylo(γ)◦h. Because Δop 〈−〉−−→ cDisksfr

1 is fully 
faithful, and Δop is gaunt, if such an isomorphism h exists then it is unique. Because 
cDisksfr

1 is an ordinary category, if such identfications h◦x � Cylr(π) and y � Cylo(γ)◦h
exist then they are unique.

Now, the origin 0 ∈ D1 can be regarded as an object 0 ∈ Exit(D1) � Exit(X|Δ{1}) ⊂
Exit(X) in the exit-path ∞-category of the total space of the proper constructible bundle 
X → Δ1 underlying the given morphism f . With respect to the fully faithful functor 
Exit(D) � Exit(X|Δ{0}) ↪→ Exit(X), consider the ∞-overcategory Exit(D)/0. The condi

tions on each of the factorizations D x−→ K
y−→ D1 and D

Cylr(π)−−−−→ L
Cylo(γ)−−−−→ D1 are such 

that each of the resulting canonical functors over Exit(D),

Exit
(
〈[q]〉

)
� Exit(K) −→ Exit(D)/0 and Exit

(
〈[p]〉

)
� Exit(L) −→ Exit(D)/0 ,

are equivalences. Consequently, p = q. Because the cellular realization functor Δop 〈−〉−−→
cDisksfr

1 is fully faithful, there exists a unique isomorphism K h−→ L in cDisksfr
1 , which lies 

over D1 (ie, y = Cylo(γ) ◦h). Finally, because the equivalences Exit(K) �−→ Exit(D)/0
� ←−

Exit(L) lie over Exit(D), it follows from Lemma B.2.1 that h ◦ x = Cylr(π). �
Corollary B.2.3. The functor (cDisksfr

1 )op C−→ fCat(∞,1) carries (the opposites of) closed 
covers to colimit diagrams.
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Proof. Observe that the functor (B.2.1) carries (the opposites of) closed covers to 
pushouts in diGraphsfin ⊂ PShv(Δ≤1). The result follows from the fact that the functor 
Free, being a left adjoint, preserves colimits. �
Proposition B.2.4. There is a canonical identfication

cDisksfr
1

�  −−→ Quivop

between (∞, 1)-categories under Δop.

Proof. By Definition 1.2.4, the ∞-category Quiv ⊂ Cat(∞,1) is a full ∞-subcategory 

on the image of the functor diGraphsfin Free−−→ Cat(∞,1). By definition, the inclusion 
cDiskcls.cr,sfr

1 ↪→ cDisksfr
1 is surjective on objects. Therefore, Lemma B.2.2 implies Quiv is 

precisely the full ∞-subcategory of Cat(∞,1) on the image of the functor (cDisksfr
1 )op C−→

Cat(∞,1). This supplies a functor,

C : cDisksfr
1 −→ Quivop ,

which is surjective on objects. Lemma 1.2.8 and commutativity of (B.1.2) together imply 
this functor is canonically under Δop. So the proof is complete upon showing this functor 
(cDisksfr

1 )op C−→ Cat(∞,1) is fully faithful.
So let D,E ∈ cDisksfr

1 . We seek to show the map

HomcDisksfr
1
(D,E) C  −−→ HomCat(∞,1)

(
C(E),C(D)

)
(B.2.6)

is an equivalence between spaces. Using the limit diagram E(E) → (cDisksfr
1 )E/ of (B.1.1), 

this map (B.2.6) fits into a commutative diagram among spaces:

HomcDisksfr
1
(D,E) HomCat(∞,1)

(
C(E),C(D)

)

lim
e∈Exit(E)op

HomcDisksfr
1
(D,Ee) lim

e∈Exit(E)op
HomCat(∞,1)

(
C(Ee),C(D)

)(B.1.1)

C

C

.

Because closed covers in cDisksfr
1 are, in particular, limit diagrams, the vertical map on 

the left is an equivalence. Through Corollary B.2.3, the fact that the diagram (B.1.1) is 
a limit diagram also implies the vertical map on the right is an equivalence. Therefore, 
because each value of the diagram E(E) → (cDisksfr

1 )E/ of (B.1.1) is 〈[p]〉 for p = 0 or 
p = 1, the horizontal map on the top is an equivalence provided it is in the case that 
E � 〈[p]〉 for some p ≥ 0.

So let p ≥ 0 and assume E = 〈[p]〉. In this case, the map (B.2.6) is identical with the 
map
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C(D)([p]) := HomcDisksfr
1
(D, 〈[p]〉) C−→ HomCat(∞,1)

(
C(〈[p]〉),C(D)

)
.

An instance of the commutativity of the diagram of (B.1.2) implies this map is an 
equivalence, as desired. �
Observation B.2.5. Through the equivalence of Proposition B.2.4, the opposite of the full 
∞-subcategory Λ̃ ⊂ Quiv of Observation 2.2.2 is identfied with the full ∞-subcategory of 
cDisksfr

1 consisting of those objects whose underlying stratfied space admits a rfinement 
morphism to a circle.

B.3. Comparing cMfdsfr
1 and M

Consider the full ∞-subcategories

cDiskcon,sfr
1 ⊂ cDisksfr

1 and cMfdcon,sfr
1 ⊂ cMfdsfr

1

respectively consisting of those objects whose underlying stratfied space is connected. 
Recall the full ∞-subcategories Quivcon ⊂ Quiv and Mcon ⊂ M from Notation 3.2.1 and 
Definition 3.3.1/Observation 3.4.5. Note the factorizations:

Δ ρ  −−→ Quivcon ⊂ Quiv and Δop 〈−〉  −−−→ cDiskcon,sfr
1 ⊂ cDisksfr

1 .

Proposition B.2.4 evidently restricts as an equivalence

cDiskcon,sfr
1

�  −−→ (Quivcon)op (B.3.1)

between ∞-categories under Δop.
Consider the full ∞-subcategory

A := Arref(cMfdcon,sfr
1 )|cDiskcon,sfr

1
|BEnd

cMfdcon,sfr
1 (S1)

⊂ Ar(cMfdcon,sfr
1 )

consisting of those arrows in cMfdcon,sfr
1 that are rfinements to a circle from an object 

in cDiskcon,sfr
1 ⊂ cMfdcon,sfr

1 . Evaluation at source dfines a functor

A −→ cDiskcon,sfr
1 (B.3.2)

to the full ∞-subcategory cDiskcon,sfr
1 ⊂ cMfdcon,sfr

1 ; evaluation at target dfines a functor

A −→ BEndcMfdcon,sfr
1

(S1) (B.3.3)

to the full ∞-subcategory of cMfdcon,sfr
1 consisting of the circle S1 ∈ cMfdcon,sfr

1 . The 
definition of the parametrized join as a colimit therefore supplies a canonical functor

cDiskcon,sfr
1 ★

A 
BEndcMfdcon,sfr

1
(S1) −→ cMfdcon,sfr

1 . (B.3.4)
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Lemma B.3.1. The functor (B.3.3) is a coCartesian fibration.

Proof. To see that the functor (B.3.3) is a locally coCartesian fibration, we must show 
each solid diagram in cMfdcon,sfr

1 ,

D E

S1 S1

ref ref

π

,

admits an initial filler in which the vertical morphism on the right is a rfinement, as 
indicated. Now, the endomorhpism π is necessarily a idle morphism. Via Definition 1.24 
of [4], the space of idle morphisms S1 → S1 in cMfdcon,sfr

1 is canonically identfied as 
the space of oriented covering maps S1 ← S1 (in fact, which reverses the source and 
target, as indicated). A sought filler is then supplied via pullback of the downward 
disk-refinements along the covering map corresponding to π. The universal property of 
pullbacks implies this filler is initial among all such fillers. We conclude that (B.3.3) is a 
locally coCartesian fibration. Finally, because taking pullback is associative, such locally 
coCartesian morphisms are closed under composition. Therefore, the functor (B.3.3) is 
a coCartesian fibration, as asserted. �
Lemma B.3.2. The functor (B.3.4) is an equivalence between ∞-categories.

Proof. Observe that each object in cMfdcon,sfr
1 is either equivalent with S1 or an object 

in cDiskcon,sfr
1 ⊂ cMfdcon,sfr

1 . Therefore, the functor (B.3.4) is surjective on objects.
It remains to show (B.3.4) is fully faithful. Clearly, the restriction of (B.3.4) to 

cDiskcon,sfr
1 and to BEndcMfdcon,sfr

1
(S1) is fully faithful. Next, observe that 

HomcMfdsfr
1
(S1, D) = ∅ for each D ∈ cDisksfr

1 ⊂ cMfdsfr
1 . Indeed, for X → Δ1 a proper 

constructible bundle, if its fiber over Δ{0} ⊂ Δ1 has no 0-dimensional strata, then its 
fiber over any point in Δ1 has no 0-dimensional strata. Therefore, since S1 has no 0
dimensional strata while each object D ∈ cDiskcon,sfr

1 has at least one 0-dimensional 
stratum, there are no proper constructible bundles X → Δ1 for which X|Δ{0} ∼ = S1 and 

X|Δ{1} ∈ cDiskcon,sfr
1 . It remains to show that, for D ∈ cDiskcon,sfr

1 , the map between 
spaces of morphisms induced by (B.3.4),

HomcDiskcon,sfr
1 ★

A 
BEnd

cMfdcon,sfr
1

(S1)

(
D,S1

)
−→ HomcMfdcon,sfr

1
(D,S1) , (B.3.5)

is an equivalence. By construction of the parametrized join, the domain of this 
map (B.3.5) is the ∞-groupoid-completion of the ∞-overundercategory A

D/
/S1 . 

Lemma B.3.1 implies the canonical functor (A|S1)D/ → A
D/
/S1 is a right adjoint. There

fore, the map (B.3.5) is an equivalence provided the resulting composite functor

(A|S1)D/ −→ A
D/
/S1 −→ HomcMfdcon,sfr

1
(D,S1) ,



D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 111

witnesses an ∞-groupoid-completion. Equivalently, for each point (D f−→ S1) in the 
codomain of this functor, we must verify that the fiber 

(
(A|S1)D/

)
|f has contractible 

∞-groupoid-completion. Now, recognize this ∞-category 
(
(A|S1)D/

)
|f � Disk(S1)f/ as 

the ∞-undercategory with respect to the canonical functor Disk(S1) → cDisksfr
1 /S1 . 

Through Quillen’s Theorem A, Lemma B.1.3 ensures that this ∞-undercategory indeed 
has contractible classifying space. �
Lemma B.3.3. The functor (B.3.2) is fully faithful. Its image consists of those objects 
D ∈ cDiskcon,sfr

1 that admit a rfinement morphism D → S1 in cMfdcon,sfr
1 .

Proof. Such objects are clearly all of the objects in the image of (B.3.2). It remains to 
show this functor is fully faithful. We first show the induced map Obj(A) → Obj(cDisksfr

1 )
is a monomorphism.

Let D ∈ cDisksfr
1 be in the image of (B.3.2). Using that rfinement morphisms in 

cMfdsfr
1 are, in particular, homeomorphisms between underlying stratfied spaces, 

observe that the post-composition witnesses the space HomcMfdref,sfr
1

(D,S1) as 

an AutcMfdcon,sfr
1

(S1)-torsor. Therefore, there is a unique object (D ref−→ D̂) ∈(
BEndcMfdsfr

1
(S1)

)D/ref

⊂ (cMfdcon,sfr
1 )D/ref . It follows that Obj(A) → Obj(cDisksfr

1 )
is a monomorphism.

Now, let D f−→ E be a morphism in cDisksfr
1 between two objects that are in the im

age of (B.3.2). To show (B.3.2) is fully faithful, we must show there is a unique lift 
along (B.3.2) of this morphism to A. Using that Obj(A) → Obj(cDisksfr

1 ) is a monomor
phism, this is to establish a unique filler in the diagram in cMfdsfr

1 :

D E

D̂ Ê

f

ref ref . (B.3.6)

Using that rfinement morphisms in cMfdsfr
1 are, in particular, homeomorphisms between 

underlying stratfied spaces, any such filler must be unique. So we need only ensure such 

a filler exists. By definition of cMfdsfr
1 , the composite morphism D

f−→ E
ref−→ Ê is 

implemented by a proper constructible bundle X → Δ1 with a fiberwise solid 1-framing, 
together with identfications X|Δ{0} � D and X|Δ{1} � Ê in cMfdsfr

1 . Consider the 
link L := LinkX|Δ{0} (X). By construction, it fits into a span among stratfied spaces 
X|Δ{0}

π←− L γ−→ X|Δ{1} in which π is a proper constructible bundle and γ is a rfinement. 
Pulling back the solid 1-framing of X|Δ{1} � Ê along γ supplies a solid 1-framing on L
for which the maps π and γ are solidly 1-framed, and as so they factor the composite 

D
f−→ E

ref−→ Ê in cMfdsfr
1 :



112 D. Ayala et al. / Advances in Mathematics 466 (2025) 110170 

D E

L Ê

f

Cylr(π) ref

Cylo(γ)

.

Using that π respects solid 1-framings, for each 0-dimensional stratum d ∈ D(0) ⊂ D, 
each connected component of the constructible closed subspace π−1(d) ⊂ L admits a 
framed rfinement onto D0 or D1. Collapsing to a point each such component that 
rfines onto D1 results in a solidly 1-framed stratfied space L′, still fitting into a span 

among solidly 1-framed stratfied spaces D π′
←− L′ γ′

−→ Ê in which γ′ is a solidly 1-framed 
rfinement and π′ is a solidly 1-framed proper constructible bundle with the feature that 
i-dimensional strata are carried to i-dimensional strata. By construction, these data fit 
into a diagram in cMfdsfr

1 :

D E

L′ Ê

f

Cylr(π′) ref

Cylo(γ′)

.

Using that Obj(A) → Obj(cDisksfr
1 ) is a monomorphism, there is an identfication L̂′ �−→ Ê

in cMfdsfr
1 under L′ from the underlying framed 1-manifold of L′. Now, being a con

structible bundle, the map π′ restricts over each 1-dimensional stratum of D as a framed 
covering space. Because π′ is solidly 1-framed, it follows that it restricts over a neighbor
hood of each 0-dimensional stratum as a solidly 1-framed local homeomorphism. Since 
π′ is proper, we conclude that π′ is a solidly 1-framed covering space. In other words, π′

is the base-change of a framed covering space, necessarily from L̂′ to D̂: there is a filler 
among solidly 1-framed stratfied spaces

L′ L̂′

D D̂

π′

ref

π̂′

ref

witnessing a pullback. The filler in this diagram among solidly 1-framed stratfied spaces 
determines a filler in the diagram in cMfdsfr

1 :

D E

L′

D̂ L̂′ Ê

f

ref

Cylr(π ′)

ref

ref
Cylo(γ ′)

Cylr(π̂′)

.
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The desired filler in (B.3.6) is the bottom horizontal composite. �
Lemma B.3.4. The identfication (B.3.1) extends as an identfication

cMfdcon,sfr
1 � Mcon

between (∞, 1)-categories under Δop.

Proof. We explain the diagram among ∞-categories:

cDiskcon,sfr
1 A BEndcMfdcon,sfr

1
(S1)

cDiskcon,sfr
1 A|BW op BW op

(Quivcon)op Λ̃op BW op

evtevs
(B.3.2)

=

∼

(B.3.1)
∼

∼ ∼ (B.1.10)

=

(2.5.7)
localizationinclusion

. (B.3.7)

The top-right square is dfined as a pullback. Lemma B.1.4 states that the func
tor (B.1.10) is an equivalence, which implies the upward functor A|BW op → A is 
an equivalence. As noted earlier in the body, Proposition B.2.4 implies the functor 
cDiskcon,sfr

1
(B.3.1)−−−−→ (Quivcon)op is an equivalence. Lemma B.3.3 thereafter implies the 

composite functor A → cDiskcon,sfr
1

(B.3.1)−−−−→ (Quivcon)op is fully faithful. Lemma B.3.3
implies the image of this fully faithful composite functor is Λ̃ ⊂ Quivcon the cyclically 
finite directed graphs. This establishes the equivalence A|BW op

�−→ (Λ̃op)�, as indicated. 
Finally, inspecting the construction of the morphism N×

⋉T = W op �−→ EndcMfdcon,sfr
1

(S1)
over N× and under T reveals that the bottom right square canonically commutes.

Reading (B.3.7) as a (vertical) span by equivalences of (horizontal) spans, we obtain 
equivalences among parametrized joins as in this diagram among ∞-categories:

cDiskcon,sfr
1 ★ 

A|BW op
BW op cDiskcon,sfr

1 ★
A BEnd

cMfdcon,sfr
1

(S1) cMfdcon,sfr
1

(Quivcon)op ★ 
Λ̃op

BW op Mcon

∼

∼

(B.3.4)
�

∼

∼
(3.3.4)

.

Proposition 3.3.9 states that the functor (3.3.4) is an equivalence. Lemma B.3.2 states 
that the functor (B.3.4) is an equivalence. We conclude a unique dashed filler, which is 
necessarily an equivalence.

To finish the identfication cMfdcon,sfr
1 � Mcon indeed lies under Δop because, by con

struction, it extends the identfication cDiskcon,sfr
1 � (Quivcon)op of Proposition B.2.4. �
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Proposition B.3.5. The identfication of Proposition B.2.4 extends as an identfication

cMfdsfr
1 � M

between (∞, 1)-categories under Δop.

Proof. Corollary 3.5.4 states that M is freely generated from its full ∞-subcategory 
Mcon ⊂ M via categorical products. Using that coproducts of underlying stratfied spaces 
implements products in cMfdsfr

1 , the full ∞-subcategory cMfdcon,sfr
1 ⊂ cMfdsfr

1 freely 
generates via categorical products. The result is therefore implied by Lemma B.3.4. �
Notation B.3.6. Denote the equivalence of Proposition B.3.5 as

(−) : cMfdsfr
1 −→ M , M �−→ M .

We can now articulate, and prove, the sense in which combinatorial factorization 
homology agrees with factorization homology.

Theorem B.3.7. Let X be an ∞-category that admits finite limits and geometric real
izations such that, for each X ∈ X, the functor X × − : X → X preserves geometric 
realizations. The diagram among ∞-categories,

fCat1[X]

Fun(cMfdsfr
1 ,X) Fun(M,X)

∫∫ ′

(−)∗
∼

,

canonically commutes. In particular, for each category-object C in X, and each solidly 
1-framed stratfied space M , there is a canonical identfication in X:

′ ∫
M

C � 
∫
M

C .

Proof. Proposition B.2.4 and Proposition B.3.5 supply a commutative diagram among 
∞-categories:

Δop Quivop M

Δop cDisksfr
1 cMfdsfr

1

ρ δ

〈−〉

=

ι

(−) (−) ,
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in which the vertical functors are equivalences. Applying Fun(−,X) to this diagram gives 
a commutative diagram among ∞-categories

Fun(Δop,X) Fun(Quivop,X) Fun(M,X)

Fun(Δop,X) Fun(cDisksfr
1 ,X) Fun(cMfdsfr

1 ,X)

ρ∗
δ∗

〈−〉∗

=

ι∗

(−)∗ (−)∗

in which the vertical functors are equivalences. Taking right adjoints of the left horizontal 
functors, and left adjoints of the right horizontal functors, results in a commutative 
diagram among ∞-categories

Fun(Δop,X) Fun(Quivop,X) Fun(M,X)

Fun(Δop,X) Fun(cDisksfr
1 ,X) Fun(cMfdsfr

1 ,X)

ρ∗ δ!

〈−〉∗

=

ι!

(−)∗ (−)∗

in which the vertical functors are equivalences. The result follows by Definition 4.1.1 of 
the functor 

∫
and by the definition of the functor 

∫ ′. �
Recall from Terminology 3.7.2 the notion of an excision site. The next explains how 

excision for factorization homology works intrinsic to cMfdsfr
1 .

Proposition B.3.8. Through Proposition B.3.5, an excision site (Γ̃, S, ϕ,M ′) corresponds 
to a pair (M,S) in which M ∈ cMfdsfr

1 and S ⊂ M (1) is a finite subset of its 1
dimensional strata. Furthermore, such a pair (M,S) determines a simplicial object

Δop M•−−−→ cMfdsfr
1

whose colimit |M•| � M , and such that each canonical morphism Mp → M is a re
finement. Moreover, for C ∈ fCat1[X] a category-object in X, the canonical morphism in 
X, ∣∣∣∣∣∣

∫
M•

C

∣∣∣∣∣∣ �  −−→
∫
M

C ,

is an equivalence.
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Proof. Let (Γ̃, S, ϕ,M ′) be an excision site in the sense of Terminology 3.7.2. Take M :=
colim

(
Δop M•−−→ M

)
∈ M as in Lemma 3.7.3. Through Proposition B.3.5, this object in 

M corresponds to an object M ∈ cMfdsfr
1 , which we give the same notation. The object 

Γ0�M ′ ∈ M corresponds to an object M̃ ∈ cMfdsfr
1 , which is equipped with a rfinement 

M̃ → M . The site of this rfinement is a finite subset S ⊂ M . In this way, an excision 
site in the sense of Terminology 3.7.2 determines a pair (M,S) as in the statement of 
the proposition.

Next, let (M,S) be as in the statement of the proposition. Consider the coarsest 
rfinement M̃ r−−→ M such that there is containment r−1S ⊂ M̃ (0) in the subset 
of 0-dimensional strata. Because rfinements are homeomorphisms between underlying 
topological spaces, the map r−1S

r|−→ S is a bijection. So let us simply denote r−1S = S. 
Now, consider the blow-up BlS(M̃) of M̃ at S -- it is a stratfied space with boundary 
LinkS(M̃) ⊂ BlS(M̃), which fits into a pushout diagram among stratfied spaces,

LinkS(M̃) BlS(M̃)

S M̃,

in which the downward maps are proper constructible bundles. As so, BlS(M̃) inherits 
a solid 1-framing. Observe LinkS(M̃) ∼ = (S0)�S is a disjoint union of S0, one cofactor 
for each element in S. Let D ⊂ BlS(M̃) be the union of those connected components 
that contain LinkS(M̃). By design, each stratum of D contains a 0-dimensional stra
tum in its closure. Therefore D ∈ cDisksfr

1 . Let Γ̃ ∈ Quiv correspond to D ∈ cDisksfr
1

through Proposition B.2.4. Let (S0)�S ϕ−→ Γ̃ correspond through Observation 4.1.2 to 
(S0)�S ∼ = LinkS(M̃) ↪→ BlS(M̃). Let M ′ ∈ M correspond to BlS(M̃) \ D ∈ cMfdsfr

1
through Proposition B.3.5. Then (Γ̃, S, ϕ,M ′) is an excision site.

Observe that the composite association (M,S) �→ (Γ̃, S, ϕ,M ′) �→ (M,S) is the iden
tity. Observe that the composite association (Γ̃, S, ϕ,M ′) �→ (M,S) �→ (Γ̃′, S, ϕ,M ′′) is 
not necessarily the identity. However, the simplicial objects Δop → M determined by 
(Γ̃, S, ϕ,M ′) is identical with that determined by (Γ̃′, S, ϕ,M ′′). This justfies the first 
statement of the proposition.

The second statement follows through Proposition B.3.5 from Lemma 3.7.3. The third 
statement follows through Theorem B.3.7 from Proposition 4.2.2. �
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