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$1. INTRODUCTION 

WITH RESPECT 

MY MAIN purpose is to show that each generalized homology theory h* determines an 
h,-localization jiinctor, E: Ho + Ho and q : 1 + E, where Ho is the pointed homotopy 
category of C W complexes. This localization is characterized by the universal property that 
qx : X --, EX is the terminal h,-homology equivalence going out of E, i.e. 

(i) qx: X-+ EX induces h,(X) x h,(EX), and 

(ii) for any map,f: X + YE Ho inducing h,(X) = h,( Y), there is a unique map I : Y + 
EXE Howithrf= qx. 

The plausibility and desirability of such a functor E were shown by Adams [2]. To 
obtain an existence proof (§3), I will construct an appropriate localization functor on the 
category of simplicial sets and will show that it induces the desired h,-localization functor 
on Ho. The backbone of this proof is in an appendix ($10~$12), where I introduce a version 
of simplicial homotopy theory in which the h,-equivalences play the role of weak homotopy 
equivalences. I show that this theory fits into Quillen’s framework of homotopical algebra 

rm [I 11. 
Special cases of the h,-localization, X + EX, are familiar. If X is simply connected 

(or nilpotent) and h, = H*( ; Z[J-‘1) where Z[J-‘1 denotes a subring of the rationals,then 
Xi EX is the usual Z[J-‘]-localization with II, EX %Z[J-l] 0 II, X. This case was 
discovered by Barratt-Moore (co 1957, unpublished) and has subsequently been discovered 
and/or studied by various others, e.g. [4], [5], [7], [9], [I 11, [14], [15]. If Xis simply connected 
(or nilpotent) and h, = H*( ; Z,) with p prime, then X + EX is the p-completion [5, p. 1861 
with IT, EX = Ext(ZpOo II, X) @ Hom(Z,,, II,_, X). If in addition X is of finite type, then 
X + EX is the pprofinite completion [12], [14] with II, EX given by the p-profinite com- 
pletion of II, X. In [5] we gave various other examples of H,( ; R)-localizations where 
R = Z, or R = Z[J-‘1, and we constructed an ” R-completion ” X -+ R, X which coincides 
with the H,( ; R)-localization provided X is “ R-good “. 

A major part of this paper is devoted to the study of H,( ; R)-local spaces, i.e. spaces 
X E Ho satisfying the equivalent conditions : 

(i) X-_ EYfor some YEHO 

(ii) qx : X h EX. 
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For R = Z[J- ‘1 and R = 2,) I characterize ($5) the H,( ; R)-local spaces in terms of their 
homotopy groups. To do this, I introduce ($5) the HR-localization for groups and the 
HZ-localization for H-modules; and I prove that X E Ho is H,( ; R)-local if and only if the 
groups II, X are HR-local and the II,X-modules II, X are HZ-local for n 2 2. There is a 
step by step procedure (9.4) for constructing H,( ; R)-localizations of CW complexes by 
attaching cells so as to localize homotopy groups. 

This paper is organized as follows. $2 contains categorical preliminaries on localization, 
$3 contains the existence proof for h,-localizations, $4 contains a determination of the 
h,-localization for nilpotent spaces where h, is any connective homology theory, $5 contains 
the algebraic characterization of H,( ; R)-local spaces, 96 contains constructions of 
homology equivalences, $7 concerns the HR-localization of groups, $8 concerns the HZ- 
localization of IT-modules, 99 contains proofs and a step by step construction of H,( ; R)- 
localizations. There is a crucial appendix ($10, $11 and 912) which introduces “ simplicial 
homotopy theory with respect to h, ” and contains a key technical result (11.1) used repeated- 
ly in this paper. 

I am particularly indebted to Frank Adams, Emmanuel Dror, and Dan Kan for their 
ideas and encouragement. 

$2. LOCALIZATIONS IN CATEGORIES 

I will explain some categorical notions which will be used repeatedly in this paper. In 
particular, I will show how a class W of morphisms in a category % can determine a “W- 
localization ” functor E : %? + V. The reader should keep in mind the easy example where %’ 
is the category of abelian groups and W consists of all M + NE V with Q Q M + Q @ N 
an isomorphism. In this case E(M) % Q @ M. 

2.1. -Ilr-Localizations. Given a morphism class W in a category V, an object D E % 
is YT-focal if each w : X+ Y in W induces a bijection Hom( Y, D) % Hom(X, D). A W- 
localization of an object A E % is a morphism w: A + D with D W-local and w E W. Any 
two W-localizations of A E %? are naturally equivalent: indeed, a W-localization 
w : A + D satisfies each of the universal conditions: 

(i) w is initial among the morphisms f: A + X with X YT-local. 

(ii) w is terminal among the morphisms f: A + X with f E: YV. 

Moreover, if A is W-local and w : A -+ D is a W-localization, then w is an equivalence. 

2.2. -Ilr-Localization functors. Suppose each object of % has a W-localization. Then there 
exist a functor and a transformation 

E:T?+V? q:l+E 

such that 

qA:A+EX 

is a W-localization for each A E V. Clearly (E, II) is unique up to natural equivalence, and 
(E, q) is called the vY-localization functor. 
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2.3. The idempotency of 9V-localization functors. Following Adams, I will call a functor 
and transformation 

E:V+%’ q:l +E 

idempotent if oEX = Eqx: EX --f E2 X and ljEX is an equivalence for all X E %?. It is not hard 

to show that the w-localization functor (2.2) is idempotent. Conversely, any idempotent 
functor (E, q) on VZ can be obtained as a -NT-localization where %/ consists of all f: X -+ YE g 
such that Ef is an equivalence. 

I conclude by recalling from [6, p. 121 a notion which will facilitate the detection of 
%‘--local objects. 

Definition 2.4. In a category V, a morphism class %P admits a calculus of leftfractions if: 

(i) ^ltr is closed under finite compositions and contains the identities of %? 

(ii) Given X, P X, 5 X, E ‘% with w E ^/I/, there exists X, 5 X4 L X, E V such that 

vE”lYandvf=gw. 

(iii) Given X1 r X, $ X, E % with w E w and fw = gw, there exists X, : X4 E %? such 

that v E w aid vf = vg. 

It is easy to prove: 

LEMMA 2.5. If-W admits a calculus of left fractions and D E %?, then the .foilowing are 

eguivalen t : 

(i) D is w-local. 

(ii) Each morphism X-r Y in ^w induces a surjection Hom( Y, D) --, Hom(X, D). 

(iii) Each morphism D + Y in w has a Ieft inverse. 

63. THE EXISTENCE OF h,-LOCALIZATIONS 

I will state and prove the existence theorem for localizations of spaces with respect to 
&-homology. The proof will rely on the “ simplicial homotopy theory with respect to h,” 

which I have developed in the Appendix ($10, $11 and $12). First consider: 

3.1. The class of h,-equivalences. Let h, be a generalized homology theory defined on 
C W pairs and satisfying the limit axiom [ 1, p. 1881. As usual I will transfer h, to simplicial 
pairs (K, L) by letting h,(K, 15) = h,() KI , IL. I) w h ere “ 1 I” denotes the geometric realiza- 
tion [8, p. 551. By a slight abuse of notation, let “ Ho ” denote the pointed homotopy 
category of Kan complexes or of CW complexes, and let “ h, ” denote the class of maps 
X + YE Ho inducing isomorphisms h, X z h, Y. This abuse is harmless because the geo- 
metric realization provides an equivalence between the Kan and CW pointed homotopy 
categories [8, pp. 61-661. 

The main existence theorem is: 

THEOREM 3.2. Each object of Ho has an h,-localization (in the sense of 2.1). 

I will actually prove a functorial refinement of this theorem involving: 
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3.3. The finctor C,*. Let 9’ be the category of simplicial sets. By (11.1) there exist a 
functor and a transformation 

C,*:Y-+Y i: 1 +Ch, 

such that: 

(i) For each X E 9, ix : X -+ C’,,* X is an injection with h,(C,,. X, X) = 0. 

(ii) For each X E 9, C,,* X is an h,-Kun complex (12. l), i.e. if K c L is a simplicial pair 
with h,(L, K) = 0, then any map K + C,,, X can be extended to a map L -) C,,. X. 

I will prove: 

LEMMA 3.4. For a pointed Kan complex X, the map ix : X + C,,. X represents the h,-locai- 
ization of X in Ho. 

This implies (3.2), and also shows that the h,-localization functor on Ho is induced by 
the functor C,,_ on pointed Kan complexes. 

Clearly (3.4) follo& from (3.3) and 

LEMMA 3.5. A pointed Kan complex is an h,-Kan complex if and only ifit is h,-local in 
the pointed homotopy category Ho. 

This is easily proved using (2.5) and the following result observed by Adams. 

J LEMMA 3.6. The class h, admits a calculus of left fractions in Ho. 

Proof. 2.4(i) is obvious. For 2.4(ii), represent w and f by CW inclusions X1 c X, and 
X1 c X, , and take X, = X, u X, . For 4.l(iii), represent w by a C W inclusion X1 c X, . 

Then h, (Cyl, Spool) = 0 where 

Spool = (0 x X,) u (I x X,/I x *) u (1 x X,) 
CJJI = I x X,/I x *. 

Take Y to be represented by the right map of the push-out 

Spool - x3 

where the top map restricts to representatives off and g on (0 x X,) u (1 x X,). 

t3J. k,-LOCALIZATIONS FOR NILPOTENT SPACES 

I will use results of [3] and [5] to “compute” the h,-localizations of nilpotent (e.g. 
simply connected) spaces, where h, is any connective homology theory. First recall: 

PROPOSITION 4.1 [3, 1 .l]. If h, is a connectice homologv theory, then h, has the same 
acyclic spaceA as H*( ; A), where either A = Z[J-‘1 or A = Q Z, for some set J of primes. 

PEJ 

Here, Z[J-‘1 denotes the rationals whose denominators are products of primes in J, 
and Z, = Z/pZ. 
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This theorem.shows that no new localizations are obtained by using connective homo- 
logy theories other than the specified i?Z*( ; A). 

Now recall from [S, p. 591: 

4.2. Nilpotent spaces. A connected object X E Ho is nilpotent if the group II, X is 
nilpotent and the II,X-module II, X is nilpotent for n 2 2 in the following sense. A II- 
module is nilpotent if it has a finite II-filtration such that II acts trivially on the filtration 
quotients. 

For X E Ho let X --* X, denotes the H,( ; A)-localization of X; and let X be connected 
and nilpotent. 

PROPOSITION 4.3. (i) If A = Z[J-‘I, then l7, X,, z Z[J-‘1 0 l-I, X, and l?,(X,; Z) w 

Z[.T_l] @ R*(X; Z). 

(ii) If A = Z, , then there is a splittable short exact sequence 

* + Ext(Z,, ) II, X) + II, X, -+ Hom(Z,, ; II,_, X) + *. 

(iii) Zf A = @ Z,,, then X,, C= n Xz,. 
PEJ PEJ 

For a nilpotent group G, Z[J-‘1 6 G denotes the Z[J-‘I-Malcev completion of G 
(see [5, p. 128]), while Ext(Z,, , G) and Hom(Z,, , G) were defined and studied in [5, 
pp. 165-1821. For example, if G is finitely generated nilpotent then Ext(Z,, , G) is p-pro- 
finite completion of G and Hom(Z,, , G) = *. 

Proofof(4.3) using [5]. For a solid ring R (e.g. R = Z[J-‘1 or R = Z,) and for a pointed 
connected R-good space X, the R-completion X -, R, X is an H,( ; R)-localization of X 
by [5, p. 2051. Moreover, a connected nilpotent space is R-good for R = Z[J-‘1 and R = Z, . 

Thus 4.3(i) and 4.3(ii) follow from [5, pp. 133, 1831. In 4.3(iii), the product n Xz, is 
PSJ 

H,( ; A)-local because its factors are. It now suffices to show R,( Y(p); Z,> = 0 for each 
p E J where Y(p) = n Xz, . This follows from [5, p. 1341, because Y(p) is a nilpotent 

qc.J- (PI 
space with uniquely p-divisible homotopy groups. 

($5. AN ALGEBRAIC CHARACTERIZATION OF LOCAL SPACES 

Throughout this section let R = Z[J-‘1 or R = 2,. I will show that a connected space 
X E Ho is H,( ; R)-local if and only if the group II, X and the II, X modules II, X, n 2 2, 

satisfy certain algebraic conditions. I will need: 

5.1. HR localization theory for groups. Let ‘9 be the category of groups, and let HR 

consist of all r : A + B E 3 such that r * : H,(A; R) + H,(B; R) is an isomorphism for i = 1 
and epimorphism for i = 2, where A and B act trivially on R. The terminology of $2 now 

applies, and 

THEOREM 5.2. Every group has an HR-localization. 
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A proof of (5.2) and a discussion of this localization are in $7. I will also need: 

5.3. HZ-localization theory for IS-modules. Let II be a fixed group, let An be the cate- 
gory of left II-modules, and let HZ consist of all a : A -* B E ~2’~ such that a* : Hi(n; A) -, 
Hj(Il; B) is an isomorphism for i = 0 and epimorphism for i = 1. The terminology of $2 
now applies and, 

THEOREM 5.4. Every II-module has an HZ-localization. 

A proof of (5.4) and a discussion of this localization are in $8. 

My algebraic characterization of local spaces is: 

THEOREM 5.5. A connected object XE Ho is H,( ; R)-local ly and onfy g II,, X is an 
HR-localgroup for n 2 1 and II,, X is an HZ-local II, X-module for n 2 2. 

This will be proved in $9. 

The connectivity condition on X can easily be removed, because an object of Ho is 
H,-( ; R)-local if and only if its components (with arbitrary basepoints) are H,( ; R)-local. 

$6. CONSTRUCTIONS OF HOMOLOGY EQUIVALENCES 

As a step toward proving the results of 95, I will construct various homology equiv- 
alences. I am indebted to E. Dror for the main ideas behind these constructions. 

Let R = Z&J-‘] or R = 2, for p prime, let X E Ho be connected, let a : II, X + G be a 
group homomorphism, and let HR be as in (5.1). 

Lm 6. I. a E HR if and oniy if there ekists a map f: X + YE Ho such that 
f* : H,,(X; R) x I!?*( Y; R) andl; : II, X -f II, Y is equivalent to a. 

Proof. The “ if” part is clear. For the “only if” part, suppose X is a CW complex. 

Attach l-cells and 2 cells to X so as to give i : X 2 8 with i, : lT, X + l&X equivalent to a. 
Then i, : H,(X; R) z H,(8; R) and there is an obvious commutative diagram 

R@III~X- RC9l-U 

I I 
0 - H2( X; R) - Hz@; R)- H2(X, X; R) -0 

I I . 
H2(IIl X; R) - H&‘I,X; R)- 0 

I I 
0 0 

with exact rows and columns. A diagram chase shows that the composite map R Q Ilz x + 
H@, X; R) is onto. Thus there exist elements (b,} in II2 x which go to an R-basis for the 
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free R-module HJ_%?, X; R). Using attaching maps representing the {b,}, attach 3-cells to x 

so as to give x c Y. Then the inclusion j: X A Y has the desired properties. 

Now let R = Z[J-‘I, let X E Ho. be connected, let u: II, X-+ M be a lT,X-module 
homomorphism for some n 2 2, and let HZ be as in (5.3). 

LEMMA 6.2. 1 @ u : R 0 II, X+ R 0 M is in HZ if and only if there exists a 
map f: X+ YE Ho such that f*: H,(X; R) z H*( Y; R), f*: lTj X z lTj Yforj c n, and 
f* : III, X + l7, Y is equivalent to r. 

Proof. For the “ if” part, suppose f: X + YE Ho has the specified properties. Then 
f*: Hj(P”X; R) + Hj(P” Y; R) is an isomorphism for j I n and an epimorphism for 
j = n + 1, where P”X is the nth Postnikov section of X. By comparing the exact sequence. 

(6.3) H,+2(Pn-1X; R) + H,(l-I,X; R @ l-I, X) + H,+,(P”X; R) + H,,+,(P”-‘X; R) -+ 
H&&X; R @ l-I, X) -+ H,(P”X; R) + H,(P”-’ X; R) + 0 with the corresponding sequence 
for Y, it is easy to show 1 0 ct E HZ. 

For the “ only if” part, suppose X is a CW complex. Attach n-cells and (n + I)-cells to. 

Xsoastogivei:XLXwithP”-‘X-P”-‘Xand withi,:II,X+II,xequivalenttocc. 
By (6.3), i,: Hj(P”X; R) + Hj(P”X; R) is an isomorphism for j I n and an epimorphism 
forj = n + 1. Thus i,: H,(X; R) x H,(x; R) and there is an obvious commutative diagram 

ROK+,X- R 0 I-&+,x 

I I 
0 - Hn+,(X; RI - f&+,(x; R)- Hn+,(x, X; R) - 0 

I I 
H,+,(P”X; R) - H,+,(P”x; R)-0 

I I 
0 0 . 

with exact rows and columns. A diagram chase shows that the composite map R @n,+,X + 
H,,+l(x, X; R) is onto. Thus there exist elements {b,} in II,+,1 which go to an R-basis for 
the free R-module H,+l(x, X; R). Using attaching maps representing the {6,}, attach 

(n + 2)-cells to 1 so as to give x c Y. Then the inclusion f: x 2 Y has the desired 
properties. 

For R = Z,, (6.2) does not hold and I obtain a less satisfying result. Let XE Ho be 
connected, let tl: II, X-+ M be a II,X-module homomorphism for some n 2 2, and let HZ 
be as in (5.3). Consider the following conditions: 

(6.4) 1 Ocr:Z,,@II,X+Z,,@Misin HZ. 

(6.5) Q: H&4X; Tor(Z, , R, Jf7) -+ fW’& X; Tor(Z,, MN 
is onto. 

TOP Vol 14. No. 24 
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(6.6) There exists- a map f: X + YE Ho such that f* : H,(X; 2,) x H*( Y; Z,), 
f* : IIj X z IIj Y forj < n, and f*: II, X -+ II,, Y is equivalent to s(. 

LEMMA 6.7. (i) If(6.4) and (6.9, then (6.6). 

(ii) If(6.6), then (6.4). 

(iii) If (6.6), und 1 @ tl: 2, 0 II,, X z 2, @ M, then (6.5). 

The proof is similar to that of (6.2). However, one must use the mod-p Serre spectral 
sequence for P”X -) P”-‘X instead of (6.3). 

$7. HR-LOCALIZATION!3 OF GROUPS 

Let R = Z[J-‘1 or R = 2, for p prime. I will prove the existence Theorem 5.2 for 
HR-localizations of groups and will give a rather general example. 

LEMMA 7.1. If 
, 

G- G 

I I , I 

G-G, 
is a push-out of groups with r E HR, then s E HR. 

Proof. Form a push-out 

K(G,, 1)- ’ KC&, 1) 

I / I 9 

of pointed connected CW complexes such that f is a cofibration inducing r and h induces t. 

Then g*: II, K(G, , 1) -+ II, X is equivalent to s by Van Kampen’s theorem, and clearly 
H,(X, K(G2, 1); R) = 0 for i I 2. This implies s E HR. 

LEMMA 7.2. The class HR admits a calculus of left fractions. 

Proof. 2.4(i) is clear, and 2.4(ii) follows from 7.1. For 2.4(iii), let G, z Gt $ GJ E Y be 

such that w E HR and fw = gw. Then the “folding” map p : Gr u Gz + Gz is in HR 

because it has an obvious right inverse in HR. Now define v : G, + ;b by the push-out 

G, - G, 
Clearly uf = vg and v E HR by (7.1). 
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Now (2.5), (6.1), and (7.2) easily imply: 

LEMMA 7.3. If XE Ho is connected and X-, D E Ho is an H,( ; R)-localization, then 
lI,X+ II, D is an HR-localization. 

7.4. Proof of 5.1. Since each K(G, 1) E Ho has an H,( ; R)-localization by (3.2), each 
group G has an HR-localization by (7.3). 

HR-localizations can be computed for many sorts of groups (e.g. finite, nilpotent, or 
perfect groups) by using the following result. For a group G let G = I,G 2 I2 G 1 . . . 

denote the lower central series, and suppose R @ (r, G/T,+IG) = 0 for some n 2 1. Then: 

LEMMA 7.5. The HR-localization of G is: 

(i) the obvious map G + Z[J-‘1 @ (G/r, G) for R = Z[J- ‘I, and 

(ii) the obvious map G + Ext(Z,, , G/T,, G) for R = Z, . 

The reader is referred to w and to [5] for an account of the Mulcev completion 
N + Z[J-l] Q N and the Ext-completion N + Ext(Z,,, , N) of a nilpotent group N. 

Proof. By [13] a short exact sequence of groups * + A --* B + C + * gives an exact 
sequence 

Hz(B; R)-+Hz(C; R)+R@(A/[B,A])+H,(B; R)-+H,(C; R)+O. 
Thus the quotient map G + G/I, G is in HR. The lemma now follows by (4.3) and (7.3). 

Many more examples of HR-local groups can be constructed using the obvious result: 

LEMMA 7.6. The HR-local groups are closed under inverse limits. 

$8. HZ-LOCALIZATIONS OF l-I-MODULES 

Let II be a fixed group and let Jtn be the category of left II-modules. I will prove the 
existence theorem (5.4) for HZ-localizations in A’n and will give some general examples. 

LEMMA 8.l.lf 

MI-M, 

I I I s 

Ma-M, 

is a push-out in A,, with r E HZ, then s E HZ. 

Proof. There is a commutative diagram 

M3 - M.s 
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in An such that i is onto and the square is both a pull-back and push-out. The lemma now 
follows because r’ E HZ and there is a long exact sequence 

. ..-H.(~;M,)-*H,(n;M,‘)-*H,(~;M,)0H,(II;M,)-,H,(n;M,)-rO. 

LEMMA 8.2. In An, the class HZ admits a calculus of left fractions. 

The proof is similar to that of (7.2). 

To prove the existence of HZ-localizations I will need a lemma concerning H*( ; Z)- 
fibrations (10.1). Let u : X+ Y be a Kan fibration of pointed connected Kan complexes 
suchthatu,:IT,XxlT,Yand&Y=Ofori22. 

v LEMMA 8.3. (i) Zf A’; 1: Y is a factorization of u such that i,: H,(X; Z) x H,(X; Z) 
and v is an H*( ; Z)-Jbration, then v*: II,X x II, Y. 

(ii) u : X + Y is an H*(’ ; Z)-fibration if and only if IT, X E A,, x is HZ-local for n 2 2. 

Proof of(i). v*: I&X + ll, YE Y is in HZ, because its right inverse i, : l&X -+ I&X E Y 

is in HZ by (6.1). Thus by (6.1), v can be factored as X I, W: Y where r is an injection with 
r*: H,(X; Z) z H,(W; Z) and s*: II, W z II, Y. Now r has a left inverse by (lO.l), and 
hence v* : I&X + II, Y has a left inverse. Thus v.,, : l&X x II, Y. 

Proof of (ii). For the “ only if” part it suffices by (2.5) and (8.2) to show for n 2 2 that 
each map IT, X+ ME Jfn,z in HZ has a left inverse. This follows by (6.2) and (10.1). For 

the “ if” part, use (11.1) to factor u as X A X z Y such that i, : H.,,(X; Z) x H,(X; Z) and 
v is an H*( ; Z)-fibration. Then i, : lT, X x 11,x by 8.3(i), and II, X E dnlx is HZ-local for 
n 2 2 by the “only if” part of 8.3(ii). An inductive argument using (6.2) now shows 
i,: II, X x II,, X for n 2 1, and thus u is homotopy equivalent to v by [S, p. 501. Hence u is 
an H*( ; Z)-fibration. 

8.4. Proof of (5.4). For Me An, choose a connected pointed Kan complex X such that 
II, X = lI and II2 X = M E An . By (11.1) the Postnikov map X + P’X can be factored as 

XAX:P’Xwherei,:H,(X;Z)xH.&X;Z) d an v is an H*( ; Z)-fibration. Now (6.2) 
and (8.3) imply that i* : l&X + n,X E An is an HZ-localization. 

I will next show that HZ-local modules are closed under various constructions. Clearly : 

LEMMA 8.5. The HZ-local objects of An are closed under inverse limits. 

Less obvious is: 

LEMMA 8.6. Zf MI, M2 E An are HZ-local and w : M, + M2 E An, then coker (w) E An 
is HZ-local. 

ProoJ Let 

x3- Xl 

I I h / 
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be a pull-back of pointed connected Kan complexes such that f is a Kan fibration, 

II zl-I,X, k l&X, g II,X,, f*: II3 X, + II3 X, E &fn is equivalent to w : M, -+ M2 E A,, 

and all other homotopy groups vanish for X,, X2, and X, . Applying (12.3) and (8.3) to the 

maps Xi i X, +PlX, , one shows f is an H*( ; Z)-fibration. Hence h : X3 + X4 is an 
H*( ; Z>fibration, and coker(w) x II,X, E An is HZ-local by (8.3). 

Similar methods can be used to prove the following two closure results for HZ-local 

modules. 

LEMMA 8.7. Zf M,, M, E A, are HZ-local and 0 + M, + M, + M, + 0 E _A, is exact, 
then M, E A,-, is HZ-local. 

LEMMA 8.8. Zf M E A, is HZ-local and G + II is a group homomorphism, then M E A, 
is HZ-local. 

I can now construct some examples. 

LEMMA 8.9. Zf M E An is nilpotent (4.2), then M is HZ-local. 

Proof. Using (8.8) and the homomorphism II + * E B, one shows every simple II- 
module is HZ-local. The lemma now follows from (8.7). 

More generally, for M E An let 

M I ZM =, Z2M 3 * *. 

be the “lower central series” where Z c ZII is the augmentation ideal, and suppose I”M = 
Z”+lM for some n 2 0. Then: 

LEMMA 8.10. The HZ-localization of M is the quotient map M + M/Z”M E An. 

Proof. A short exact sequence 0 + A + B + C + 0 E A,, clearly gives an exact sequence 

..-+H,(lX; B)+H,(II; C)-+A/ZA+H,(II; B)+H,(l-I; C)+O. 

Thus M + M/Z”M is in HZ, and the lemma follows from (8.9) since M/Z”M is nilpotent. 

Although the HZ-localization functor (2.2) E : A,-, -t A’,, is still somewhat mysterious, 
one has: 

LEMMA 8.11. E : An -+ An is additive and right exact. 

This follows easily because the HZ-local objects of An are closed under products and 
cokemels. 

I conclude with a technical result needed in 09. 

LEMMA 8.12 (i) Zf ME An is an HZ[J-‘]-local group, then so its HZ-localization 
EMEA,. 

(ii) Zf M E A,, is an HZ-local II-module, then so is its HZ,-localization 

Ext(Z,, ) M)E&~. 

Proof. Part (i) follows because E is an additive functor. Part (ii) follows from (8.5), 
(8.6), and (8.7), using the natural exact sequence 

0 + hn~’ Hom(Z,J, M) -+ Ext(Z,, , M) -+ lim Ext(Zp,, M) + 0 

’ 
i 

of [5, p. 1661. 
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$9. PROOF OF THEOREM 5.5 

Let R = Z[J-‘1 or R = Z,. A connected object X E Ho will be called algebraically 

H,( ; R)-local if TI, X is an HR-local group for n 2 1 and TI, X is an HZ-local FL, X-module 

for n 2 2. I must prove that X E Ho is H,( ; R)-local if and only if it is algebraically 

H,( ; R)-local. 

LEMMA 9.1. Let X, YE Ho be connected and algebraically H,( ; R)-local. rf f: X + 

YE Ho induces f* : H*( X; R) x H*( Y; R), then f is an equivalence. 

Proof for R = Z[J-‘I. f*: II, X + II, YE Q is an isomorphism because it is in HR by 

(6.1) and lT, X, Ti, YE 9 are HR-local. Now f,, : TI,X --, IT2 YE &ntx is an iscmorphism 

because 1 0 f*: R 0 l7,X + R @ II, YE A&‘~,~ is in HZ by (6.2), 1 @f* is equivalent to 

f*: I12X+11,YEAntx, and TI, X, lT2 YE JInlx are HZ-local. Continuing in this way, 

one shows f*: ll, X x II, Y. 

Proof for R = Zp. As above, f*: II, X x ll,Y. Define M, NE Anlx by the exact 

sequenceO+M+lT,X-%lT,Y+N + 0. Now M E Y is HZ,-local by (7.6), and N E Y is 

HZ,-local because the HZ,-localization functor, Ext(Z,, , ), is right exact on abelian groups. 

Thus the condition Z, @I M = 0 (resp. Z, @ N = 0) will. imply M = 0 (resp. N = 0) by (7.5). 

But 1 @f* : Z,, @ IT, X x Z, 0 Tl, Y, because Z, @ II2 X, Z, @ lI, YE ~tin,~ are HZ-local 

by (8.6) and 1 @f* is in HZ by (6.7)(ii). Now N = 0 becuase Z, @ N = 0. Using 6.7(iii) and 

the exact sequenceTor(Z, , lT2 X) + Tor(Z, , lT, Y) + Z, 0 M + 0, one shows HO(Ill X; Z, @ 

M) = 0. Thus Z, 0 M = 0 by (&lo), because Z, 0 ME knlx is HZ-local by (8.5) and (8.6). 

Consequently M = 0 and f* : T12 X x IT2 Y. Continuing in this way, one shows f* : TI, X % 

IT, Y. 

LEMMA 9.2. For each connected X E Ho, there exists a map f: X + YE Ho such that 

f*: H,(X; R) z H*( Y; R) and Y is algebraically H,( ; R)-local. 

Proof for R = Z[J-‘I. Using (5.2) and (6.1), construct f 1 : X+ Y’ E HO such that 

f*‘: H,(X; R) z H.+( Y’; R) and f*’ : lT,X+ TI, Y’ E ‘3 is an HR-localization. Using (5.4) 

and (6.2), construct f2 : Y’ + Y2 E Ho such that f*2 : H*( Y’ ; R) z H*( Y2; R), f*’ : TI, Y’ x 

IT, Y2, and f*’ : TI, Y’ + II, Y2 E v~n,yI is equivalent to the obvious composition II2 Y’ + 

R @ 112 Y’ -+ E(R 0 I12Y1) where E is the HZ-localization functor. Then IT, Y2, T12Y2 E Y 

are HR-local by (8.12) and II2 Y2 E J# n,r2 is HZ-local. Continuing in this way, one obtains 

a sequence X + Y’ + Y2 -+ Y3 -+ . . . from which the desired map X + Y can be constructed 

by means of an infinite mapping cylinder. 

Proof for R = Z,. Construct fl: X -+ Y’ as above. Using (5.4), (6.2), and (6.7(i)) 

construct f2: Y’ + Y2 E Ho such that f,’ : H2( Y’; Z ) p x H2( YZ; z&J, f*2 : l-f, Y’ x l-f, Y2, 

and f*2: lT,Y’ + I12Y2 E An,yl is equivalent to the obvious composition II2 Y’ + 

E(l-I, Y’) + Ext(Z,, , E(II, Y’)) where E is the HZ-localization functor. The above use of 

6.7(i) is justified because the map A + Ext(Z,, , A) induces an isomorphism Z, 0 A + 

Z, 0 Ext(Z,, , A) and an epimorphism Tor(Z,, A) -+ Tor(Z, , Ext(Z,, , A)) for any abelian 

group A. Now TI, Y2, T12Y2 E 3 are HZ,,-local by (7.5) and lT2 Y2 E Jlltn,yt is HZ-local by 

(8.12). The proof is completed as before. 
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9.3. Proof of 5.5. For the “if” part, suppose XE Ho is connected and algebraically 
H,( ; R)-local. To prove X is H,( ; R)-local, it suffices by (2.5) and (3.6) to prove that each 
map X + YE Ho in H,( ; R) has a left inverse. This can be obtained by first using (9.2) to 
construct Y -+ WE Ho in H,( ; R) with W ‘algebraically H,( ; R>local, and then using 
(9.2) to show that the composition X + Y + W E Ho is an equivalence. The “ only if” part 
now follows from the “if” part and (9.2). 

Remark 9.4. Our proof of Lemma 9.2 can now be regarded as a step by step construction 
of the H,( ; R)-localization. 

APPENDIX 

In this Appendix I will develop a version of simplicial homotopy theory in which the 
h,-homology equivalences play the role of weak homotopy equivalences, where h, is a 
generalized homology theory as in (3.1). This simplicial theory with respect to h, (like 
ordinary simplicial theory) fits very nicely in Quillen’s “ homotopical algebra ” framework 
[lo], [1 11, and I will so present it. 

$10. SIMPLICIAL HOMOTOPY THEORY MODULO h, 

Let Y denote the category of simplicial sets (see [5], [8]). 

10.1. Definitions. A map f: K-r L E Y is a weak h,-equivalence if f* : h,(K) z h,(L). 

A map in Y is an h,-cofibration if it is a cofibration (i.e. injection) in Y. A map U: X+ 
YE Y is an h,-@ration if it has the right lifting property with respect to each map 

i : A -+ B E Y which is a weak he-equivalence and h,-cofibration, i.e. for each commutative 
square 

A-X 

//a 
1’ 

Ii I 

e,’ u 
1’ 

/’ 
/’ / 

B-Y 

there exists a map e making the triangles commute. 
fibration. 

Clearly, any h,-fibration is a Kan 

I will show that the above notions satisfy Quillen’s axioms for a closed model category 
[ll, p. 2331. This will lay the foundation for a Quillen-like homotopy theory. Indeed 
Quillen has shown [lo] that any closed model category (or its associated pointed category) 
gives rise to much of the familiar homotopy machinery, e.g. the homotopy relations for 
maps, loops and suspensions, fibration and cofibration exact sequences, Toda brackets, etc. 

THEOREM 10.2. The notions of (10.1) in the category Y satisfy Quillen’s closed model 

category axioms: 

CM 1. 9’ is closed under finite direct and inverse limits. 
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CM2. If f and g are maps such that gf is defined, then if two off, S, and gf are weak 
h,-equivalences, so is the third. 

CM3. Iff is a retract of g and g is a weak h,-equivalence, an h,-fibration, or an h,- 
cofibration, then so is f. 

CM4. Given a commutative square 

A-X 

B-Y 

where i is an h,-cofibration, u is an h,-fibration, and either i or u is a weak h,-equivalence, 
then there exists a map e making the triangles commute. 

CMS. Any map f can be factored in two ways: 

(i) f = ui, where i is an h,-cofibration and K is an h,-fibration which is a weak h,- 

equivalence. 

(ii) f = ui, where u is an h,-fibration and i is an h,-cofibration which is a weak h,- 

equivalence. 

Proof. Using the closed model category axioms for ordinary weak equivalences, cofibra- 
tions, and Kan fibrations in 9, it is straightforward to show that a map u : X -+ YE 9’ is 
an h,-fibration and weak he-equivalence if and only if u is a Kan fibration and weak equiv- 
alence. It is now easy to deduce all of the axioms except CMS(ii), which follows from the 
main result (11.1) of the next section. 

$11. A FACTORIZATION THEOREM 

This section is devoted to proving the following key theorem which was used in 410 
and elsewhere. 

THEOREM 11.1. For each map f: X + YE 9 there is a naturalfactorization X f E/ r Y 
such that u is an h,-Jbration and i is an h,-cojbration which is a weak h,-equivalence. 

Let c be a fixed infinite cardinal number which is at least equal to the cardinaiity of 
h,(pt). For A E 9 let #A denote the number of non-degenerate simplices in A. We shall 
implicitly use the easily proved fact that h,(A, B) has at most c elements if #A < c. 

LEMMA 11.2. If (K, L) is a simplicial pair with h&K, L) = 0, then there exists a sub- 
complex A c K such that #A 2 c, A $ L, and h,(A, A n L) = 0. 

Proof. The desired A is given by the union A = Unrl A, where 

-4, c a..~A,cA,+~c.** 

is a sequence subcomplexes of K such that #A, I c, A, $ L, and the map 

h,(A,, A, n L) -+kdA,+~, A,+1 n L) 
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is zero for each n 2 1. To inductively construct {A,}, first choose A, c K such that #A, I c 

and A, @ L. Then, given A,, choose for each element x E h,(A, , A, n L) a finite complex 

F, c K such that x goes to zero in h,(A, u F,, (A, v F,) n L). This is possible since 

h,(K, L) = 0 and h, satisfies the limit axiom. Finally, let A,+1 be the union of A, with all 

F, for x E h,(A,, A, n L). 

LEMMA 11.3. Let u : X + YE Y be a map which has the right ltfting property with respect 

c to each inclusion map A - B E Y such that h,(B, A) = 0 and #B I c. Then u is an h,- 

fibration. 

Proof. If suffices to show that LI has the right lifting property with respect to each 

inclusion map L + KE Y such that h,(K, L) = 0. This follows by transfinite induction 

because, for each such pair (K, L), there exists ME 9 such that L c M c K, L # M, 

h,(M, L) = 0, and u has the right lifting property with respect to LA M. Indeed, one can 

choose M to be A u L where A is as in (11.2). 

LEMMA 11.4. For each map f: X + YE Y there is a natural factorization X 5 Ft : Y 

such that: 

(i) j is an injection with h,(Ft , X) = 0, and 

E (ii) for each inclusion i : A - B E 9’ with h,(B, A) = 0 and #B 5 c, andfor each com- 

mutative diagram 

A-X’ Ff 

there exists a map e such that the triangles commute. 

Proof Choose a set {i,: A,& B,& EI of inclusion maps in 9’ with h,(B, , A,) = 0 and 

#B, I c, and such that each inclusion map with these properties is isomorphic to some i, . 

For each c( E I, lzt S, be the set of maps from i, tof. Using the obvious commutative diagram 

where “ IJ ” denotes the disjoint union, define F, as the push-out of the top and left maps, 

define j : X + FJ as the induced cofibration of the left map, and define v: F, + Y by the 

universal property of push-outs. 

11 S. Proof of 11.1. Let S be the section of the first ordinal of cardinality greater than c. 

Using transfinite induction, define a commutative diagram in Y 
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Y.+ t 
for s E S as follows. The map X0 -% Y equals Xi Y; the factorization Xs-% X,,, - Y 

equals the factorization X, A F,,, : Y of (11.4); and ifs is a limit ordinal, then X, = lim X,, 
“<S 

and U, = l& U, . To obtain the desired factorization X f El 1: Y, let Ef = lim X,, let 
ll<S SES 

u = lim u,, and let i be the obvious injection. In order to show that u is an h,-fibration, it - 
sss 

suffices by 11.3 to show that it has the right lifting property with respect to each inclusion 

map AA B E 9’ such that h,(B, A) = 0 and #B I c. This property follows easily from 
11.4(ii), because the image of each map A + Ef will be contained in X, for some s E S. 

$12. HOMOTOPY INVERSE LIMITS OF h,-KAN COMPLEXES 

Dejnition 12.1. A simplicial set X is an h,-Kan complex if X + * is an h,-fibration. 

I will show that the h,-Kan complexes are closed under all sorts of homotopy inverse 
limits. This is of interest because the pointed h,-Kan complexes represent the h,-local 
homotopy types. 

For A, X E 9 let hom(A, X) E 9 denote the simplicial function complex [8, p. 171; 
and for 

i:A+BEY 2.4:x-+ YE9 
let 

(i*, u*): hom(B, X) -f hom(i, U) E 9 

denote the obvious simplicial map 

hom(B, W + hom(A, X) x homCA, r) hom(B, Y). 

PROPOSITION 12.2. Let i : A -t B E 9 be an h,-cojibration and let u : X + YE 9’ be an 
h,-fibration. Then (i*, u*) is an h,-fibration which is a weak h,-equivalence if either i or u is a 
weak h,-equivalence. 

Proof. The required right lifting properties for (i*, u,) can be deduced from the 
“ adjoint” of (12.2). Namely, ifj: K-+ L E 9’ is an h,-cofibration, then 

(K x B)UC,..,(L x A) +L x B 

is an h,-cofibration, which is a weak h,-equivalence if either i ori is such. 

Note. In using (12.2) it is useful to recall that a map in Y is a Kan fibration and weak 
equivalence if and only if it is an h,-Kan fibration and weak he-equivalence. 

PROPOSITION 12.3. For X: YL WE 9, suppose v and vu are h,-fibrations. If u is a 
Kan fibration, then u is an h,-fbration. 
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COROLLARY 12.4. If u : X -+ YE 9 is a Kan fibration of h,-Kan complexes, then u is an 
h,-fibration. 

Proof of 12.3. Letting i: A + B E Y be an I?,-cofibration which is a weak h,-equiv- 

alence, it will suffice to show that (i*, u*) is surjective in dimension 0. For this it suffices to 

show (i*, uJ is a weak equivalence, because it is a Kan fibration by the usual “non-h,” 

version of (12.2). But (i*, c,) and (i*, (vu),) are weak equivalences by (12.2), and (i*, (vu),) 
factors as 

hom(B, X) 3 hom(i, u) - hom(i, vu) 

where the second map is an induced fibration of (i*, v*). Thus (i*, a*) is a weak equivalence. 

It is now easy to show that h,-Kan complexes are closed under familiar sorts of homo- 
topy inverse limits. 

PROPOSITION 12.5. If'{ X,} are h,-Kan complexes, then so is ll X, 

PROPOSITION 12.6. Zf X is an h,-Kan complex and K E Y, rhen hom(K, X) is an h,-Kan 
complex. 

PROPOSITION 12.7. Let X, Y, B E Y be h,-Kan complexes, and let 

E-X 

I I ” 

Y-B 

be a pull-back with u a Kan fibration. Then E is an h,-Kan complex. 

PROPOSITION 12.8. If X0 +- X, c X, t... is a tower of Kan fibrations with each X, an 
h,-Kan complex, then lim X,, is an h,-Kan complex. 

In [5, p. 2951 we defined the homotopy inverse limit, hou X E 9, for an arbitrary 

small diagram X of simplicial sets; and we showed that hoti X had the “ right ” homotopy 

type for familiar diagrams of Kan complexes. Thus the following theorem generalizes the 

above propositions. 

THEOREM 12.9. If X is a small diagram of h,-Kan complexes, then bob X is an h,-Kan 
complex. 

In view of [5, p. 3031, this theorem follows from: 

PROPOSITION 12.10. If X is aJibrant cosimplicial simplicial set such that X” is an h,-Kan 
complex for n 2 0, then Tot X is an h,-Kan complex. 

Proof, I will freely use the notation and results of [5, Ch. X]. Using (12.6) and the fibre 

squares (see [5, p. 2871) 

W+,X -X” 

I I 
M;X - M;-lX 
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it is not hard to show that each M:X is an h,-Kan complex. Thus the natural maps (see 
[5, p. 2741) s : X”+’ -+ Mi X are h,-Kan fibrations by (I 2.4). Since there are pull-backs 

Tot,+,X--+ hom(A[n + I], X”+l) 

Tot, X - hom(i, s) 

where A[n + I] is the standard (n + 1) simplex and i: b[n + I] -+ A[n + 1] is the inclusion 
of its n-skeleton, the maps Tot,+,X -P To&X are h,-fibrations by (12.2). The lemma now 
follows from (12.8). 
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