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1. Introduction. Using the approach of [C], [R] and [6A], we construct for

each space X, a spectral sequence converging (almost always) to the homotopy

groups of X modulo odd torsion. This can be considered an "unstable Adams

spectral sequence" in that it agrees with the ordinary mod-2 Adams spectral

sequence [A] for a stable range of dimensions. Furthermore our spectral

sequence agrees with that of [M,P] when theirs is defined. However our version

has these advantages: it is more generally defined, has an Fi-term suitable for

computation, and has an F2-term which is homologically describable for nice

spaces (see 2.2).

Our statements and constructions are in terms of simplicial sets, simplicial groups

etc. Corresponding statements for topological spaces may be obtained by means

of the singular complex and geometric realization functors.

For each connected simplicial set K, the spectral sequence [ErK] arises from the

homotopy exact couple associated with a modified lower central series filtration

of Kan's simplicial loop group GA'. If Ä' is simply connected with finitely generated

homotopy groups, then {ErK} converges to tt^K modulo odd torsion. In order to

describe E2K homologically, we assume that H*(K; Z2) is a nice homology co-

algebra as in [B]. This condition is satisfied, for example, when H*(K; Z2) factors

as the tensor product of polynomial and truncated polynomial algebras. Under

the niceness assumption, we construct a fundamental chain complex whose homo-

logy is E2K. This complex, and hence E2K, depends only on H^(K; Z2) as a co-

algebra over the Steenrod algebra.

The paper is in two parts. In Part I, we construct the spectral sequence and the

fundamental chain complex. We derive a simplified Fi-term in the Massey-Peterson

case, and then give our homological interpretation of E2K when H*(K; Z2) is nice.

In Part II, we prove that the fundamental chain complex serves as an Fi-term for

our spectral sequence. The proof involves a detailed study of a closely related

spectral sequence defined by Rector [R].

Using a very different approach from ours, D. M. Kan and the first author

[B,K] have developed a mod-/? spectral sequence, for all primes p, which has the
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458 A. K. BOUSFIELD AND E. B. CURTIS [October

advantage that, without any niceness assumption, the £2-term admits a homo-

logical description (as in §6). On the other hand, the advantage of our present

work is that for nice spaces the £2-term is more accessible, as the homology of the

fundamental chain complex. This becomes useful in the examples (forthcoming)

of Sn, SU(n), BU(n), SO(n), BO(n), Stiefel manifolds, and especially SF, BSF.

The authors are grateful to D. M. Kan for his advice and criticisms.

1.1. Conventions. Let K be a reduced simplicial set; that is, K has only one

vertex. Let H+K denote the homology of A' with Z2 coefficients. The diagonal map

K^- KxK induces a comultiplication

A: H*K->H*K®H*K

making H*K a homology coalgebra, that is, a connected cocommutative coalgebra.

Also H*K is a right module over the Steenrod algebra, A, with operations

(•) Sql:HnK->Hn.iK

which dualize to the usual Steenrod operations in cohomology. Similar conventions

apply to the reduced homology H*K.

Part I. A spectral sequence for the homotopy of nice spaces.

2. The spectral sequence and the fundamental chain complex. To construct the

spectral sequence, we first recall that the mod-2 lower central series of a group G

is the filtration (see [R])

G = YXG^ ■■ • => rsG=> rs+1G^--

where YSG is the subgroup of G generated by all (gx,.. ., gfc>2' such that 2tk'^s,

the gt e G, and <,..., > is the simple commutator. For a reduced simplicial set

K, the loop group GK (defined in [K]) is a free simplicial group for which

TTq-x(GK) x «„(K),       TTq_x(GK/Y2GK) « HAK).

We filter GK (in each dimension) by the modified mod-2 lower central series

GK => Y2GK =>••:=> Y2>GK => Y2* + iGK = • • •.

The associated homotopy exact couple gives rise to a spectral sequence {ErK}:

Ei-XK) = 7ri_s_1(r2.GÄ7r2S+iGÄ-),       dr: E?%K) -> Prs+r'i+r" W-

Let tt*(K; 2) denote the quotient of tt^K by the subgroup of elements of odd

finite order. The following theorem summarizes results of [R] and [6A].

Theorem 2.1. If K is simply connected with finitely generated homotopy groups,

then {ErK} converges to rr^K; 2). More precisely Esr-l(K) = E*J(K) for large r, and

{E%s + AK)}si0 is the graded group of a complete decreasing filtration of ttAK; 2).

For r ä 2, {ErK} coincides in the stable range with the mod-2 Adams spectral sequence.

2.2. Nice homology coalgebras. In general E2K seems to depend on the "higher

order" structure of H^K; but this difficulty is avoided when H*Kis a nice homology
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1970] THE HOMOTOPY OF NICE SPACES 459

coalgebra, as in [B]. To recall the notion of niceness, we first suppose that C is a

homology coalgebra of finite type over Z2 ; that is, C is finitely generated in each

dimension. Then C is nice if and only if the dual algebra C* has a presentation

C*%R/I where R is a connected polynomial algebra of finite type over Z2 and /

is a Borel ideal (see [S, p. 79]). By [S, p. 80] this is equivalent to the condition that

C*xR ®BZ2 where R is as above, B is a polynomial subalgebra of R, and R is

free as a 5-module. The definition of niceness for an arbitrary homology coalgebra

over Z2 is obtained by suitably dualizing the foregoing condition on C*. We remark

that by [B, 4.1], a homology coalgebra C is nice if and only if RnP(C)=0 for

n > 1 where RnP is the nth right derived functor of the primitive element functor.

Some (overlapping) examples of nice coalgebras are given by :

(i) If H*K is the coalgebra of some Hopf algebra, then H+K is nice.

(ii) If H*K is of finite type and factors as a tensor product of polynomial and

truncated polynomial algebras, then H*K is nice.

In particular if K is homotopy equivalent to a loop space or to a sphere, then

H+K is nice. We sometimes call a space nice if its homology is nice.

2.3. The algebra A. Our fundamental chain complex for "computing" E2K

when K nice will involve the algebra A ( = EX(S) in [6A]). Recall that A is the

graded associative differential algebra with unit (over Z2) with :

(i) a generator Af of degree i for each /^0,

(ii) for each i, k^O a relation

AfA2i + i + fc =   £   I ;        )Xi + k-}^2l+l + i,
no \     J     i

(iii) a differential 8 given by

w = 2 (VK-A-i-
m \ j i

Let /=(/i,..., /',) be a finite sequence of nonnegative integers. Call / allowable

if ij+iu2ij for each 0<j<s, or if / is empty. Then A has a Z2-basis given by all

A; = Ail--A,s with allowable I (X,= l when / empty). Note that A = 0SÈO A*

where As is generated by the monomials X, of length i. For n ̂  0 let A(n) be the

subspace of A generated by all allowable X, for which ix < n or / empty. Each A(n)

is closed under 8, and in fact A(n)xEx(Sn) by [6A].

Notation. For a graded Z2-module M, let M <g> A (resp. M <g> A) be the sub-

space of M <g> A generated by all x ® a with x e Mn and a e A(n — 1) (resp. a e A(n)).

Also let M ® As and M <S) As be the obvious summands.

2.4. The functor Y. A certain nonadditive functor Y will appear in our funda-

mental chain complex (2.5). The map

A ® 1 +1 g) A: ñ*K ® ff*K->ñ*K <g> fí*K ® fftK

restricts to a homomorphism 8A: L2(H*K) -*> L3(H*K) where

u) = e Fr(-)
ret
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460 A. K. BOUSFIELD AND E. B. CURTIS [October

is the free restricted Lie algebra functor as in 7.2. We define

W(H*K) = Ker SA.

The right action of the Steenrod algebra A on H^Kx K)xH*K <g> H*K induces a

right y4-module structure on W(H^K), and the diagonal A restricts to a right

,4-module map

A:H*K->Y(H*K).

Let a: W(H^.K) -+ H*K be the restriction of the homomorphism (halving degrees)

L2(H*K) -»■ H*K which sends xt2] —> x and [x, y] -> 0 for x, y e H^K.

2.5. The fundamental chain complex. The following chain complex W^^K)

will serve as an Pj-term for our spectral sequence when H#K is nice. Define for

each í ^ 0

WXH*K) = (H^K ® As) 0 (V(H*K) ® A5"1),

8: WXH*K)^WS + AH*K),

where the differential 8 has the following components :

(i) for x <g> A; e //„AT §» As,

S(x <g> Aí) = Í x (g> 8X,+ 2 xSqi ® A,.A) © (A* ® A,)

where m = [(« — 1 )/2] ;

(ii) for x <S> X, e ^(H^K) ¿ As -1 when deg x = 2«? +1

S(jc (8) A;) = (0) ® (x ® dX,+ 2 xSql ® ^i-iAA

and when deg x=2m + 2

S(jc ® A,) = /ax <g> (SAm)A,+ 2 (px)Sql <g> i\-iK+K-i\u-ù*î\

© ix <g> 8X,+ 2 xSql <8> Xt_xx\.

We give W(H*K) a bigradation such that x <g> Xh ■ ■ ■ A,s is of bidegree (s, t) with

s

t = i + degx-h 2 h-
í=i

Our main result is the following.

Theorem 2.6. Let Kbe a reduced simplicial set such that H^K is a nice coalgebra.

Then there are natural isomorphisms

Et%K) X H'-XWiH^K))

for all s, t.

This will be proved in §13.
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Corollary 2.7. If H*K is nice then E2K depends only on the structure of H*K

as a coálgebra over the Steenrod algebra.

3. Unstable modules over the Steenrod algebra. The problem of computing

E2K via the fundamental chain complex will often reduce (see §§4—5) to that of

computing Ext groups for unstable modules over the Steenrod algebra A.

Definition 3.1. An unstable right A-module consists of a graded right ^4-module

M (Mn = 0 for n < 0) such that xSq' e Mn _ ¡ for x e Mn and xSq* = 0 for 2/ > n.

Let JIA denote the category of unstable right ^-modules, and note that each

H^KeJlA. It is straightforward to show that JIA is an abelian category with

enough injectives. The ith right derived functor of

Hom^í//*^),  )

will be called

Ext°JA(Z2,M)

for s, t^O and Me JIA.

3.2. A complex for Ext. A simplified form of the fundamental chain complex

may be used to compute the above Ext. For Me JIA, let V(M) be the chain

complex with

VS(M) = M <g> As,       5^0,

8(x <g> A;) = x <g) 8X,+ 2 xSq* <g> A^A,.

As before x <g) Xil ■ ■ ■ Ais is given bidegree (s, t) with /=j+deg * + 2/=i h-

Theorem 3.3. For M e JIA and s, / ^ 0 there is a natural isomorphism

ExtsJA(Z2, M) X HS-%V(M)).

This will be proved in 3.6.

3.4. The functors S, Ü and D.1. The following definitions are dual to those of

[M,P]. For Me JIA let SMeJIA be given by (SM)i = Ml.1 with the same A

action as M. This "suspension" functor has a right adjoint "loop" functor O.

Define Q.M e JIA by

(QM)2i = M2i+1,       (ÜM)2i _ i = Ker (S?1 : M2i -> M,)

with A action on Q.M induced by that on M. The functor D is left exact and has a

first derived functor Q.1, where Q.XM e JIA is defined by

(ÜxM)2i = 0,       (0.xM)2i _! = Coker (Sql: M2i -*■ Mt)

with

Sq2':(üxM)2i_i^(QxM)2i.2j_x

induced by Sq1: M( -> M¡_y.
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462 A. K. BOUSFIELD AND E. B. CURTIS [October

There is a natural inclusion i: Q.M -*■ M raising degree by one, and a natural

projection p : M -> QXM sending degree d to degree 2d— 1.

Note that if

0^M'-^M^M"->0

is a short exact sequence in MA, there is induced an exact sequence in MA

0 -> D.M' -> Ü.M -> Í2M" -> ÛV -+ Q'M -* WM" -► 0.

The following lemma, together with 3.3, will often provide an inductive procedure

for computing YLxtjeA (Z2, M).

Lemma 3.5. Let M e JtA with M0=0. Then there is a natural exact sequence

-> H'^ViOM)) -> Hs-t+AV(M)) -> H'-1-t(V(Q.1M))

-* Ftu(F(Û#)) -► Hs + 1-t+AV(M)) -*••-.

Proof. Filter V(M) by subcomplexes F2V(M)^FxV(M)c V(M) as follows:

F2V(M) = Image (V(i): V(Í1M)-> V(M)),

FXV%M) = Ker(hs: V\M)^ VHOf-M)),

where for x e Mn+X, X,=\x ■ ■ • A,t,

«5(x (8) A;) = 0, ix < n,

= p(x) <8> V-A,       'i " n-

It is straightforward to verify that the chain complex Fx V(M)/F2 V(M) is acyclic.

The lemma now follows from the isomorphisms

H%F2V(M)) x H\V(Q.M)),

HXV(M)/FXV(M)) X HS-AV(^M)).

3.6. Proof of 3.3. A short exact sequence

0-+M'^M^M"^0

in J(A gives a natural exact sequence

-► H'-\V(M')) -> HS-'(V(M)) -> HS-\V(M")) -► Hs+1-l(V(M')) -> ■ ■ ■.

Thus it suffices to show when M is injective in J(A that

H*\ V(M)) = 0   for s > 0,

H°-%V(M)) x Hom^ (H*(S% M).

The second isomorphism is evident. For the first, for each «2:0, let I(n) be the

injective unstable ^-module on one «-dimensional generator (/(«) is dual to F(n)

in [S,E, p. 27]). For n^l, QI(ri)=I(n-l) and Q.1I(n)=0. Hence 3.5 applies to
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show inductively that Hs4(VI(n)) = 0 for i>0, «2:0. Since any injective Me JIA

is a retract of a direct sum 0a I(na), it follows that Hst(V(M)) = 0 for s>0.

4. A generalized EHP sequence. Let A" be a reduced simplicial set such that

the coalgebra H*K is nice. We shall construct an exact sequence involving E2K

and certain Ext terms. When A' is a sphere, this will give a kind of EHP sequence

on the F2 level (see 5.3).

Let A: H^K^^H^K) be as in 2.4 and define

P(H*K) = 0(Ker A),       F(//*F) = Q(Coker A)

where Q. is as in 3.4. Note that P^^K) consists of the primitive elements in H*K

with gradations lowered by one; and that R(HjfK)t=P_2t+1(Hil.K) in the notation

of [M,S,II].

Theorem 4.1. If H#K is nice there is a natural exact sequence

■ • • -> Extf^ (Z2, PHJO -* El-t + x(K) -> Ext^Za, RH*K)

-+Ext^x/(Z2,PH*K)^--.

Proof. Filter the fundamental chain complex W(H*K) by

F2W(H*K) c FXW(H^K) c W(H+K)

as follows. Let F2W(H*K) be the image of the inclusion V(PHifK) -* W(H*K)

induced by the inclusion PH^K -> H*K. Let Fx WS(H*K) be the subspace

(H*K ® As) 0 (B <g> A«"1) <= JPi//**)

where 5 is the image of A: H^K^W(H^.K). It is straightforward to Show that

HS-\F2W(H^K)) x H^-KViFH+K)),

H^FxWiH^IF^WiH^K)) = 0,

Hs-XW(H*K)IFirV(H*K)) X ^-^-^(RH^K))

and the result now follows from 3.3.

Corollary 4.2. If H*K is a polynomial algebra of finite type, then

E*2-\K) ~ Kxt%-X (Z2,PH*K).

Proof. This follows from 4.1 since R(H^.K)=0.

5. On E2K in the Massey-Peterson case. Massey and Peterson in [M,P]

constructed their unstable Adams spectral sequence for each space K such that

H*K is a free unstable y4-algebra [S,E, p. 29]. In particular for such K, H*K is

nice, and we shall show that our E2K is the same as theirs. Also for such K, 3.3

provides a convenient Fj-term.
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Let t¡A be the category of unstable right A-module homology coalgebras. That is,

each C e 'ßA is simultaneously an unstable right ^-module and a connected co-

commutative coalgebra where the structures are compatible as follows. The

comultiplication A of C satisfies a Cartan formula; and

V- =(-)Sq\C2n^Cn

where the "square root" map yj■ is dual to the squaring map for commutative

Z2-algebras. Of course H^K e ^A if K is a reduced simplicial set.

5.1. The functor U*. For MeJfA with M0=0, define UJ<M)ec€A together

with/: U*(M) -> M by the universal property:

U*iM)

V \J
c'-rM

i.e., for any snchfeJtA, there exists a unique Fe'êA such that/° F=f. If M

is of finite type, then U*(M) is dual to U(M*) where Uis the free unstable ^4-algebra

functor [S,E, p. 29].

Theorem 5.2. If K is a reduced simplicial set with H*Kx U*(M) in 'ëA, then

Ei-\K) x Ext^(Z2, M).

Proof. Using the notation of 2.5 and 3.5, let v: W(H*K)-> V(H*K) be the

chain map

Vs =f@g: (H*K <§> A*) © Ç¥(H*K) <g> A'"1) -*. H*K ® As

where/is the inclusion and

g(x ® A,) = ax ® XkX,   if deg x = 2k+2,

= 0 if degx = 2Ä7+1.

Define a chain map u: W(H*K) -> F(M) by «= KG") » », J: H*Kx U*(M) -> M.

Since

P<7*(M) « ÛM,       RU*(M) « ûlM,

it is straightforward to show that u induces chain isomorphisms

F2W(H*K) X F2V(M),    W(H*K)/FXW(H*K) x V(M)/FXV(M)

using the nitrations of 3.5 and 4.1. Hence

u*: H*(W(H*K)) « H*(V(M))

and the theorem follows from 2.6 and 3.3.
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Remark 5.3. When H*KxU+(M) it follows that the exact sequence of 4.1

for K is equivalent to the sequence of 3.5 for M. If K=Sn this sequence becomes

-► E2(Sn~x) -> E2(Sn) -+ E2(S2n~x) -> ■ ■ ■

which is an EHP sequence on the F2-level (cf. [C3]).

6. A homological interpretation of E2K. When H*K is nice E2K will be de-

scribed as an Ext using the theory of nonadditive derived functors (see [An] and

[B, Appendix]). For any K this Ext also gives the F2-term of the unstable Adams

spectral sequence constructed in [B,K], and thus our E2K coincides with theirs

when H*K is nice. More details on the required derived functors may be found in

[B] and [B,K].

6.1. Derived functors on VA. Let VA be the category of unstable ^4-coalgebras

described in §5. An object / e VA will be called cofree if Ik, H*N where

N=YjKfa,n)
n61

with each irn a Z2-module. A cosimplicial resolution of C e VA consists of a co-

simplicial object X over VA together with an augmentation e: C-► Xo, such that:

(i) Xn is cofree for n St 0,

(ii) the chain complex of graded Z2-modules

e        8        8        8
C^X°-+XX^X2^---

is acyclic, where

8 = J4(-l)idi:Xn~1^Xn

and the d{ are the coface operators. Such resolutions exist for all C e VA. If

F: VA -> 3S is any functor to an abelian category SS, then F has right derived

functors

RST: VA-yâS,       s ^ 0.

For C e VA,

RST(C) x HS(TX),       s à 0,

where (X, e) is any cosimplicial resolution of C and TX is the cosimplicial object

over B with (TX)n = T(Xn).

For rS; 1 the functor

Hom^ (H+S\ -):VA-> (Z2-modules)

has right derived functors

Ext#(Za,  ) = Ext^ (#*£', •).

Theorem 6.2. IfK is a reduced simplicial set with H+K nice, then there are natural

isomorphisms

Etl(K) xExt^A (Z2,HmK).
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For the proof we need two lemmas concerning the fundamental chain complex

W(H*K).

Lemma 6.3. If le CA is cofree, then

Hs-l(W(I)) = 0,       s > 0,

H°\W(I)) x Uom,eA (H*S\ I).

Proof. It is easy to show that Ix U*(M) where M e JÍA is injective. Hence for

j>0

H°-KrV(I)) x Ext°jA(Z2, M) = 0

and the other part is also easy.

For « ïï 0 consider the functor (2.5)

Wn: CA -* (graded Z2-modules).

Lemma 6.4. If Ce CA is nice as a coalgebra, then

R°W\C) x Wn(C),       RsWn(C) = 0   for s > 0.

Proof. It suffices to prove the lemma with Y in place of Wn. There is an exact

sequence of functors on WA

8A
0^Y—+L2^L3

as in 2.4. Since R° is left exact and R°Lr=LT it follows that P0VF=Y. There is a

natural exact sequence

0—>PC—>C-^Y(C)

such that A is onto when C is cofree. This gives a long exact sequence of derived

functors containing isomorphisms

RSX¥(C) x RS + 1P(C),       s £ 1.

If C is nice as a coalgebra, then [B] implies PnP(C) = 0 for «2:2, which proves the

lemma.

6.5. Proof of 6.2. Let (X, e) be a cosimplicial resolution of H+K. Form a double

chain complex DX, where for m, « ̂  0

(DX)m-n = Wm(Xn)

and consider the two spectral sequences converging to the total cohomology

H*(DX). One of them, together with 6.3, shows

Ext£* (Z2, H+K) x HADX)

and the other one, together with 6.4, shows

HXW(H*K)) x HS(DX).

This completes the proof.
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Part II. The mod 2-lower central series spectral sequence

In this part we prove Theorem 2.6 by making a detailed study of a closely

related spectral sequence (§7) constructed by Rector [R].

7. The mod-2 RLCSSS. The filtration of GK by the YSGK gives rise to the

mod-2 restricted lower central series spectral sequence (abbr. mod-2 RLCSSS),

{Ê'K}, indexed by

ÊUK) = nq(YaGK/Ys+xGK),       d<: El,q(K) -> Êfa,q.x(K).

Note the change of indexing: the filtration s refers to rs, and the q refers to dimen-

sion in GA'.

It was shown in [R] that for K simply connected and of finite type, {Ê'K}

converges to -n^K modulo odd torsion. The convergence is much slower than for

the {ErK} of §2. Furthermore

nq(GK/Y2GK) x Êq+XK,       Êxq(K) x nqLs(GKIY2GK)

where F=©sc°=1 Ls is the free restricted Lie algebra functor (see 7.2.).

It follows that ÊX(K) depends functorally on the graded Z2-module H^K, and we

shall describe ÊX(K) in 7.3.

Definition 7.1. A graded restricted Lie algebra (over Z2) consists of a graded

Z2-module B with Fm=0 for m<0 together with homomorphisms

l,]:Bm®Bn^Bm+n,       m,n^0,

and functions

(■)™:Bm->B2m,       m fc 0,

such that for w, x e Bm, y e Bn, and ze Bq:

(i) [x,y] = [y,x],

(ii) [x,x]=0,

(iii) [[*, yl A + [fa z], x] + [[z, x],y]=0,
(iv) [x,y™] = [[x,y],y],

(v) (w+x)m = w™ + [w, x]+x[2].

B is called a restricted Lie algebra if Bm = 0 for /n^O.

Example. If A is a graded associative algebra over Z2, define for x e Am and

y e An, [x, y]=xy+yx, xm=x2. Then A is a graded restricted Lie algebra.

7.2. Free Lie algebra functors. Let M be a graded Z2-module with M„=0 for

n < 0, and let

T(M) = © r(M)
r = 0

be the graded tensor algebra generated by M. Then

UM) = 0 Lt(M)
T-l
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is the graded restricted Lie subalgebra of T(M) generated by M=TAM). Any

homomorphism of M=LX(M) to a graded restricted Lie algebra B extends uniquely

to a map L(M) -> B of graded Lie algebras.

Notation. Let H*K denote H*K with gradation lowered by one.

Theorem 7.3. If K is a reduced simplicial set, there is a natural isomorphism

L(H*K) ® A -^> ÊXK

under which

(LAH*K) ê A% -> Êh'rM)-

This will follow from 8.5.

8. Simplicial restricted Lie algebras. In order to prove 7.3, we study the natural

operations on tt*R where P is any simplicial restricted Lie algebra over Z2.

Definition 8.1. For x e nmR and y e 7rnP the Lie product [x, y] eirm+nR is the

image of x ® y under the composition

g p.ç
1TmR  (g) 7TnP -> 7Tm+n(P   <g> R) -► 7Tm+nP

where g is the Eilenberg-Zilber map [Mac, p. 239] and p. is the product in P.

Definition 8.2. For x e 7rmP and a e irnLK(Z2, m) the composition xa e nnR

is the image of a under the map

/*: "nLK(Z2, m) -> 7rnP

where / is the Lie extension of a simplicial homomorphism /: K(Z2, m)-> R

withP(im)=x.

For O^z'íí« let A( eTrn+iL2K(Z2, n)xZ2 denote the nonzero element (see [6A]).

If xe Rm andO^i^m then xA¡ eirm+lR, and we define xi2] etr2mR by x[2] = xAm.

Proposition 8.3. The operations [ ,   ] and ( ■ )[2] make tt+R a graded restricted

Lie algebra (over Z2). Furthermore

(i) For x, ye irmP and i<m

(x+y)Xt = xAi+jAi.

(ii) For x e irmR, y e irnR, and i<n

[x,yXt] = 0.

(iii) For x e TrmR, 0^/, k, and i+k + l 5|/w

(x)A(A2(+1+k = 2_ I      ,•      lwAj+fc-jA2j+1+J.
no \    J     /

Proof. Part (iii) is a consequence of [6A]. The others are straightforward using

simplicial formulas, of [C2, p. 84], or by universal examples; e.g. for (ii), take

R=L(K(Z2, m) © K(Z2, «)). These examples are analyzed by means of 8.4.
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8.4. Decomposition of L(M © N). If M and N are (simplicial) Z2-modules,

there is an isomorphism [Sch]

DX®D2: L(M) ©L(N <g> T(M)) -► L(M © N)

where Dx and D2 are the restricted Lie maps induced respectively by

M-^L(M®N)

and by the homomorphisms

N ® T%M) ̂  L(M ® N)

sending

n <g> »h <g) ••• ® #ws -►[••• [ii, mx],..., ms].

The isomorphism may be iterated to yield a decomposition

L(M ®N)x L(M) ®L(N)®L(N <g> M) ® L(N <g> M Cg> M)

©L(Ar<g M &#)©••-.

Theorem 8.5. If X is a simplicial Z2-module there is a natural isomorphism

L(tT*X) <g> A -^* 77*/,*.

Proof. The inclusion

7r*-A' =   TTifLXX C   TT+LX

extends uniquely to a map L(t*X) -*■ n^LX of graded restricted Lie algebras.

This extends uniquely to a homomorphism

L(tt*X) eg) A -+ TT+LX

by interpreting the elements a e A as composition operations. (The relevant

operations are additive by 8.3(i).) This homomorphism is an isomorphism in the

case X= K(Z2, n) by [6A], and thus in the general case by 8.4.

Remark 8.6. The operations [ , ], ( )[2], and ( )A¡ on -n^LX are completely

determined by 8.3 and 8.5. Clearly 8.5 implies 7.3. It also provides a classification

of homotopy operations for simplicial restricted Lie algebras.

9. Samelson products.   If G is a simplicial group, the commutator pairing

<•, •>: G A G^G

with (g, h}=ghg~1h~1 induces the Samelson product

<    ,      >: TTmG   A   7T„G^7rm + nG

for m, «^0, which is bilinear for m, njgl. See for example [C2, p. 103] for a

representative simplicial formula. This product in n^GK corresponds (with appro-

priate signs) to the Whitehead product in tt+K.
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Theorem 9.1. If K is a reduced simplicial set, there are natural pairings

[ ,   ]: ÊUK)®ÊUK)^%+»,t+v(K)

making Êr(K) a graded Lie algebra for r}zl and satisfying:

(i) Ifr=l then [ ,   ] is the Lie product o/§8.

(ii) Ifr^l,andx,yeÊ'(K), then

d'[x,y] = [drx,y] + [x,dry].

(iii) The product [ ,   ] in Êr+X(K) is induced by that in Ê'(K).

(iv) If K is simply connected and affinité type, then the product [ ,   ] in Êœ(K)

is induced by the Samelson product in -rr^GK.

This theorem is an easy corollary of 9.4 (iii).

Remark 9.2. It follows by §8 that in ÊxKxL(H*K) ® A the only nontrivial

Lie products are those involving elements in the summand L(H+K).

9.3. Generalized Samelson products. The commutator map for a simplicial

group G gives a pairing

< , >:(rrG/rr+fcG) a (rsG/rs+fcG)->rr+sG/rr+s+kG

for r, s^l and l^k^oo where T00G = *. This pairing induces the generalized

Samelson product < ,   >: 7rm(rrG/rr+(cG) A^n(rsG/rs+fcG)^7rm+n(rr+sG/rr+s+i£G)

for m, n^0 which is bilinear for m,n^ 1.

For k fixed,

{^(YrGIYT+kG)}rix

has the product < ,   >, and (if k < oo) has differential

8: TT*(rrG/rr+kG) ->TT*-x(Yr+kGIYr+2kG)

given by the boundary map for the fibration

rr+fcG/rr+2kG -*• rrG/rr+2fcG -» rrG/rr+kG.

Proposition   9.4.// lgrcgoo,   xe7rm(rrG/rr+fcG),  yetTn(YsG¡Ys+kG),   and

zenq(YtG/Yt+kG),then:

(i) For m, n^l

fa,yy+(-irn<y,x} = 0.

(ii) For m,n,q^l

(-l)m\fa,y>,z> + (-iy\fa,z},x) + (-iyXfax),yy = 0.

(iii) For k<oo and m + n 5:1

8<x,y> = <8x,y} + (-ir<x,8y).

Proof. Part (i) follows from the usual properties of the smash pairing. For

part (ii), use the expression
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«a, by, c>«a, by, <c-\ byy%(b, cy, ay

«ft, cy, (a-\ cyy\(c, ay, ¿>«c, ay, <*-*, a»6

which reduces to the identity in any group. For part (iii), consider the pairs

(At, A't) = (r¡G/rj+2fcG, ri+fcG/r(+2fcG)

for i=r, s and r+s. The commutator pairing Ar A As -* .¿r+, produces a diagram:

7Tm(/4r, yQ (g 7Tn(^s, ^j)    —*-►    Trm_x(A'r)  (g) ffB(y4„ y4s)

i <gs*

7Tm(^r,y4;)  ®ff„-M)

8*°A

*   "m+n-lC^r + s)

in which « is the smash pairing and

d*oh = n°(d„, rg) i) + (-l)mAo(l gigj.

The result follows easily.

10. The cobar spectral sequence. Let K be a reduced simplicial set. When K

is simply connected, the cobar construction of Adams [A2] (or the more recent

construction of Eilenberg-Moore [E,M]) provides a spectral sequence converging

to H*GK. We shall construct a version, P(AT), of this spectral sequence together

with a map 9: ÊiK) -> EiK) corresponding to the Hurewicz map ir+GK-> H*GK.

For any group G, filter the group ring Z2G by powers of the augmentation ideal

Z2G = Io = I1 => • • • =s /» 3 /»+* =>....

Then 0nêO (/"//" + 1) becomes a Hopf algebra.

Lemma 10.1. P/iere « a natural homomorphism of Hopf algebras

h:TiG/Y2G)^ © (/»//"+1)
nao

jwc« i«ar « « a« isomorphism if G is a free group.

Proof. Let 9: G -> / be the function 0(g) =g—e. Then 9 induces an isomorphism

0:G/r2G^*///2

and we define « as the unique extension of 9 to the tensor algebra. When G is free,

« is an isomorphism by the remarks in [Mac, p. 122].

Let {EriK)} be the spectral sequence arising from the above filtration of Z2GK.

EUK) = *,(/'//'+*),       d' : EUK) -> E¡+ r>t _ ¿K).
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Theorem 10.2. If K is a reduced simplicial set then:

(i) For r ä 1 Ër(K) is a differential graded Hopf algebra with the structure of

Er + X(K) induced from that ofE'(K).

(ii) EX(K) is the tensor algebra generated by

El*(K) x H*K

with differential dx on E{*(K) given by the comultiplication

A: H*K^H*K®H*K.

(iii) If K is simply connected then {ET(K)} converges to H^GK.

Thus EX(K) is the graded Hopf algebra associated with a decreasing filtration

ofH*GK.

Proof. The convergence part follows from [D, §11] when AT is a simply connected

suspension, and then follows in general by [C, 4.1]. The structure of EX(K) follows

from 10.1. Since the components Hm+nK^- HmK (g) HnK of dx are natural homo-

morphisms, they must be given by A if they are nonzero. Using the examples

K=SmxSn, one shows they are in fact nonzero. The rest is clear.

Remark 10.3. It follows immediately from 10.2 (ii) that

EllK) x Cotor1f¡t+S(Z2,Z2)

(see [M,S, II]).

Lemma 10.4. For each n^l, 0(YnG)<=In and 6 gives a homomorphism

ö:rnG/rn+1G^/"//"+l.

If G is free then the induced map

ö:F(G/r2G)-^F(G/r2G)

is the canonical inclusion.

The proof is straightforward.

Proposition 10.5. The function 6: GK^-Z2GK induces a spectral sequence

map 6: Ê(K) -> E(K) such that:

(i) For rè 1, #r: Êr(K) -*■ Er(K) is a graded Lie algebra map.

(ii) If K is simply connected of finite type then 0°° : Êm(K) -> EX(K) is induced

by the Hurewicz map tj^GK -> H*GK.

(iii) The map 6X : L(H*K) ® A ->- T(H*K) restricts to the canonical inclusion

on the summand L(H*K) and is zero on the other summands.

The proof is straightforward.

11. The chain complex L(H*K).   The image complex of the map (10.5)

0X:Ê\K)^EX(K)
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is the graded restricted Lie algebra L(H#K) with differential

8A : LiH*K) -► Ls+ X(H*K),       s ^ 1

determined by

(i) 8*[x,y]=[8*x,y] + [x,8*y],

(ii) 8A(xt21) = [8Ax,x],

(iii) for 5=1

8A: H*K->L2(H*K) c J^tf eg //*#

is induced by the comultiplication A of H*K.

More generally, let C be any homology coalgebra over Z2, and define a differ-

ential graded restricted Lie algebra L(C) as above. For s ̂  1 consider

BSL(Q c 4¿(C) «= ZSL(C) c I^C)

where BSL(C) (resp. ZsLiC)) are the boundaries (resp. cycles) in LAC), SSL(C)

is generated by all 6[2i] with ¿> e BrL(C), 2'r=s. Define homology groups

HSL(C) = ZSL(QIBSL(C),       HSL(Q = ZSL(Q/ESL(C).

Note that H*L(C) is a graded restricted Lie algebra.

The canonical inclusion L(C) -> T(C) induces a map

i: H*L(C) -» PH*T(C) x P Cotorc (Z2, Z2)

where P denotes the primitive element functor.

Theorem 11.1. The map i is an isomorphism of graded restricted Lie algebras.

Proof. For s 3:2, we first show that the map

t:ÊsL(C)^Ê2sL(C)/B2sL(C)

defined by £(x) = x[21 is an isomorphism. Clearly f is a homomorphism since

[x, y] e B2sL(C) for x, y e ÊSL(C). An inverse to f is induced by the natural

homomorphism r¡: L2pC) -> LAC) where -n[x, y] = 0, r¡(xm) = x.

Choose a set of homogeneous elements {z¡}íe; in Z*L(C) corresponding to a

basis for H*L(C) ; and choose a set of homogeneous elements {x,}jsJ in L(C) such

that {SAx,}/6/ is a basis for B*L(C). Using the isomorphism f it can be seen that

is a Z2-basis for P(C). For each i e I let K(i)<^T(C) be the subcomplex with Z2-

basis {1, zj; and for each/e/ let K(j)<^T(C) be the subcomplex with Z2-basis

{1, x;j u {(8Ax;.)"}nÈ1 u {x/SAxy)"}näl.

Choose a simple ordering of the index sets / and /. Define a chain map

«:((g) ^(0) ® (g» K(j)^T(C)

by «(mi eg ■ • ■ <g Mr) = «r • -ur.
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The Poincaré-Birkhoff-Witt theorem [M,M, §6], shows that h is an isomorphism.

Since the complexes K(j) are acyclic, it follows that a Z2-basis for H*T(C) is given

by the elements

fa- ■■zit\i1< ••• < /re/}.

The theorem now follows from [M,M, §6].

Remark 11.2. The theorem and its proof show how H^L(C) may be computed

from F Cotorc (Z2, Z2) and B*L(C).

12. Differentials in E(K). Let K be a reduced simplicial set. Recall from

§8 that A operates (on the right) on ÊX(K) and that

ÊX(K) x L(H*K) ® A.

Theorem 12.1. The differentials of Ê(K) satisfy:

(i) Ifx ® A7 € H%K ® As with s^O then

d\x <g> A,) = 0   for 1 ^ r < 2s,

d2\x ® A7) = x(8X,) + (8*x)XI + J (xSq<)Xi.xXI
i = i

where m = [deg x/2],

(ii) Ifx <g> X,eLk(H^K) (g> As tv/fA A:>1 and s^O, then

. d'(x <g A7) = 0   forl Sr < 2s,

¿2S(* 8 A7) = (SAx)A7.

Remark 12.2. This theorem reduces the computation of E2(K) to finding

¿l*(K), Êl*(K), and H*L(H*K) (see §11).
Remark 12.3. Suspension. Let SK denote the suspension of A^as in [K, p. 311].

The canonical function K -*■ SK, of degree +1, induces a spectral sequence map

a:Ê(K)-*Ê(SK)

sending E¡t(K) to E¡¡tt+X(SK) and commuting with the differentials. It is straight-

forward to show for r= 1 that

a: L(H*K) <g) A -*L(H*SK) 8 A

is given as follows. For/ m^O let e denote the composition

_               O     —         susp    —
(L2,(H*K))2,m -*-+ (H*K)m-£ (H*SK)m+1

where Q = ident for 7=0 and Q = (77)' for 7" > 0 with 17 as in proof of 11.1. If

x ® A7 e {L¿H+K))% 8 As

then

ct(x (gi A7) = (ex) ® AmA2m- • -A2i-imA7   for k = 21, n = 2'm

= 0 otherwise.
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Thus a maps L(H*K) eg A onto H*SK eg A and maps H*K eg A injectively.

Lemma 12.4. The differential d1 ofÊAK) satisfies:

(i) For x e H*K
m

dAx) = 8Ax+ 2 xSa' ® A'-i
¡=i

w«ere m = [(deg x)/2].

(ii) For x e Lk(H*K) with k > 1

d\x) = 8Ax.

Proof. The component H*K^- H*K eg A1 of d1 is determined from  [6A]

using the iterated suspension map a.

The components

LAH^-^L^AH+K),       fc£l,

of d1 are determined using the spectral sequence Hurewicz map of §10. The proof

of (ii) is completed using the fact that ÊAK) is a differential Lie algebra (9.1),

and Êl*(K)xLs(H*K) for j odd.

12.5. Composition. The composition product

7rATrG/Yr+xG) x 7rXrsP5"/rs+iPS") -► ̂ (rrsG/rrs+xg)

is defined as usual when G is a simplicial group and F is the free group functor.

Let

S e 7rn(TrG/rr+ XG),       0 e »,_ X(YSFS« " l/r.+ XFS» " >■)

denote the respective images of elements

M6 7rn(rrG/rr+nG), a ¿i,

P6»y_1(r^s-vri+»f5-1),    * a i,

under the canonical maps. Let

oveTTAYsFSnIYs+xFSn)

be the suspension of v (see 12.3). Consider the composition

Mo(aC)e7r/rrsG/rrs+1G).

The following lemma and its proof are similar to [6A, §3].

Lemma 12.6. There is an element

w6ff,(r„G/r„+mG)

where m = Min (sh, rk) such that :

(i) m o (ov) is the image of w under the canonical map.

(ii) The element

8w e 7ri_1(rrs+mG/rrs+m+1G)
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satisfies

8w = (8u) ov if sh < rk,

8w = ü o (o8v) if rk < sh,

8w = (du) o v + ü ° (o8v) if rk = sh.

Proof. Represent u by pe(YrG)n such that dnp.e(Yr+hG)n-x and d¡p = * for

i<n. Represent v by v e(YsFSn'x)j^i such that d0ve (Ys+kFSn~x)j-2 and dtv=*

for />0. Write v in the form B(in~x) where F is a formula involving only de-

generacy operators and the group operations of product and inverse. Then B(p)

e (YrsG)j represents ü o (ov) e 7r3(rrsG/rrs+1G) and it is straightforward to show:

dlB(p)) = Cfa)      for i = 0,

= * for 0 < / < j,

= B(dnp)   for i = j,

where C is a formula of the same sort as B with C(in~x) = d0v. Clearly

C(p)e(Yris+k)G)j.i

represents

ü o (<j8v) e TTj-i(Yrs+rkGIYrs+rk+1G)

and B(dnp) e (r(r+ft)sG)y_1 represents

8u°ve 7Ty-i(rrs+shG/rrs+sh+1G).

The result now follows easily.

12.7. Proof of 12.1. Let

x 8 A7 e (Lk(H*K) 8 As),

with deg x=n and s>0. Then

xenn(YkGKIYk+1GK),

A, e 7T,_ ̂r^S"- l/r2> + iFS" - *),

x 8 A7 = x o (aXj).

(We usually denote ctA7 by A7.) By [6A] there exists

v eni_x(Y2sFSn-xIY2>+iFSn-x)

mapping to A7 and satisfying

8v = aA7e7rJ._2(r2»+iF5n-1/r2»+i+iFSn-1)

where 8X, is as in 2.3. It follows by 12.6 that dr(x 8 A7)=0forr<2s;andi/2S(x 8 A7)

is represented by

(i/1x)A7£7rJ_1(r2»(fc+1)GÄ'/r2S(fc+1)+1GÄ') for k>\,

(dxx)XI + x(8XI)e-n-1_i(Y2>+xGKIY2> + i + 1GK)   for k - 1.

The result now follows from the description of dxx in 12.4.
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13. Proof of Theorem 2.6. Let us use temporarily the auxiliary filtration

{fsGK}si0, where

f2jGK = Y2iGK,      f2j+xGK = Y2i+XGK.

This gives rise to a spectral sequence {er(K)}, where

elAK) = *AfsGKIfs+xGK),       d<: el,¿K) -* e's+r¡q.x(K).

Theorem 2.6 follows easily from:

Proposition 13.1. If K is a reduced simplicial set with H%K nice, then e2 4(/sT) = 0

for s odd, and the chain complex

el*(K) -^ ■ ■ ■ —> e22j,*(K) -^ e22j+2,*(K) —* . •.

is isomorphic to W(H*K).

This will be proved in 13.4.

13.2. L(H*K)for H*K nice. It follows from 11.1 and [B] that when H*K is

nice:

(i) naL(H*K) = 0 unless s = 2j,j^0.

(ii) The Lie products in H^LiH^K) are zero except possibly for those of the

form

[   ,   ]: HXL(H*K) (g HXL(H*K) -* H2L(H*K).

(iii) Fory'ïï 1

( )[2]: H2ÍL(H*K) -> H2i + iL(H*K)

is an isomorphism.

Define for/ïî 1

Y2<//*/0 = Z2*L(H*K)/B2<L(H*K)

where B2iL(H*K)<=L2i(H*K) is generated by all bm with beB2^L(H^K), k =

/-1>1.
It follows from the above that when H*K is nice:

(i) For/21

(y»:W¿iH*K)->Ya!+iiH0K)

is an isomorphism,

(ii) The functor T2 coincides with Y in 2.4.

For/^ 1 consider the spectral sequence {<£'(K)} with

*U*) = TTt(rsGKIYs+xGK)   for 2> £ s ú 2Í + 1

= 0 otherwise

arising from the obvious filtration of r2<GA"/r2<+i + 1GAT.
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Lemma 13.3. If H*K is nice then £f't(K) = 0 unless s = 2\ 2i + x. Furthermore

S$,JK) x (R+K 8 AO © ( © Z2'L(H*K) 8 A'"«).

¿$+i,¿K) x (/7»Í®AÍ41) © f© L2<H*KIB2<L(H*K) 8 A>-'+1í

Proof. The spectral sequence S'(K) may be completely computed in the required

range using 12.1, 13.2, the proof of 11.1, and one other technique. Namely, there

is a map/: K^> Xsuch that A'is a product of K(Z2, n)'s and/*: H*K-> H*Xis a

monomorphism. Since HsL(H*X) = 0 for s>0, it is possible to show certain

differentials vanish in <%(X) and consequently in <$(K) by naturality.

13.4. Proof of 13.1. The above lemma implies e2^(K) = 0 for 5 odd, e2^(K)

XH*K and for j^ 1

eli.ÁK) « (B*K 8 A') © ( © Y2</Y+A-) 8 A'-'V

Thus by 13.2

e%,JK) X rV'(H^K)

and it remains only to show that the differential d2 of e2(A") corresponds to 8 in

rV(H*K). For the components 2.5(i) of the differential, this follows easily from 12.1.

For the components 2.5(ii), it suffices by naturality (see proof of 13.3) to suppose K

is a product of K(Z2, n)'s. Then

A: H^K^^H^K)

is onto and the last components may be deduced from the first.

References

[Al] J. F. Adams, On the structure and applications of the Steenrod algebra, Comment.

Math. Helv. 32 (1958), 180-214. MR 20 #2711.

[A2]-, On the cobar construction, Colloque de topologie algébrique (Louvain, 1956),

Georges Thone, Liège, 1957, pp. 81-87. MR 19, 759.

[An] M. André, Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture

Notes in Math., no. 32, Springer-Verlag, Berlin, 1967. MR 35 #5493.

[6A] Bousfield, Curtis, Kan, Quillen, Rector and Schlesinger, The mod-p lower central

series and the Adams spectral sequence, Topology 5 (1966), 331-342.

[B] A. K. Bousfield, Nice homology coalgebras, Trans. Amer. Math. Soc. 148 (1970), 473-

489.

[B,K] A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with

coefficients in a ring, (to appear).

[Cl] E. B. Curtis, Some relations between homotopy and homology, Ann. of Math. (2) 82

(1965), 386-413. MR 32 #1704.
[C2]-,   Simplicial homotopy   theory,   Aarhus   Univ.   Lecture   Notes,   Matematisk

Institut, Aarhus, Denmark, 1967.

[C3] -, Some nonzero homotopy groups of spheres, Bull. Amer. Math. Soc. 75 (1969),

541-544.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1970] THE HOMOTOPY OF NICE SPACES 479

[D] A. Dold, Homology of symmetric products and other functors of complexes, Ann. of

Math. (2) 68 (1958), 54-80. MR 20 #3537.

[E,M] S. Eilenberg and J. C. Moore, Homology and fibrations. I: Coalgebras, cotensor

product and its derived functors, Comment. Math. Helv. 40 (1966), 199-266. MR 34 #3579.

[K] D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958),

282-312. MR 22 #1897.

[K,W] D. M. Kan and G. W. Whitehead, The reduced join of two spectra, Topology 3 (1965),

239-261. MR 31 #2720.

[Mac] S. MacLane, Homology, Die Grundlehren der math. Wissenschaften, Band 114,

Springer-Verlag, Berlin, 1963. MR 28 #122.

[M,P] W. Massey and F. Peterson, The mod 2 cohomology structure of certain fibre spaces,

Mem. Amer. Math. Soc. No. 74 (1967). MR 37 #2226.

[M,M] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81

(1965), 211-264. MR 30 #4259.
[M,S] J. C. Moore and L. Smith, Hopf algebras and multiplicative fibrations. II, Amer. J.

Math. 90 (1968), 1113-1150. MR 38 #6599.

[R] D. Rector, An unstable Adams spectral sequence, Topology 5 (1966), 343-346. MR 33

#8003.
[Sch] J. W. Schlesinger, The semi-simplicial free Lie ring, Trans. Amer. Math. Soc. 122

(1966), 436-442. MR 33 #8001.
[Sm] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans.

Amer. Math. Soc. 129 (1967), 58-93. MR 35 #7337.

[S,E] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies,

no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056.

Brandéis University,

Waltham, Massachusetts 02154

Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


