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1. Introduction. Using the approach of [C], [R] and [6A], we construct for
each space X, a spectral sequence converging (almost always) to the homotopy
groups of X modulo odd torsion. This can be considered an ‘“unstable Adams
spectral sequence” in that it agrees with the ordinary mod-2 Adams spectral
sequence [4] for a stable range of dimensions. Furthermore our spectral
sequence agrees with that of [M,P] when theirs is defined. However our version
has these advantages: it is more generally defined, has an E;-term suitable for
computation, and has an E,-term which is homologically describable for nice
spaces (see 2.2).

Our statements and constructions are in terms of simplicial sets, simplicial groups
etc. Corresponding statements for topological spaces may be obtained by means
of the singular complex and geometric realization functors.

For each connected simplicial set K, the spectral sequence [E,K] arises from the
homotopy exact couple associated with a modified lower central series filtration
of Kan’s simplicial loop group GK. If K is simply connected with finitely generated
homotopy groups, then {E,K} converges to =,K modulo odd torsion. In order to
describe E,K homologically, we assume that H(K; Z,) is a nice homology co-
algebra as in [B]. This condition is satisfied, for example, when H*(K; Z,) factors
as the tensor product of polynomial and truncated polynomial algebras. Under
the niceness assumption, we construct a fundamental chain complex whose homo-
logy is E,K. This complex, and hence E,K, depends only on H,(K; Z,) as a co-
algebra over the Steenrod algebra.

The paper is in two parts. In Part I, we construct the spectral sequence and the
fundamental chain complex. We derive a simplified E,-term in the Massey-Peterson
case, and then give our homological interpretation of E,K when H(K; Z,) is nice.
In Part II, we prove that the fundamental chain complex serves as an E;-term for
our spectral sequence. The proof involves a detailed study of a closely related
spectral sequence defined by Rector [R].

Using a very different approach from ours, D. M. Kan and the first author
[B,K] have developed a mod-p spectral sequence, for all primes p, which has the
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458 A. K. BOUSFIELD AND E. B. CURTIS [October

advantage that, without any niceness assumption, the E,-term admits a homo-
logical description (as in §6). On the other hand, the advantage of our present
work is that for nice spaces the E,-term is more accessible, as the homology of the
fundamental chain complex. This becomes useful in the examples (forthcoming)
of S*, SU(n), BU(n), SO(n), BO(n), Stiefel manifolds, and especially SF, BSF.

The authors are grateful to D. M. Kan for his advice and criticisms.

1.1. Conventions. Let K be a reduced simplicial set; that is, K has only one
vertex. Let H,K denote the homology of K with Z, coefficients. The diagonal map
K — Kx K induces a comultiplication

A: H,K — HK ® H,K

making H,K a homology coalgebra, that is, a connected cocommutative coalgebra.
Also H,K is a right module over the Steenrod algebra, 4, with operations

(-) S¢': H,K— H,_K

which dualize to the usual Steenrod operations in cohomology. Similar conventions
apply to the reduced homology H K.

PART I. A SPECTRAL SEQUENCE FOR THE HOMOTOPY OF NICE SPACES.

2. The spectral sequence and the fundamental chain complex. To construct the
spectral sequence, we first recall that the mod-2 lower central series of a group G
is the filtration (see [R])

G=IG>..-2T,G>T;,,G>---

where I',G is the subgroup of G generated by all {g,,..., g»>* such that 2tk >,
the g,€ G, and < ,..., > is the simple commutator. For a reduced simplicial set
K, the loop group GK (defined in [K]) is a free simplicial group for which

7e-1(GK) = m(K), m,_1(GK|T:GK) ~ H(K).
We filter GK (in each dimension) by the modified mod-2 lower central series
GK>T,GK > -+ D T'psGK © I'ys+1GK > -
The associated homotopy exact couple gives rise to a spectral sequence {E,K}:
E3YK) = m_y_1(T3GK[Tgs+1GK),  d,: EXY(K) — Ef*mt+7~Y(K).

Let 7,(K; 2) denote the quotient of =, K by the subgroup of elements of odd
finite order. The following theorem summarizes results of [R] and [6A].

THEOREM 2.1. If K is simply connected with finitely generated homotopy groups,
then {E,K} converges to m4(K; 2). More precisely E¥'(K)=E%K) for large r, and
{E%**™(K)}sz0 is the graded group of a complete decreasing filtration of m,(K; 2).
For r=2,{E,K} coincides in the stable range with the mod-2 Adams spectral sequence.

2.2. Nice homology coalgebras. In general E,K seems to depend on the ““higher
order” structure of H,K; but this difficulty is avoided when H, KX is a nice homology

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1970] THE HOMOTOPY OF NICE SPACES 459

coalgebra, as in [B]. To recall the notion of niceness, we first suppose that C is a
homology coalgebra of finite type over Z,; that is, C is finitely generated in each
dimension. Then C is nice if and only if the dual algebra C* has a presentation
C*=z R/I where R is a connected polynomial algebra of finite type over Z, and I
is a Borel ideal (see [S, p. 79]). By [S, p. 80] this is equivalent to the condition that
C*~ R ®5 Z, where R is as above, B is a polynomial subalgebra of R, and R is
free as a B-module. The definition of niceness for an arbitrary homology coalgebra
over Z, is obtained by suitably dualizing the foregoing condition on C*. We remark
that by [B, 4.1], a homology coalgebra C is nice if and only if R*P(C)=0 for
n>1 where R"P is the nth right derived functor of the primitive element functor.

Some (overlapping) examples of nice coalgebras are given by:

(i) If H,K is the coalgebra of some Hopf algebra, then H,K is nice.

(ii) If H*K is of finite type and factors as a tensor product of polynomial and
truncated polynomial algebras, then H,K is nice.

In particular if K is homotopy equivalent to a loop space or to a sphere, then
H,K is nice. We sometimes call a space nice if its homology is nice.

2.3. The algebra A. Our fundamental chain complex for “computing” E,K
when K nice will involve the algebra A (=E*(S) in [6A]). Recall that A is the
graded associative differential algebra with unit (over Z,) with:

(i) a generator A, of degree i for each i=0,

(ii) for each i, k 20 a relation

k—1—j
Moiy14k = Z ( : J))‘t+k-1’\2¢+1+1,

20 J
(iii) a differential © given by
ZOED nd TP
j=1 \J

Let I=(i,, ..., i;) be a finite sequence of nonnegative integers. Call I allowable
if i;,,<2i; for each 0<j<s, or if I is empty. Then A has a Zj-basis given by all
Ar=MA,---A, with allowable I (\;=1 when I empty). Note that A=P),, A*
where A* is generated by the monomials A; of length s. For n2=0 let A(n) be the
subspace of A generated by all allowable A, for which i; <n or I empty. Each A(n)
is closed under 9, and in fact A(n)=x E,(S™) by [6A].

NoraTion. For a graded Z;-module M, let M & A (resp. M & A) be the sub-
space of M @ A generated by all x @ « with x € M, and a € A(n—1) (resp. a € A(n)).
Also let M ® A®* and M & A be the obvious summands.

2.4. The functor ¥'. A certain nonadditive functor ¥ will appear in our funda-
mental chain complex (2.5). The map

AR1+1 A H KQHK—>HAKR A ,KQ HK
restricts to a homomorphism 8*: Ly(#,K) — Ly(H,K) where

L() = '@1 Lr(')
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460 A. K. BOUSFIELD AND E. B. CURTIS [October

is the free restricted Lie algebra functor as in 7.2. We define
Y(H.K) = Ker 8.

The right action of the Steenrod algebra 4 on H(Kx K)~ H,K ® H,K induces a
right A-module structure on ¥ (H,K), and the diagonal A restricts to a right
A-module map

A: H K — Y(H,K).

Let o: ¥(H,K) — H,K be the restriction of the homomorphism (halving degrees)
Ly(A,K) — H,K which sends x'* — x and [x, y] — 0 for x, y € H,.K.

2.5. The fundamental chain complex. The following chain complex W(H,.K)
will serve as an E;-term for our spectral sequence when H,K is nice. Define for
eachs=20

W(HyK) = (H,K & A°) @ (F(H(K) ® A*7Y),
8: Wi (HK) — WS+Y(HK),
where the differential 8 has the following components:
(i) for x ® \; € H.K ® A’,
(x®\) = (x ® on+ Z xSq' ® A{_l/\,) ®(Ax Q@A)
i=1

where m=[(n—1)/2];
(ii) for x ® A, € ¥Y(H,K) ® A*~! when deg x=2m+1

S(x @A) = (0) ® (x ® N+ > xS¢'® AHA,)

izl

and when deg x=2m+2
8(x @ A) = (ax ® @A\ + 2 (6%)Sq' @ (A‘_lxmmm-am-l)&)
i=1

m
® (x ® N+ D xS¢' ® ,\,_1)«,).
i=1
We give W(H,K) a bigradation such that x ® A, - - - A, is of bidegree (s, ) with

8
t =s+degx+ z ij.
j=1
Our main result is the following.

THEOREM 2.6. Let K be a reduced simplicial set such that H,K is a nice coalgebra.
Then there are natural isomorphisms

E$Y(K) ~ H*'(W(H,K))
foralls,t.
This will be proved in §13.
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1970] THE HOMOTOPY OF NICE SPACES 461

COROLLARY 2.7. If H,K is nice then E,K depends only on the structure of H,K
as a coalgebra over the Steenrod algebra.

3. Unstable modules over the Steenrod algebra. The problem of computing
E;K via the fundamental chain complex will often reduce (see §§4-5) to that of
computing Ext groups for unstable modules over the Steenrod algebra A.

DEFINITION 3.1. An unstable right A-module consists of a graded right A-module
M (M,=0 for n<0) such that xSq' € M,, _, for x € M, and xSq*'=0 for 2i> n.

Let A A denote the category of unstable right 4-modules, and note that each
H.,Ke MA. 1t is straightforward to show that .#A is an abelian category with
enough injectives. The sth right derived functor of

Hom 4, (ﬁ (59, *)
will be called
Extiy, (Z5, M)

for s, t=0and M e .#A.

3.2. A complex for Ext. A simplified form of the fundamental chain complex
may be used to compute the above Ext. For M e .#A, let V(M) be the chain
complex with

VM) = M@ N, 520,
8(x @A) = x @ N+ D xS¢* ® A_y\.

iz1
As before x ® A, - - - A, is given bidegree (s, ¢) with t=s+deg x+ >3-, i,.
THEOREM 3.3. For M € # A and s, t 20 there is a natural isomorphism
Exti4, (Zo, M) = H*Y(V(M)).

This will be proved in 3.6.

3.4. The functors S, Q and Q. The following definitions are dual to those of
[M,P]. For Me #A let SM e .#A be given by (SM),=M,_, with the same 4
action as M. This “suspension” functor has a right adjoint “loop” functor Q.
Define QM € # A by

QM) = My, 4, (QM)y 1 = Ker (Sq*: My — M)

with 4 action on QM induced by that on M. The functor Q is left exact and has a
first derived functor Q!, where Q'M € .# A is defined by

(Q'M)y =0, (Q'M),_, = Coker (Sq': My — M)
with
Sg%: (QIM)gi_y —> (Q*M)gi_o5_1
induced by S¢/: M, —> M, _,.
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462 A. K. BOUSFIELD AND E. B. CURTIS [October

There is a natural inclusion i: QM — M raising degree by one, and a natural
projection p: M — Q'M sending degree d to degree 2d—1.
Note that if

O->-M ->M—->M" -0
is a short exact sequence in MA, there is induced an exact sequence in .#A4
0> QM - QM - OM" - Q'M’ — Q*M — Q*'M" — 0.

The following lemma, together with 3.3, will often provide an inductive procedure
for computing Ext 4, (Z,, M).

LeMMA 3.5. Let M € # A with M,=0. Then there is a natural exact sequence
oo = H(V(QM)) — H** Y(V(M)) — H*~ 1 H(V(Q'M))
— H* WV (QM)) — H* YUY V(M) — - - -,
Proof. Filter V(M) by subcomplexes F,V(M)<F,V(M)< V(M) as follows:
F,V(M) = Image (V(i): V(QM) — V(M)),
F, V(M) = Ker (h*: V(M) — V*~Y(QIM)),
where for x€ M1, A=A - - A,
Bx ® A) =0, ip <n,
=p(x) @A, -, h=n

It is straightforward to verify that the chain complex F, V(M)/F,V (M) is acyclic.
The lemma now follows from the isomorphisms

HY(F,V(M)) ~ H(V(QM)),
H(V(M)|F,V(M)) ~ H-Y(V(Q'M)).
3.6. Proof of 3.3. A short exact sequence
O->M ->M—->M -0
in # A gives a natural exact sequence
o> H V(M) > HY(V(M)) > HY(V(M")) > H** P V(M) —> - - -.
Thus it suffices to show when M is injective in .# 4 that
H*(V(M)) =0 for s >0,
H*(V(M)) ~ Hom., (A (SY, M).

The second -isomorphism is evident. For the first, for each n=0, let I(n) be the
injective unstable A-module on one n-dimensional generator (I(n) is dual to F(n)
in [S,E, p. 27]). For n21, QI(n)=I(n—1) and QI(n)=0. Hence 3.5 applies to
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show inductively that H*(VI(n))=0 for s>0, n=0. Since any injective M € A A
is a retract of a direct sum @, I(n,), it follows that H**(¥(M))=0 for s> 0.

4. A generalized EHP sequence. Let K be a reduced simplicial set such that
the coalgebra H,K is nice. We shall construct an exact sequence involving E,K
and certain Ext terms. When K is a sphere, this will give a kind of EHP sequence
on the E; level (see 5.3).

Let A: A, K — ¥(H,K) be as in 2.4 and define

P(H,K) = Q(Ker A),  R(H,K) = Q(Coker A)

where Q is as in 3.4. Note that P(H,K) consists of the primitive elements in H K
with gradations lowered by one; and that R(H,K),=P_, ;. ,(H,K) in the notation
of [M,S,II].

THEOREM 4.1. If H.K is nice there is a natural exact sequence
-+« > Ext}, (Z,, PH,K) — E3***(K) — Ext*; }Y(Z,, RHK)
— Ext$g 14 Zy, PHYK) — - - -.
Proof. Filter the fundamental chain complex W(H,K) by
F,W(H,K) < F,W(H,K) < W(H,K)

as follows. Let F,W(H,K) be the image of the inclusion V(PH,K) — W(H.K)
induced by the inclusion PH,K — H,K. Let F,W5(H,K) be the subspace

(AK Q@ A°) @ (B® A1) © WH(HK)
where B is the image of A: H,K — V(H,K). It is straightforward to show that

H{F,W(H,K)) = H*'~Y(V(PH,K)),
HY(F\W(HK)|F,W(HK)) = 0,
H*Y(W(HyK)[F,W(H,K)) % H*""*"YV(RH,K))
and the result now follows from 3.3.
COROLLARY 4.2. If H*K is a polynomial algebra of finite type, then
Eg’t(K) ~ Ext%;l (Zg, I_)H*K).
Proof. This follows from 4.1 since R(H,K)=0.
5. On E;K in the Massey-Peterson case. Massey and Peterson in [M,P]
constructed their unstable Adams spectral sequence for each space K such that
H*K is a free unstable A4-algebra [S,E, p. 29]. In particular for such K, H,K is

nice, and we shall show that our E,K is the same as theirs. Also for such X, 3.3
provides a convenient E;-term.
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Let €A be the category of unstable right A-module homology coalgebras. That is,
each C e %A is simultaneously an unstable right 4-module and a connected co-
commutative coalgebra where the structures are compatible as follows. The
comultiplication A of C satisfies a Cartan formula; and

v =()Sq": Con—>C,

where the “square root” map 4/- is dual to the squaring map for commutative
Z,-algebras. Of course H,K € €A if K is a reduced simplicial set.

5.1. The functor U,. For M € #A with M,=0, define U (M) e €A together
with j: U (M) — M by the universal property:

Us(M)
£
cC——M
f

i.e., for any such fe .#A, there exists a unique Fe %4 such that jo F=f If M
is of finite type, then U,(M) is dual to U(M *) where U is the free unstable A-algebra
functor [S,E, p. 29].

THEOREM 5.2. If K is a reduced simplicial set with H K~ U, (M) in €A, then
E$Y(K) = Extsf, (Zy, M).

Proof. Using the notation of 2.5 and 3.5, let v: W(HK) — V(HK) be the
chain map

v =f@g: (HK G L) © (F(HWK) @ A7) > HK & A*

where f is the inclusion and

gx ® A) = ox @ AN, if degx = 2k+2,

=0 if degx = 2k+1.
Define a chain map u: W(HK) — V(M) by u=V(j)ov, j: He Kz U(M)— M.
Since
PU (M) ~ QM, RU (M) =~ Q'M,
it is straightforward to show that u induces chain isomorphisms
F,W(H,K) ~ F,V(M), W(HK)F,W(H,K)= V(M)|F,V(M)
using the filtrations of 3.5 and 4.1. Hence
u*: H¥(W(H,K)) ~ H*(V(M))

and the theorem follows from 2.6 and 3.3.
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REMARK 5.3. When H K~ U,(M) it follows that the exact sequence of 4.1
for K is equivalent to the sequence of 3.5 for M. If K=S" this sequence becomes

s —> E2(Sn_1) —> Ez(S") - Eg(s2n_1) —> e
which is an EHP sequence on the E,-level (cf. [C3]).

6. A homological interpretation of E,K. When H,K is nice E;K will be de-
scribed as an Ext using the theory of nonadditive derived functors (see [An] and
[B, Appendix]). For any K this Ext also gives the E,-term of the unstable Adams
spectral sequence constructed in [B,K], and thus our E,K coincides with theirs
when H,K is nice. More details on the required derived functors may be found in
[B] and [B,K].

6.1. Derived functors on €A. Let €A be the category of unstable 4-coalgebras
described in §5. An object I € €4 will be called cofree if I~ H,N where

N = ]_—_[ K(mp, n)

nzl

with each =, a Z,-module. A cosimplicial resolution of C € €A consists of a co-
simplicial object X over €4 together with an augmentation e: C — X°, such that:
(i) X" is cofree for n=0,
(ii) the chain complex of graded Z,-modules

csxod ol b

is acyclic, where
8= (—1yd: X*1> X

and the d' are the coface operators. Such resolutions exist for all Ce %A4. If
T: ¥A— % is any functor to an abelian category %, then T has right derived
Sfunctors

RT:64—>%, s20.
For Ce %A,
RT(C) ~ H(TX), s=20,

where (X, e) is any cosimplicial resolution of C and TX is the cosimplicial object
over B with (TX)"=T(X™).

For t=1 the functor

Hoqu (H*St, '): ?A e d (Zg'modules)
has right derived functors
Ext%sﬁ (Zz, ‘) = Extqu (H*St, ’).

THEOREM 6.2. If K is a reduced simplicial set with H,K nice, then there are natural

isomorphisms
E3(K) ~ Exty}, (Zs, HK).
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For the proof we need two lemmas concerning the fundamental chain complex
W(H,K).

LeMMA 6.3. If I € CA is cofree, then
Hs(W(I)) = 0, s> 0,
HO,t( W(I)) ~ HomrgA (H*St, I).

Proof. It is easy to show that I~ U.(M) where M € .# A is injective. Hence for
s>0

H* (W) = Extsf,(Zs, M) =0
and the other part is also easy.
For n=0 consider the functor (2.5)
W*: CA — (graded Z,-modules).
LEMMA 6.4. If C € CA is nice as a coalgebra, then
RWYC) ~ W™ C), RW®C)=0 fors>D0.

Proof. It suffices to prove the lemma with ¥ in place of W™. There is an exact

sequence of functors on €4
SA
0—Y—L,—L,

as in 2.4, Since RO is left exact and R°L,=L, it follows that ROF' =Y. There is a
natural exact sequence
A
0—PC— C—¥(C)

such that A is onto when C is cofree. This gives a long exact sequence of derived
functors containing isomorphisms

RY(C) ~ R*'P(C), sz 1.

If C is nice as a coalgebra, then [B] implies R"P(C)=0 for n= 2, which proves the
lemma.

6.5. Proof of 6.2. Let (X, ¢) be a cosimplicial resolution of H, K. Form a double
chain complex DX, where for m, n=0

(DX)™" = W™(X")

and consider the two spectral sequences converging to the total cohomology
H*(DX). One of them, together with 6.3, shows

Ext$¥ (Z,, HK) ¥ H(DX)
and the other one, together with 6.4, shows
H{(W(H,K)) ~ H(DX).
This completes the proof.
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PART II. THE mod 2-LOWER CENTRAL SERIES SPECTRAL SEQUENCE

In this part we prove Theorem 2.6 by making a detailed study of a closely
related spectral sequence (§7) constructed by Rector [R].

7. The mod-2 RLCSSS. The filtration of GK by the I';GK gives rise to the
mod-2 restricted lower central series spectral sequence (abbr. mod-2 RLCSSS),
{E£7K}, indexed by

El (K) = n(T\GK|T,,,GK), d': El(K)— El,,q-1(K).

Note the change of indexing: the filtration s refers to I';, and the g refers to dimen-
sion in GK.

It was shown in [R] that for K simply connected and of finite type, {£'K}
converges to m,K modulo odd torsion. The convergence is much slower than for
the {E,K} of §2. Furthermore

1(GK|T'3GK) = Hu— 1K, Esl.q(K) x 7, L(GK|T';GK)

where L=, L, is the free restricted Lie algebra functor (see 7.2.).

It follows that £X(K) depends functorally on the graded Z,-module H,K, and we
shall describe £%(K) in 7.3.

DEFINITION 7.1. A graded restricted Lie algebra (over Z;) consists of a graded
Zy-module B with B,,=0 for m <0 together with homomorphisms

['a ']:Bm®Bn_)Bm+m m,n;O,
and functions
(')[2]: Bm g B2m, m2 09

such that for w, x € B, y € B,, and z € B,:
@ [x, y1=[», x},

(i) [x, x]=0,

@ii) [[x, y], z1+ ([, 2], x]+I[z, x], y]=0,

@v) [x, y*1=I[Ix, y], y,

) W+x)BA=w 4 [w, x]+ x12,
B is called a restricted Lie algebra if B,,=0 for m#0.

ExampLE. If A is a graded associative algebra over Z,, define for x € 4,, and
Y € Ay, [x, y]=xy+yx, x**=x2 Then A is a graded restricted Lie algebra.

7.2. Free Lie algebra functors. Let M be a graded Z,-module with M,=0 for
n<0, and let

M) = @ T'(M)

r=0

be the graded tensor algebra generated by M. Then

L) = @ L)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



468 A. K. BOUSFIELD AND E. B. CURTIS [October

is the graded restricted Lie subalgebra of T(M) generated by M=T*(M). Any
homomorphism of M =L,(M) to a graded restricted Lie algebra B extends uniquely
to a map L(M) — B of graded Lie algebras.

NotATION. Let H, K denote H,K with gradation lowered by one.

THEOREM 7.3. If K is a reduced simplicial set, there is a natural isomorphism

LHK) & A > B1K
under which
(LAHLK) @ A%), —> By K).

This will follow from 8.5.

8. Simplicial restricted Lie algebras. In order to prove 7.3, we study the natural
operations on =, R where R is any simplicial restricted Lie algebra over Z,.

DErINITION 8.1. For x € m,R and y € m,R the Lie product [x, y] € m,,,R is the
image of x ® y under the composition

TR @ TR 5> 1 (R ® R) 25 7 R

where g is the Eilenberg-Zilber map [Mac, p. 239] and p is the product in R.
DEerFINITION 8.2. For xe€#,R and «€n,LK(Z,, m) the composition x« € m,R
is the image of « under the map

Ffo: 7 LK(Z5, m) - m,R

where f is the Lie extension of a simplicial homomorphism f: K(Z;, m) — R
with f,(i,) =x.
For 0<Zi<nlet A\, € m,,,L?K(Z,, n)~Z, denote the nonzero element (see [6A]).
If xe R, and 0<i<m then x\ € m, R, and we define X' € w3, R by X =xA,,.

PROPOSITION 8.3. The operations [ , ]and ( - ) make =R a graded restricted
Lie algebra (over Z,). Furthermore
(i) For x,yen,Randi<m

(x+)A = XA+ YA
(ii) For xen,R,yem,R, and i<n
[x, yA] = 0.
(iii) For xe m,R, 0=i, k, and i+k+1=m
k—1—
(Mg 14k = z ( . J)(x))‘i+k—7)‘2t+1+1-
jzo J

Proof. Part (iii) is a consequence of [6A]. The others are straightforward using
simplicial formulas, of [C2, p. 84], or by universal examples; e.g. for (ii), take
R=L(K(Z,, m) ® K(Z,, n)). These examples are analyzed by means of 8.4.
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8.4. Decomposition of L(M @ N). If M and N are (simplicial) Z,-modules,
there is an isomorphism [Sch]

D, @ Dy: L(M) ® LN @ T(M)) — L(M ® N)

where D, and D, are the restricted Lie maps induced respectively by

M=>LMQ@N)
and by the homomorphisms
N Q® TS(M) - L(M @ N)
sending
n®m Q- Qmg—>[---[n,ml,..., m]

The isomorphism may be iterated to yield a decomposition
LM®N) = LM) DLN) DLINQ M) DLIN @ M @ M)
DLNQMAON)D---.
THEOREM 8.5. If X is a simplicial Z,-module there is a natural isomorphism
LimyeX) & A 2> m,LX.
Proof. The inclusion
meX = m X < m LX

extends uniquely to a map L(myX) —> 7,LX of graded restricted Lie algebras.
This extends uniquely to a homomorphism

L(meX) & A — m,LX

by interpreting the elements « € A as composition operations. (The relevant
operations are additive by 8.3(i).) This homomorphism is an isomorphism in the
case X=K(Z,, n) by [6A], and thus in the general case by 8.4.

REMARK 8.6. The operations [ , 1, ( )*¥}, and ( )A on =, LX are completely
determined by 8.3 and 8.5. Clearly 8.5 implies 7.3. It also provides a classification
of homotopy operations for simplicial restricted Lie algebras.

9. Samelson products. If G is a simplicial group, the commutator pairing
(5 >iGAG—>G
with {g, h>=ghg~*h~* induces the Samelson product
<o DG A m,G —> 7y G

for m, n=0, which is bilinear for m, n>1. See for example [C2, p. 103] for a
representative simplicial formula. This product in 7,GK corresponds (with appro-
priate signs) to the Whitehead product in 7K.
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THEOREM 9.1. If K is a reduced simplicial set, there are natural pairings
[ ’ ]: Es'.t(K) ® E:;,v(K) g E;+u.t+v(K)

making E"(K) a graded Lie algebra for r > 1 and satisfying:
(@) Ifr=1then[ , ]is the Lie product of §8.
(ii) Ifr=1, and x, y € £7(K), then
d'[x, y] = [d"x, y]+[x, d"y].
(ili) The product [ , 1in ET*X(K) is induced by that in E"(K).
(iv) If K is simply connected and of finite type, then the product [ , ]in E*(K)
is induced by the Samelson product in 7,GK.

This theorem is an easy corollary of 9.4 (iii).

REMARK 9.2. It follows by §8 that in 'K~ L(H,K) ® A the only nontrivial
Lie products are those involving elements in the summand L(H,K).

9.3. Generalized Samelson products. The commutator map for a simplicial
group G gives a pairing

<5 i (NGIT 4 kG) A (TsGT 4k G) = Iy iGIT 454k G

for r, s21 and 1<k=<oo where I' ,G=x. This pairing induces the generalized
Samelson product { , >: mp(T',G[T1,,G) A mo(TsG[T, kG) = 7y n(Tr s sG/Trs 541G)
for m, n 20 which is bilinear for m, n>1.

For k fixed,

{m(T:G/T1 1 kG)}r 21
has the product ¢ , D>, and (if k <o0) has differential
0: my(T,G/T, 4 4 G) = 7y _1(Tr 4 £G/T s 1 2 G)
given by the boundary map for the fibration
I+ 4G/l 4 2.G — I,G/T, , 5,G — I,G/T, . ,G.

PropPOSITION 9.4. If 12k=2w, xe€my(I,G/T,,G), yem(I\G/T,,.G), and
Y AS ﬂq(PgG/Pt.,_ kG)’ then:
(i) Form,nz1

x5 W+(=1D)"y, x) = 0.
(ii) For m,n,q=1
(=1)™KLx, ), 22+ (= 1)Ky, 20, %) +(=1)™Lz, %D, y> = 0.
(iii) For k<oo and ni+nz1
Kx, y> = <0x, y>+(—1)Kx, 6y).

Proof. Part (i) follows from the usual properties of the smash pairing. For
part (i), use the expression
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Ka, by, cy<a, by, {1, b))°Kb, ¢), a)
(b, €3, <a™, e3)*Le, @), by<{¢, ay, b1, a))?
which reduces to the identity in any group. For part (iii), consider the pairs
(4, 4) = (T,G/T4 3G, T4 G T4 2,G)

for i=r, s and r+s. The commutator pairing 4, A 4, — A, , produces a diagram:

2, ®1
—_—

(A, A7) @ (A, A5) '”m—l(A;) ® ma(4s, A;)

1 ® 0, 0y o h h

Tl Ay AD @ o (A — s (Al4d)

in which 4 is the smash pairing and
Oxoch=ho(0y @ D+(—=D"ho (1 ® 0).
The result follows easily.

10. The cobar spectral sequence. Let K be a reduced simplicial set. When K
is simply connected, the cobar construction of Adams [A2] (or the more recent
construction of Eilenberg-Moore [E,M]) provides a spectral sequence converging
to H,GK. We shall construct a version, E(K), of this spectral sequence together
with a map 0: E(K) — E(K) corresponding to the Hurewicz map =,GK — H,GK.

For any group G, filter the group ring Z,G by powers of the augmentation ideal

Z,G=I>'>...> "> [r+1 5 ...,
Then @nzo (I*/I"+*) becomes a Hopf algebra.
LeMMA 10.1. There is a natural homomorphism of Hopf algebras

h: T(G|T'3:G) -~ @ (I™I"*Y)
nz0

such that h is an isomorphism if G is a free group.

Proof. Let 6: G — I be the function 8(g)=g —e. Then 6 induces an isomorphism

8: GIT3G = I/1?

and we define 4 as the unique extension of 6 to the tensor algebra. When G is free,
h is an isomorphism by the remarks in [Mac, p. 122].
Let {E"(K)} be the spectral sequence arising from the above filtration of Z,GK.

EL(K) = m(I’|I°*Y),  d": Ej(K) — E}ypy_o(K).
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THEOREM 10.2. If K is a reduced simplicial set then:
(i) For rz1 E"(K) is a differential graded Hopf algebra with the structure of
E™*Y(K) induced from that of E'(K).
(i) EY(K) is the tensor algebra generated by

E} (K) ~ H,K
with differential d* on E} (K) given by the comultiplication
A: H.K - H,K ® H,K.

(iii) If K is simply connected then {E"(K)} converges to H,GK.
Thus E©(K) is the graded Hopf algebra associated with a decreasing filtration
of H,GK.

Proof. The convergence part follows from [D, §11] when K is a simply connected
suspension, and then follows in general by [C, 4.1]. The structure of EX(K) follows
from 10.1. Since the components H,,, ,K — H,K ® H,K of d* are natural homo-
morphisms, they must be given by A if they are nonzero. Using the examples
K=S"x S" one shows they are in fact nonzero. The rest is clear.

ReMARK 10.3. It follows immediately from 10.2 (ii) that

E2(K) =~ Cotor™k,, (Z,, Z,)
(see [M,S, II]).
LeMMA 10.4. For eachnz1, 6(I',G)<I" and 0 gives a homomorphism
0: I',G|Ty G — IMI™*1,
If G is free then the induced map
0: L(G/T';G) — T(G|T';G)
is the canonical inclusion.
The proof is straightforward.

ProposiTION 10.5. The function 0: GK — Z,GK induces a spectral sequence
map 0: E(K) — E(K) such that:
(i) Forr=1, 0": E"(K) — E'(K) is a graded Lie algebra map.
(i) If K is simply connected of finite type then 6 : E*(K) — E*(K) is induced
by the Hurewicz map =,GK — H,GK.
(iii) The map 6': L(H,K) ® A — T(H,K) restricts to the canonical inclusion
on the summand L(H,K) and is zero on the other summands.

The proof is straightforward.
11. The chain complex L(H,K). The image complex of the map (10.5)
6*: E\(K) — EN(K)
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is the graded restricted Lie algebra L(H,K) with differential

8 Ls(H*K)“’LsH(H-*K), s21

determined by
(D) &[x, y]=1[8%, y]+[x, 8°y],
(i) 8°(x™)=[8"x, x],
(iii) for s=1
BA: H*K—)L2(I—{-*K) < ﬁ*K ® H*K

is induced by the comultiplication A of H, K.

More generally, let C be any homology coalgebra over Z,, and define a differ-
ential graded restricted Lie algebra L(C) as above. For s 1 consider

BL(C) = BL(C) = Z,L(C) = L(C)

where B,L(C) (resp. Z,L(C)) are the boundaries (resp. cycles) in L(C), B,L(C)
is generated by all 5" with b € B,L(C), 2’r=s. Define homology groups

HsL(é) = ZsL(é)/BsL(é)’ ﬁsL(é) = ZsL(é)/BsL(C)-

Note that A,L(C) is a graded restricted Lie algebra.
The canonical inclusion L(C) — T(C) induces a map

it H,L(C) - PH,T(C) ~ P Cotor® (Z,, Z,)
where P denotes the primitive element functor.
THEOREM 11.1. The map i is an isomorphism of graded restricted Lie algebras.
Proof. For s=2, we first show that the map
¢: BL(C) — By, L(C)/B,,L(C)

defined by £(x)=x? is an isomorphism. Clearly ¢ is a homomorphism since
[x, y] € B, L(C) for x, y e BL(C). An inverse to ¢ is induced by the natural
homomorphism 7: L,(C) — L(C) where %[x, y]=0, n(x'?)=x.

Choose a set of homogeneous elements {z.};; in Z,L(C) corresponding to a
basis for A,L(C); and choose a set of homogeneous elements {x,},., in L(C) such
that {8%x,},, is a basis for B,L(C). Using the isomorphism ¢ it can be seen that

{Zihier Y {x}jer Y {(82%) N es k20

is a Z,-basis for L(C). For each i € I let K(i)=T(C) be the subcomplex with Z,-
basis {1, z;}; and for each j e J let K(j)<T(C) be the subcomplex with Z,-basis

{1, x} U{(8*x) " }nz1 Y {xf(8*x)) 21

Choose a simple ordering of the index sets 7 and J. Define a chain map
h: (® K(i)) ® (® K(j)) —T(C)
iel jel

by h(u; @ -+ Qu)=uy- U
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The Poincaré-Birkhoff-Witt theorem [M,M, §6], shows that 4 is an isomorphism.
Since the complexes K () are acyclic, it follows that a Z,-basis for H,T(C) is given
by the elements

zy oz |y < - < i el}
1 iy

The theorem now follows from [M,M, §6].
REMARK 11.2. The theorem and its proof show how H,L(C) may be computed
from P Cotor® (Z,, Z,) and B,L(C).

12. Differentials in £(K). Let K be a reduced simplicial set. Recall from
§8 that A operates (on the right) on £(K) and that

EYK) ~ L(AK) ® A.
THEOREM 12.1. The differentials of E(K) satisfy:
(@) If x ® \ye H,K & A® with 520 then
d(x®N)=0 forl <r<?2,
d¥(x ® \) = x(@N)+ (3D + D (xSgYN_1A;
i=1
where m=[deg x/2].
(i) If x @ A e L(HK) ® A® with k>1 and s20, then
AdxA)=0 forl =r<2,
d¥(x @ A) = (8°x)A,.

REMARK 12.2. This theorem reduces the computation of E%(K) to finding

£ «(K), Ezz.*(K), and H,L(H.K) (see §11).

REMARK 12.3. SUSPENSION. Let SK denote the suspension of X as in [K, p. 311].
The canonical function K — SK, of degree + 1, induces a spectral sequence map

o: E(K)— E(SK)

sending £7 (K) to EI,,,(SK) and commuting with the differentials. It is straight-
forward to show for r=1 that

o) L(HK) ® A — L(HSK) ® A

is given as follows. For j, m>0 let e denote the composition

LAt~ (HoKOm B (H(SK )
where Q =ident for j=0 and Q=(n)’ for j>0 with 7 as in proof of 11.1. If
X ® b € (L(HK)), & A°
then
o(x @A) = (ex) @ Apdop- - -At-1A; for k =2, n=2m
=0 otherwise.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1970] THE HOMOTOPY OF NICE SPACES 475

Thus o maps L(H,K) ® A onto H,SK ® A and maps H,K ® A injectively.
LEMMA 12.4. The differential d* of E*(K) satisfies:
(i) For xe H,K
m
di(x) = 8x+ Z xSqg' @ A,
i=1
where m=[(deg x)/2].
(ii) For x € L(HK) with k> 1
di(x) = x.
Proof. The component H,K — H,K ® A of d* is determined from [6A]

using the iterated suspension map o.
The components

L(H(K)— Lc.(HiK), kZz1,

of d! are determined using the spectral sequence Hurewicz map of §10. The proof
of (i) is completed using the fact that £(K) is a differential Lie algebra (9.1),
and E} (K)~Ly(H,K) for s odd.
12.5. Composition. The composition product
T(T3G[T1 4 1G) X T FS™ Ty FS™) — 7 (TG 54 1G)

is defined as usual when G is a simplicial group and F is the free group functor.
Let

#en(I,GIT,,1G), ©vem_(I\FS* T, FS™™ 1)
denote the respective images of elements
u e 7,(I,G/T, . ,G), hz1,
vem_((TFS" YT FS*Y), k21,
under the canonical maps. Let
ob e m(T,FS*T, FS™)
be the suspension of 7 (see 12.3). Consider the composition
i o (oD) € m(T',,G/T541G).
The following lemma and its proof are similar to [6A, §3].
LEMMA 12.6. There is an element
w € m([,G/T 151 mG)

where m=Min (sh, rk) such that:
(i) # o (oD) is the image of w under the canonical map.
(ii) The element
owem_1(LrgtmG/Trssms1G)
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satisfies
ow = (Ou)od if sh < rk,
ow = @ o (gdv) if rk < sh,
ow = (0u) o 0+ o (0dv) if rk = sh.

Proof. Represent u by u € (I',G), such that d,u e (T, ,G),-, and du==* for
i<n. Represent v by v e (I';FS*~1),;_, such that dyw € (I';, , FS**),_, and dy=x
for i>0. Write v in the form B(i"~!) where B is a formula involving only de-
generacy operators and the group operations of product and inverse. Then B(u)
€ (T',sG), represents i o (ob) € w(I',,G/T,, ,G) and it is straightforward to show:

d(B(w) = C(u) for i=0,
= * for0 <i<j,
= B(d,p) for i =],
where C is a formula of the same sort as B with C(i*!)=d,v. Clearly

C(w) € (Tys419G)5-1
represents
o (o) €m;_y(Trst kG rssri41G)
and B(d,p) € (T4 nysG); -1 represents
ucdem_1(LrsysnGlTrsysns1G).

The result now follows easily.
12.7. Proof of 12.1. Let

x @ A € (L(HK) ® A%,
with deg x=n and s>0. Then
x € my(T'xGK [Ty ,GK),
A€ my_y(Los FS™ =1 Tgs FS™ 1),
X ® A = x o (cA)).
(We usually denote oA; by A;.) By [6A] there exists
vem _ (g FS* [y +1FS™~1)
mapping to A; and satisfying
00 = 0) € my_o(Tgs +1FS™ 1 Tgs 41, FS™~1)
where 0A; is as in 2.3. It follows by 12.6 that d"(x ® A;)=0forr<2%;andd?(x ® A))
is represented by
@*x)A; € my_1(Pores nGK [Tt 41 41GK) for k > 1,
(d*x)\+x(0A) € m,_(T'ys +1GK [Tgr+1,,GK) for k = 1.

The result now follows from the description of d'x in 12.4.
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13. Proof of Theorem 2.6. Let us use temporarily the auxiliary filtration
{f:GK}s» 0, Where

fszK = Fz’GK, ‘f‘2/+IGK = I‘2’+1GK.
This gives rise to a spectral sequence {e"(K)}, where
esl,q(K) = 7(f;GK|fs+1GK), dr: e (K) — € 4r,q-1(K).

Theorem 2.6 follows easily from:

PropoSITION 13.1. If K is a reduced simplicial set with H,K nice, then e? (K)=0

for s odd, and the chain complex

2 a2 2 a2
e u(K)—> - —> €3 W(K) —> €342, 4(K) — - -~

is isomorphic to W(H.K).

This will be proved in 13.4.

13.2. L(HK) for H.K nice. It follows from 11.1 and [B] that when H,K is
nice:
(i) H,L(H*K)=0 unless s=27, j20.

(ii) The Lie products in A,L(H.K) are zero except possibly for those of the
form

[, ]: BL(H,K) ® A,L(H,K) —~ A,L(H,K).
(iii) Forjz1
( )[2]: HzlL(ﬁ*K) — ﬁzlnL(E*K)

is-an isomorphism.
Define for j= 1
Yo((HyK) = ZpL(H,K)|ByL(HyK)
where ByL(H,K)<L(H,K) is generated by all 421 with b e BxL(H,K), k=
j—1>1.

It follows from the above that when H,K is nice:
(i) Forjx1
()2 Wos(HyK) — ¥or+1(HyK)
is an isomorphism.

(ii) The functor ¥, coincides with ¥ in 2.4,
For j=1 consider the spectral sequence {§"(K)} with

61 (K) = m(T's\GK|T,,GK) for 2/ £ s £ 2/*!
=0 otherwise

arising from the obvious filtration of I'ysGK [T'y1+1, ,GK.
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LEMMA 13.3. If H,K is nice then §¥(K)=0 unless s=2/, 2+, Furthermore
&% (K) ~ (HK S N) @ (@ ZoL(H,K) ® A"‘),
i=1
. ~ i+1 _ - _ A~
E5+1.4(K) % (HiK @ N+ @ (@ LyHK[ByL(HK) ® Af-m),
i=1

Proof. The spectral sequence &(K) may be completely computed in the required
range using 12.1, 13.2, the proof of 11.1, and one other technique. Namely, there
is a map f: K — X such that X is a product of K(Z,, n)’s and fy: H, K — H, X is a
monomorphism. Since H,L(H,X)=0 for s>0, it is possible to show certain
differentials vanish in £(X) and consequently in £(K) by naturality.

13.4. Proof of 13.1. The above lemma implies e? ,(K)=0 for s odd, e} «(K)
~H,K and for j=1

— ~ i ~
e}, oK) = (H,K 8 M) @ ( @ Yu(HK) B Af—‘).

Thus by 13.2
e3;,x(K) & W/(H,K)

and it remains only to show that the differential d2 of e?(K) corresponds to 8 in
W(H,K). For the components 2.5(i) of the differential, this follows easily from 12.1.
For the components 2.5(ii), it suffices by naturality (see proof of 13.3) to suppose K
is a product of K(Z,, n)’s. Then

A: H.K — Y(HK)
is onto and the last components may be deduced from the first.
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