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An ∞-categorical approach to R-line bundles, R-module Thom
spectra, and twisted R-homology

Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins
and Charles Rezk

Abstract

We develop a generalization of the theory of Thom spectra using the language of ∞-categories.
This treatment exposes the conceptual underpinnings of the Thom spectrum functor: we use a
new model of parameterized spectra, and our definition is motivated by the geometric definition
of Thom spectra of May–Sigurdsson. For an A∞-ring spectrum R, we associate a Thom spectrum
to a map of ∞-categories from the ∞-groupoid of a space X to the ∞-category of free rank one
R-modules, which we show is a model for BGL1R; we show that BGL1R classifies homotopy
sheaves of rank one R-modules, which we call R-line bundles. We use our R-module Thom
spectrum to define the twisted R-homology and cohomology of R-line bundles over a space
classified by a map X → BGL1R, and we recover the generalized theory of orientations in this
context. In order to compare this approach to the classical theory, we characterize the Thom
spectrum functor axiomatically, from the perspective of Morita theory.

1. Introduction

In the companion to this paper [2], we review and extend the work of [14] on Thom spectra
and orientations, using the theory of structured ring spectra. To an A∞-ring spectrum R, we
associate a space BGL1R, and to a map of spaces f : X → BGL1R we associate an R-module
Thom spectrum Mf such that R-module orientations Mf → R correspond to null-homotopies
of f .

Letting S denote the sphere spectrum, one finds that BGL1S is the classifying space for
stable spherical fibrations, and if f factors as

f : X
g−→ BGL1S −→ BGL1R,

then Mg is equivalent to the usual Thom spectrum of the spherical fibration classified by
g, Mf �Mg ∧R, and R-module orientations Mf → R correspond to classical orientations
Mg → R.

Rich as it is, the classical theory has a number of shortcomings. For example, one expects
Thom spectra as above to arise from bundles of R-modules. However, in the approaches of
[2] as well as [9, 14], such a bundle theory is more a source of inspiration than of concrete
constructions or proofs. A related problem is that, with the constructions in [2, 9, 14], it is
difficult to identify the functor represented by the homotopy type BGL1R. The parameterized
homotopy theory of [15] is one approach to the bundles of R-modules we have in mind, but
the material on Thom spectra in that work focuses on spherical fibrations, and the discussion
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of twisted generalized cohomology in § 22 of that book requires a model for GL1R which is a
genuine topological monoid, a situation which may not arise from the ambient geometry.

In this paper, we introduce a new approach to parameterized spaces and spectra, Thom
spectra, and orientations, based on the theory of∞-categories. Our treatment has a number of
attractive features. We use a simple theory of parameterized spectra as homotopy local systems
of spectra. We give a model for BGL1R which, by construction, evidently classifies homotopy
local systems of free rank one R-modules. Using this model, we are able to give an intuitive and
effective construction of the Thom spectrum. Our Thom spectrum functor is an ∞-categorical
left adjoint, and so clearly commutes with homotopy colimits, and comes with an obstruction
theory for orientations. We also discuss an axiomatic approach to the theory of generalized
Thom spectra which allows us easily to check that our construction specializes to the other
existing constructions, such as [9].

To begin, let us consider spaces over a space X. Since the singular complex functor from
spaces to simplicial sets induces an equivalence of ∞-categories (where the latter is equipped
with the Kan model structure), and both are equivalent to the ∞-category of ∞-groupoids,
we will typically not distinguish between a space X and its singular complex Sing(X). We will
also use the term ‘fundamental ∞-groupoid of X’ for any ∞-category equivalent to Sing(X).
In particular, we may view spaces as ∞-groupoids, and hence as ∞-categories. Moreover, the
∞-category T of spaces is the prototypical example of an ∞-topos, so that, for any space X,
there is a canonical equivalence

Fun(Xop,T) −→ T/X ,

between the ∞-categories of presheaves of spaces on X and spaces over X (see [11, 2.2.1.2]).
Thus, the ∞-category Fun(Xop,T) is a model for the ∞-category of spaces over X.

Note that, since X is an ∞-groupoid, there is a canonical contractible space of equivalences
X � Xop, and so of equivalences

Fun(X,T) −→ Fun(Xop,T).

We prefer to use Fun(Xop,T) to emphasize the analogy with presheaves.
Now let R be a ring spectrum. We say that an R-module M is free of rank one if there is an

equivalence of R-modules M → R, and we write R-line ⊂ R-mod for the subcategory consisting
of the free rank one R-modules and the equivalences thereof. By construction, R-line is an ∞-
groupoid, that is, a Kan complex. In a precise sense which we now explain, R-mod classifies
bundles of R-modules, and R-line classifies bundles of free rank one R-modules whose fibers
are glued together by R-linear equivalences.

Given a space X, a functor (that is, a map of simplicial sets)

L : Xop −→ R-mod

is a sort of local coefficient system: for each point p ∈ X, we have an R-module Lp. To a path
γ : p→ q in X, L associates an equivalence of R-modules

Lγ : Lq � Lp. (1.1)

From a homotopy of paths h : γ → γ′, we get a path

Lh : Lγ′ −→ Lγ , (1.2)

in the space of R-module equivalences Lp → Lq, and so forth for higher homotopies. More
precisely, L is a ‘homotopy local system’ of R-modules. The fact that the data of a functor
from Xop to R-mod are precisely the higher coherence conditions for a homotopy local system
of R-modules is what makes the theory of ∞-categories so effective in this context. With this
in mind, we make the following definition.
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Definition 1.3 (§ 2.4). Let X be a space. A bundle of R-modules over X is a functor

f : Xop −→ R-mod.

A bundle of R-lines over X is a functor

f : Xop −→ R-line.

We write Fun(Xop, R-mod) and Fun(Xop, R-line) for the∞-categories of bundles of R-modules
and R-lines over X.

Our definition of the Thom spectrum is motivated by the May–Sigurdsson description of the
‘neo-classical’ Thom spectrum as the composite of the pullback of a universal parameterized
spectrum followed by the base change along the map to a point [15, 23.7.1, 23.7.4].

Definition 1.4 (§ 2.5). Let X be a space. The Thom R-module spectrum Mf of a bundle
of R-lines over X

f : Xop −→ R-line

is the colimit of the functor

Xop f−→ R-line −→ R-mod,

obtained by composing with the inclusion R-line ⊂ R-mod.

It is very easy to describe the obstruction theory for orientations in this setting. The colimit
in Definition 1.4 means that the space of R-module maps

Mf −→ R

is equivalent to the space of maps of bundles of R-modules

f −→ RX ,

where RX denotes the trivial bundle of R-lines over X, that is, the constant functor Xop →
R-line with value R ∈ R-line.

Definition 1.5 (Definition 2.22). The space of orientations Mf → R is the pullback in
the diagram

Orientations(Mf,R) ��

�
��

mapR-mod(Mf,R)

�
��

mapRX -line(f,RX) �� mapRX -mod(f,RX).

That is, orientations Mf → R are those R-module maps that correspond to trivializations
f � RX of the bundle of R-lines f .

Put another way, let R-triv be the∞-category of trivialized R-lines: R-lines L equipped with
a specific equivalence L

�−→ R. R-triv is a contractible Kan complex, and the natural map

R-triv −→ R-line (1.6)

is a Kan fibration. We then have the following.
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Theorem 1.7 (Theorem 2.24). If f : Xop → R-line is a bundle of R-lines over X, then the
space of orientations Mf → R is equivalent to the space of lifts in the diagram

R-triv

��
X

���
�

�
�

�

f
�� R-line.

(1.8)

Analogous considerations lead to a version of the Thom isomorphism in this setting.
Finally, using this notion of R-module Thom spectrum, we can define the twisted R-homology

and R-cohomology of a space f : X → R-line equipped with an R-line bundle by the formulas

Rf
n(X) = π0 mapR(ΣnR,Mf) ∼= πnMf, (1.9)

Rn
f (X) = π0 mapR(Mf,ΣnR). (1.10)

In the presence of an orientation, we have the following untwisting result.

Corollary 1.11. If f : Xop → R-line admits an orientation, then Mf � R ∧ Σ∞
+ X, and

the twisted R-homology and R-cohomology spectra

Rf (X) � R ∧ Σ∞
+ X, (1.12)

Rf (X) � Map(Σ∞
+ X,R), (1.13)

reduce to the ordinary R-homology and R-cohomology spectra of X (here Map denotes the
function spectrum).

In § 3, we relate the theory developed in this paper to other approaches, such as [2, 9, 14].
We rely on the fact that R-line is a model for BGL1R. Indeed, the fiber of (1.6) at R is
AutR(R), by which we mean the derived space of R-linear self-homotopy equivalences of R (for
example, see [2, § 2]). More precisely, we have the following.

Corollary 1.14 (Corollary 2.14). The Kan fibration

AutR(R) −→ R-triv −→ R-line (1.15)

is a model in simplicial sets for the quasifibration GL1R→ EGL1R→ BGL1R.

Remark 1.16. In fact, since geometric realization carries Kan fibrations to Serre
fibrations [16], upon geometric realization we obtain a Serre fibration that models

GL1R −→ EGL1R −→ BGL1R,

in topological spaces. The approach taken in [2, 14] is only known to produce a quasifibration.

The equivalence B Aut(R) � R-line implies the following description of the Thom spectrum
functor of Definition 1.4, which plays a role in § 3 when we compare our approaches to Thom
spectra. Recall that if x is an object in an ∞-category C, then AutC(x) is a group-like
monoidal ∞-groupoid, that is, a group-like A∞-space; conversely if G is a group-like monoidal
∞-groupoid, then we can form the ∞-category BG with a single object ∗ and G as
automorphisms. Moreover, an action of G on x is just a functor BG→ C.
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Theorem 1.17. Let G be a group-like monoidal∞-groupoid. A map BG −→ R-line specifies
an R-linear action of G on R, and then the Thom spectrum is equivalent to the (homotopy)
quotient R/G.

The preceding theorem follows immediately from the construction of the Thom spectrum,
since by definition the quotient in the statement is the colimit of the map of ∞-categories
BG −→ R-line→ R-mod.

Turning to the comparisons, the definitions of [2] and this paper give two constructions of
an R-module Thom spectrum from a map f : X → BGL1R. Roughly speaking, the ‘algebraic’
model studied in [2] takes the pullback P in the diagram

P ��

��

EGL1R

��
X

f �� BGL1R

and sets

Malgf = Σ∞
+ P ∧Σ∞

+ GL1R R. (1.18)

The ‘geometric’ model in this paper sets

Mgeof = colim(Xop f−→ BGL1R � R-line −→ R-mod).

It is possible to show by a direct calculation that these two constructions are equivalent; we
do this in § 3.7. The bulk of § 3 is concerned with a more general characterization of the Thom
spectrum functor from the point of view of Morita theory. Here, we also show that our Thom
spectrum recovers the Thom spectrum of [9] in the special case of a map f : X → BGL1S.

In (1.18), the Thom spectrum Malg is a derived smash product with R, regarded as an
Σ∞

+ GL1R-R bimodule, specified by the canonical action of Σ∞
+ GL1R on R. Recalling that

the target category of R-modules is stable, we can regard this Thom spectrum as given by a
functor from (right) Σ∞

+ GL1R-modules to R-modules. Now, roughly speaking, Morita theory
(more precisely, the Eilenberg–Watts theorem) implies that any continuous functor from (right)
Σ∞

+ GL1R-modules to R-modules that preserves homotopy colimits and takes GL1R to R can
be realized as tensoring with an appropriate Σ∞

+ GL1R-R bimodule. In particular, this tells us
that the Thom spectrum functor is characterized among such functors by the additional data
of the action of GL1R on R.

We develop these ideas in the setting of ∞-categories. Let T be the ∞-category of spaces.
Given a colimit-preserving functor F : T/B Aut(R) → R-mod which sends ∗/B Aut(R) to R, we
can restrict along the Yoneda embedding (3.2)

B Aut(R) −→ T/B Aut(R)
F−→ R-mod;

since it takes the object of B Aut(R) to R, we may view this as a functor

k : B Aut(R) −→ B Aut(R).

Conversely, given an endomorphism k of B Aut(R), we get a colimit-preserving functor

F : T/B Aut(R) −→ R-mod,

whose value on Bop → B Aut(R) is

colim(Bop −→ B Aut(R) k−→ B Aut(R) ↪→ R-mod).

About this correspondence, we prove the following.
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Proposition 1.19 (Corollary 3.13). A functor F from the ∞-category T/B Aut(R) to the
∞-category of R-modules is equivalent to the Thom spectrum functor if and only if it preserves
colimits and its restriction along the Yoneda embedding

B Aut(R) −→ T/B Aut(R)
F−→ R-mod

is equivalent to the canonical inclusion

B Aut(R) �−→ R-line −→ R-mod.

It follows easily (Proposition 3.20) that the Thom spectrum functors Mgeo and Malg are
equivalent. It also follows that, as in Proposition 1.17, the Thom spectrum of a group-like
A∞-map ϕ : G→ GL1S is the (homotopy) quotient

colim(BGop −→ R-mod) � R/G.

This observation is the basis for our comparison with the Thom spectrum of Lewis and May. In
§ 3.6, we show that the Lewis–May Thom spectrum associated to the map Bϕ : BG→ BGL1S
is a model for the (homotopy) quotient S/G.

Proposition 1.20 (Corollary 3.24). The Lewis–May Thom spectrum associated to a map

f : B −→ BGL1S

is equivalent to the Thom spectrum associated by Definition 1.4 to the map of ∞-categories

Bop f−→ BGL1S � S-line.

2. Parameterized spectra and Thom spectra

In this section, we show that the theory of ∞-categories provides a powerful technical and
conceptual framework for the study of Thom spectra and orientations. We chose to use the
theory of quasicategories as developed by Joyal [8] and Lurie [11], but for the theory of R-
module Thom spectra and orientations, all that is really required is a good ∞-category of
R-modules.

2.1. ∞-Categories and ∞-groupoids

For the purposes of this paper, an∞-category will always mean a quasicategory in the sense of
Joyal [8]. This is the same as a weak Kan complex in the sense of Boardman and Vogt [5]; the
different terminology reflects the fact that these objects simultaneously generalize the homotopy
theories of categories and of spaces. There is nothing essential in our use of quasicategories, and
any other sufficiently well-developed theory of∞-categories (more precisely, (∞, 1)-categories)
would suffice.

Given two ∞-categories C and D, the ∞-category of functors from C to D is simply the
simplicial set of maps from C to D, considered as simplicial sets. More generally, for any
simplicial set X there is an ∞-category of functors from X to C, written as Fun(X,C); by
Lurie [11, Proposition 1.2.7.2, 1.2.7.3], the simplicial set Fun(X,C) is an∞-category whenever
C is, even for an arbitrary simplicial set X.

This description of Fun(C,D) gives rise to simplicial categories of ∞-categories and
∞-groupoids. For our purposes, it is important to have ∞-categories Cat∞ and Gpd∞ of
∞-categories and∞-groupoids, respectively. We construct these∞-categories by a general tech-
nique for converting a simplicial category to an ∞-category: there is a simplicial nerve functor
N from simplicial categories to∞-categories which is the right adjoint of a Quillen equivalence
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C : SetΔ � CatΔ : N (see [11, §§ 1.1.5.5, 1.1.5.12, 1.1.5.13]). Note that this process also gives
rise to a standard passage from a simplicial model category to an ∞-category which retains
the homotopical information encoded by the simplicial model structure. Specifically, given a
simplicial model category M, one restricts to the simplicial category on the cofibrant–fibrant
objects, Mcf . Then applying the simplicial nerve yields an ∞-category N(Mcf).

In particular, Cat∞ is the simplicial nerve of the simplicial category of ∞-categories, in
which the mapping spaces are made fibrant by restricting to maximal Kan subcomplexes, and
Gpd∞ is the full ∞-subcategory of Cat∞ on the ∞-groupoids. We recall that the Quillen
equivalence between the standard model structure on topological spaces and the Kan model
structure on simplicial sets induces an equivalence on underlying ∞-categories. Thus, as all
the constructions we perform in this paper are homotopy invariant, we will typically regard
topological spaces as ∞-groupoids via their singular complexes.

Let C be an∞-category. Then C admits a maximal∞-subgroupoid C�, which is by definition
the pullback (in simplicial sets) of the diagram

C� ��

��

C

��
Nho(C)� �� Nho(C)

(2.1)

where Nho(C) denotes the nerve of the homotopy category of C and Nho(C)� is the maximal
subgroupoid. Thus, if a and b are objects of C, C�(a, b) is the subcategory of C(a, b) consisting
of the equivalences.

2.2. Parameterized spaces

Let X be an∞-groupoid, which we view as the fundamental∞-groupoid of a topological space.
There are two canonically equivalent ∞-topoi associated to X; namely, the slice ∞-category
Gpd∞/X of ∞-groupoids over X, and the ∞-category Fun(Xop,Gpd∞) of presheaves of ∞-
groupoids on X. The equivalence

Fun(Xop,Gpd∞) � Gpd∞/X

sends a functor to its colimit, regarded as a space over X, and may be regarded as a
generalization of the equivalence between (free) G-spaces and spaces over BG (see [11,
2.2.1.2]). In particular, a terminal object 1 ∈ Fun(Xop,Gpd∞) must be sent to a terminal
object idX ∈ Gpd∞/X , which in this special case recovers the formula

colim
Xop

1 � X. (2.2)

Remark 2.3. As explained in § 1, the data of a functor L : Xop → Gpd∞ encodes the data
of a homotopy local system of spaces on X.

Remark 2.4. Since X is an ∞-groupoid, we have a canonical contractible space of
equivalences X � Xop, which induces equivalences

Fun(X,Gpd∞) � Fun(Xop,Gpd∞) � Gpd∞/X .

Although notationally a bit more complicated, we think it is slightly more natural to regard
spaces over X as contravariant functors, instead of covariant functors, from X to Gpd∞.
One reason for this is that, this way, the Yoneda embedding appears naturally as a functor
X → Fun(Xop,Gpd∞), and this will play an important role in our treatment of the Thom
spectrum functor (cf. Proposition 3.12).
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Lemma 2.5. The base-change functor f∗ : Gpd∞/X → Gpd∞/X′ admits a right adjoint. In
particular, f∗ commutes with colimits.

Proof. For the proof, see [11, 6.1.3.14].

Remark 2.6. If X is an∞-groupoid, then via the equivalence of∞-categories Gpd∞/X �
Fun(Xop,Gpd∞), the Yoneda embedding X → Gpd∞/X sends the point x of X to the ‘path
fibration’ X/x → X. (This follows from an analysis of the ‘unstraightening’ functor that
provides the right adjoint in [11, 2.2.1.2].)

2.3. Parameterized spectra

An ∞-category C is stable if it has a zero object, finite limits, and the endofunctor Ω : C→ C,
defined by sending X to the limit of the diagram ∗ → X ← ∗, is an equivalence [12, 1.1.1.9,
1.4.2.27]. It follows that the left adjoint Σ of Ω is also an equivalence, that finite products
and finite coproducts agree, and that square Δ1 ×Δ1 → C is a pullback if and only if it is a
pushout (so that C has all finite colimits as well). A morphism of stable ∞-categories is an
exact functor, meaning a functor which preserves finite limits and colimits [12, 1.1.4.1].

More generally, given any ∞-category C with finite limits, the stabilization of C is the limit
(in the ∞-category of ∞-categories) of the tower

· · · Ω �� C∗
Ω �� C∗,

where C∗ denotes the pointed∞-category associated to C (the full∞-subcategory of Fun(Δ1,C)
on those arrows whose source is a final object ∗ of C). Provided C is presentable, Stab(C) comes
equipped with a stabilization functor Σ∞

+ : C→ Stab(C) functor from C (see [12, 1.4.4.4]),
formally analogous to the suspension spectrum functor, and left adjoint to the zero-space
functor Ω∞

− : Stab(C)→ C (the subscript indicates that we forget the basepoint).
If one works entirely in the world of presentable stable ∞-categories and left adjoint

functors thereof, then Stab is left adjoint to the inclusion into the ∞-category of presentable
∞-categories of the full ∞-subcategory of presentable stable ∞-categories. In other words, a
morphism of presentable ∞-categories C→ D such that D is stable factors (uniquely up to a
contractible space of choices) through the stabilization Σ∞

+ : C→ Stab(C) of C (cf. [12, 1.4.4.4,
1.4.4.5]). The ∞-category Gpd∞/X of spaces over a fixed space X is presentable.

The discussion so far suggests two models for the ∞-category of spectra over X: one is
Stab(Gpd∞/X), and the other is Fun(Xop,Stab(Gpd∞)). In fact, these are equivalent: for
any ∞-groupoid X, the equivalence Gpd∞/X � Fun(Xop,Gpd∞) induces an equivalence of
stabilizations

Stab(Gpd∞/X) � Stab(Fun(Xop,Gpd∞)).

Since limits in functor categories are computed pointwise, one easily checks that

Stab(Gpd∞/X) � Stab(Fun(Xop,Gpd∞)) � Fun(Xop,Stab(Gpd∞)).

Remark 2.7. May and Sigurdsson [15] build a simplicial model category SX of orthogonal
spectra parameterized by a topological X. In [1], we prove that there is an equivalence of
∞-categories between the simplicial nerve of the May–Sigurdsson category of parameterized
orthogonal spectra N(Scf

X) and the ∞-category Fun(Xop,Stab(Gpd∞)).
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2.4. Parameterized R-modules and R-lines

We now fix an A∞-ring spectrum R. Recall [12, 4.2.1.36] that there exists a presentable
stable ∞-category R-mod of (right) R-module spectra, and that this ∞-category possesses
a distinguished object R.

Definition 2.8. An R-line is an R-module M which admits an R-module equivalence
M � R.

Let R-line denote the full ∞-subgroupoid of R-mod spanned by the R-lines. This is not the
same as the full ∞-subcategory of R-mod on the R-lines, as a map of R-lines is by definition
an equivalence. We regard R-line as a pointed ∞-groupoid via the distinguished object R.

Proposition 2.9. There is a canonical equivalence of ∞-groupoids

B AutR(R) � R-line,

and AutR(R) � GL1R as monoidal ∞-groupoids.

Proof. We regard B AutR(R) ⊂ R-mod as the full subgroupoid of R-mod consisting of the
single R-module R. Hence, B AutR(R) is naturally a full subgroupoid of R-line, and the fully
faithful inclusion B AutR(R) ⊂ R-line is also essentially surjective by definition of R-line. It
is therefore an equivalence, so it only remains to show that GL1R � AutR(R) as monoidal
∞-groupoids. This follows from the fact that EndR(R) � Ω∞(R), and AutR(R) ⊂ EndR(R) is,
by (2.1), the monoidal subspace defined by the same condition as GL1R ⊂ Ω∞(R); namely, as
the pullback

AutR(R) ��

��

EndR(R)

��
π0 EndR(R)× �� π0 EndR(R)

where π0 EndR(R)× ∼= π0(R)× denotes the invertible homotopy classes of endomorphisms in
the ordinary category ho(R-mod).

Definition 2.10. Let X be a space. The ∞-category of R-modules over X is the ∞-
category Fun(Xop, R-mod) of presheaves of R-modules on X; similarly, the ∞-category of
R-lines over X is the ∞-category Fun(Xop, R-line) of presheaves of R-lines on X.

We will denote by RX the constant functor Xop → R-line→ R-mod which has value R, and
sometimes write

RX -mod = Fun(Xop, R-mod),

for the ∞-category of R-modules over X, and

RX -line = Fun(Xop, R-line),

for the full ∞-subgroupoid spanned by those R-modules over X which factor

Xop −→ R-line −→ R-mod,

through the inclusion of the full ∞-subgroupoid R-line→ R-mod.
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Lemma 2.11. The fiber over X of the projection Gpd∞/R-line → Gpd∞ is equivalent to the
∞-groupoid RX -line.

Proof. RX -line � Fun(Xop, R-line) � mapGpd∞(Xop, R-line), and, in general, the ∞-
groupoid mapC(a, b) of maps from a to b in the ∞-category C may be calculated as the fiber
over a of the projection C/b → C.

Definition 2.12. A trivialization of an RX -module L is an RX -module equivalence L→
RX . The ∞-category RX -triv of trivialized R-lines is the slice category

RX -triv def= RX -line/RX
.

The objects of RX -triv are trivialized RX -lines, which is to say RX -lines L with a
trivialization L→ RX ; more generally, an n-simplex Δn → RX -triv of RX -triv is a map
Δn � Δ0 → RX -line of RX -line which sends Δ0 to RX . There is a canonical projection

ιX : RX -triv −→ RX -line,

which sends the n-simplex Δn � Δ0 → RX -line to the n-simplex Δn → Δn � Δ0 → RX -line;
according to (the dual of) [11, Corollary 2.1.2.4], this is a right fibration, and hence a Kan
fibration as RX -line is an ∞-groupoid [11, Lemma 2.1.3.2].

Lemma 2.13. Let X be an ∞-groupoid. Then RX -triv is a contractible ∞-groupoid, and
the fiber, over a given RX -line f, of the projection

ιX : RX -triv −→ RX -line

is the (possibly empty) ∞-groupoid mapRX -line(f,RX).

Proof. Once again, use the description of mapC(a, b) as the fiber over a of the projection
C/b → C, together with the fact that if C is an ∞-groupoid, then C/b, an ∞-groupoid with a
final object, is contractible.

Corollary 2.14. The Kan fibration

AutR(R) −→ R-triv −→ R-line

is a simplicial model for the quasifibration GL1R→ EGL1R→ BGL1R.

Proof. By the preceding discussion, R-triv is a contractible Kan complex and the projection
R-triv→ R-line is a Kan fibration. The result follows from Proposition 2.9, where we showed
that AutR(R) � GL1R.

For X the terminal Kan complex, we write R-triv in place of RX -triv and ι : R-triv→ R-line
in place of ιX . Given f : X → R-line, we refer to a factorization

R-triv

ι

��
Xop

���
�

�
�

�

f
�� R-line

(2.15)

of f through ι as a trivialization of f .
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Definition 2.16. We write Triv(f) for the space of trivializations of f ; explicitly, it is the
fiber over f in the fibration

Fun(Xop, R-triv) ι−→ Fun(Xop, R-line).

Corollary 2.17. There is a canonical equivalence of ∞-groupoids

Fun(Xop, R-triv) � RX -triv.

Moreover, Triv(f) is equivalent to mapRX -line(f,RX).

Proof. For the first claim, we have

Fun(Xop, R-line/R) � Fun(Xop, R-line)/p∗R � RX -line/RX
.

For the second, compare the two pullback diagrams

mapRX -line(f,RX) ��

��

RX -line/RX

��
{f} �� RX -line

and
Triv(f) ��

��

Fun(Xop, R-triv)

��
{f} �� Fun(Xop, R-line)

in which the two right-hand fibrations are equivalent.

A map of spaces f : X → Y gives rise to a restriction functor

f∗ : RY -mod −→ RX -mod,

which admits a right adjoint f∗ as well as a left adjoint f!. This means that, given an RX -module
L and an RY -module M , there are natural equivalences of ∞-groupoids

map(f!L,M) � map(L, f∗M)

and
map(f∗M,L) � map(M,f∗L).

An important point about these functors is the following.

Proposition 2.18. Let π : X → ∗ be the projection to a point and let π∗ : R-mod→
RX -mod be the resulting functor. If M is an R-module, then

π!π
∗M � Σ∞

+ X ∧M. (2.19)

Proof. We use the equivalence RX -mod � Fun(Xop, R-mod), and compute in Fun(Xop, R-mod).
In that case the left-hand side in (2.19) is the colimit of the constant map of ∞-categories

Xop M−→ R-mod.

This map is equivalent to the composition

Xop 1−→ Gpd∞
Σ∞

+−−→ Stab(Gpd∞)
(− )∧M−−−−−→ R-mod.
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The second two functors in this composition commute with colimits, and equation (2.2) says
that X � colim(1 : Xop −→ Gpd∞).

2.5. Thom spectra

We continue to fix an A∞-ring spectrum R.

Definition 2.20. The Thom R-module spectrum is the functor

M : Gpd∞/R-line −→ R-mod,

which sends f : Xop → R-line to the colimit of the composite

Xop f→ R-line i→ R-mod.

Equivalently Mf is the left Kan extension

Mf
def= p!(i ◦ f)

along the map p : Xop → ∗.

Proposition 2.21. Let G be an ∞-group (a group-like monoidal ∞-groupoid) with
classifying space BG and suppose given a map f : BG→ R-line. Then

Mf � R/G,

where G acts on R via the map Ωf : G � ΩBG→ Ω(R-line) � AutR(R).

Proof. Both Mf and R/G are equivalent to the colimit of the composite functor BGop →
B AutR(R) � R-line→ R-mod.

2.6. Orientations

With these in place, one can analyze the space of orientations in a straightforward manner, as
follows. First of all observe that, by definition, we have an equivalence

mapR-mod(Mf,R) � mapRX -mod(f, p∗R).

Definition 2.22. The space of orientations of Mf is the pullback

OrientationsR(Mf,R) ��

�
��

mapR-mod(Mf,R)

�
��

mapRX -line(f, p∗R) �� mapRX -mod(f, p∗R).

(2.23)

The ∞-groupoid OrientationsR(Mf,R) enjoys an obstruction theory analogous to that of
the space of orientations described in [2]. The following theorem is the analog in this context
of [2, 3.20].



THOM SPECTRA VIA ∞-CATEGORIES 881

Theorem 2.24. Let f : Xop → R-line be a map, with associated Thom R-module Mf .
Then the space of orientations Mf → R is equivalent to the space of lifts in the diagram

R-triv

ι

��
Xop

���
�

�
�

�

f
�� R-line.

(2.25)

Proof. Corollary 2.17 says that the space Triv(f) of factorizations of f through ι is
equivalent to the mapping space mapRX -line(f, p∗R).

Corollary 2.26. An orientation of Mf determines an equivalence of R-modules

Mf � Σ∞
+ X ∧R.

Proof. If C is an ∞-category, write Iso(C)(a, b) for the subspace mapC�(a, b) ⊆ mapC(a, b)
consisting of equivalences (see (2.1)). By definition, mapRX -line(f,RX) = Iso(RX -mod)(f, p∗R),
and so (2.23) gives an equivalence OrientationsR(Mf,R) −→ Iso(RX -mod)(f, p∗R). The
desired map is the composite

Iso(RX -mod)(f, p∗R) −→ Iso(R-mod)(p!f, p!p
∗R) −→ Iso(R-mod)(p!f,Σ∞

+ X ∧R).

Here the second map applies p! and the last map composes with the equivalence p!p
∗R→

Σ∞
+ X ∧R of Proposition 2.18.

2.7. Twisted homology and cohomology

Recall that the R-module Thom spectrum Mf of the map f : Xop → R-line, which we think
of as classifying an R-line bundle on X, is the pushforward Mf � p!f of the composite

Xop f−→ R-line −→ R-mod.

The homotopy groups πnMf can be computed as homotopy classes of R-module maps from
ΣnR to Mf , which is a convenient formulation because the twisted R-cohomology groups are
dually homotopy classes of R-module maps from Mf to ΣnR.

Definition 2.27. Let R be an A∞-ring spectrum, let X be a space with projection p :
X → ∗ to the point, and let f : X → R-line be an R-line bundle on X. Then the f -twisted
R-homology and R-cohomology of X are the mapping spectra

Rf (X) = MapR(R,Mf) �Mf,

Rf (X) = MapR(Mf,R) � MapRX
(f,RX),

formed in the stable ∞-category R-mod of R-modules (or Fun(Xop, R-mod) of RX -modules).

Here recall that RX � p∗R is the constant bundle of R-modules Xop → R-line→ R-mod,
and the equivalence of mapping spectra MapR(Mf,R) � MapRX

(f,RX) follows from the
equivalence, for each integer n, of mapping spaces

mapR(p!f,ΣnR) � mapRX
(f, p∗ΣnR)

that results from the fact that p∗ is right adjoint to p!.
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Note that, since R is only assumed to be an A∞-ring spectrum, the homotopy category of
R-mod does not usually admit a closed monoidal structure with unit R; nevertheless, we still
regard Rf (X) as the ‘R-dual’ spectrum MapR(Mf,R) of Mf � Rf (X), or as the ‘spectrum of
(global) sections’ MapRX

(f,RX) of the R-line bundle f . Also, the notation Rf (X) and Rf (X)
is designed so that, for an integer n, we have the f -twisted R-homology and R-cohomology
groups

Rf
n(X) = π0 mapR(ΣnR,Mf) ∼= πnMf,

Rn
f (X) = π0 mapR(Mf,ΣnR) ∼= π0 mapRX

(f, p∗ΣnR).

A consequence of our work with orientations is the following untwisting result.

Corollary 2.28. If f : Xop → R-line admits an orientation, then Mf � R ∧ Σ∞
+ X, and

the twisted R-homology and R-cohomology spectra

Rf (X) � R ∧ Σ∞
+ X,

Rf (X) � Map(Σ∞
+ X,R),

reduce to the ordinary R-homology and R-cohomology spectra of X.

Proof. Indeed, Corollary 2.26 gives equivalences MapR(R,Mf) �Mf � R ∧ Σ∞
+ X and

MapR(R ∧ Σ∞
+ X,R) � Map(Σ∞

+ X,R).

3. Morita theory and Thom spectra

In this section, we interpret the construction of the Thom spectrum from the perspective of
Morita theory. This viewpoint is implicit in the ‘algebraic’ definition of the Thom spectrum of
f : X → BGL1R in [2] as the derived smash product

Malgf
def= Σ∞

+ P ∧L
Σ∞

+ GL1R R,

where P is the pullback of the diagram

X �� BGL1R EGL1R.��

As passage to the pullback induces an equivalence between spaces over BGL1R and GL1R
spaces, and the target category of R-modules is stable, we can regard the Thom spectrum as
essentially given by a functor from (right) Σ∞

+ GL1R-modules to R-modules.
Roughly speaking, Morita theory (more precisely, the Eilenberg–Watts theorem) implies that

any continuous functor from (right) Σ∞
+ GL1R-modules to (right) R-modules which preserves

homotopy colimits and takes GL1R to R can be realized as tensoring with an appropriate
(Σ∞

+ GL1R)-R bimodule. In particular, this tells us that the Thom spectrum functor is
characterized amongst such functors by the additional data of the action of GL1R on R,
equivalently a map BGL1R→ BGL1R.

Beyond its conceptual appeal, this viewpoint on the Thom spectrum functor provides the
basic framework for comparing the construction which we have discussed in this paper with
Malg and also with the ‘neo-classical’ construction of Lewis and May and the parameterized
construction of May and Sigurdsson.

After discussing the analog of the classical Eilenberg–Watts theorem in the context of ring
spectra in § 3.1, in § 3.2 we classify colimit-preserving functors between ∞-categories. Our
classification leads in § 3.3 to a characterization of the ‘geometric’ Thom spectrum functor
M = Mgeo of this paper, which serves as the basis for comparison with the ‘algebraic’ Thom
spectrum Malg from [2].
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In § 3.4, we briefly review the construction of Malg, and characterize it using Morita theory.
In § 3.5, we prove the equivalence of Mgeo and Malg. The close relationship between our
∞-categorical construction of the Thom spectrum and the definition of May and Sigurdsson
[15, 23.7.1, 23.7.4] allows us (in § 3.6) to compare May and Sigurdsson’s construction of the
Thom spectrum (and by extension the ‘neo-classical’ Lewis–May construction) to the ones in
this paper.

In § 3.7, we also sketch a direct comparison between Mgeo and Malg; although the argument
does not characterize the functor among all functors from GL1R-modules to R-modules, we
believe it provides a useful concrete depiction of the situation.

3.1. The Eilenberg–Watts theorem for categories of module spectra

The key underpinning of classical Morita theory is the Eilenberg–Watts theorem, which for
rings A and B establishes an equivalence between the category of colimit-preserving functors
A-mod→ B-mod and the category of (A,B)-bimodules. The proof of the theorem proceeds
by observing that any functor T : A-mod→ B-mod specifies a bimodule structure on TA with
the A-action given by the composite

A −→ FA(A,A) −→ FB(TA, TA).

It is then straightforward to check that the functor −⊗A TA is isomorphic to the functor T ,
using the fact that both of these functors preserve colimits.

In this section, we discuss the generalization of this result to the setting of categories of
module spectra. The situation here is more complicated than in the discrete case; for instance,
it is well known that there are equivalences between categories of module spectra which are
not given by tensoring with bimodules, and there are similar difficulties with the most general
possible formulation of the Eilenberg–Watts theorem. However, much of the subtlety here
comes from the fact that unlike in the classical situation, compatibility with the enrichment
in spectra is not automatic (see, for example, the excellent recent paper of Johnson [7] for
a comprehensive discussion of the situation). By assuming our functors are enriched, we can
recover a close analog of the classical result.

Let A and B be (cofibrant) S-algebras and let T be an enriched functor

T : A-mod −→ B-mod.

Specifically, we assume that T induces a map of function spectra FA(X,Y )→ FB(TX, TY ),
and furthermore that T preserves tensors (in particular, homotopies) and homotopy colimits.
For instance, these conditions are satisfied if T is a Quillen left-adjoint. The assumption that T
is homotopy-preserving implies that T preserves weak equivalences between cofibrant objects
and so admits a total left-derived functor TL : hoA-mod→ ho B-mod. Furthermore, T (A) is
an A-B bimodule with the bimodule structure induced just as above.

Using an elaboration of the arguments of [18, 4.1.2] (see also [17, 4.20]), we now can prove
the following Eilenberg–Watts theorem in this setting. We will work in the EKMM categories
of S-modules [6], so we can assume that all objects are fibrant.

Proposition 3.1. Given the hypotheses of the preceding discussion, there is a natural
isomorphism in ho B-mod between the total left-derived functor TL(−) and the derived smash
product (−) ∧L T (A), regarding T (A) as a bimodule as above.

Proof. By continuity, there is a natural map of B-modules

(−) ∧A T (A) −→ T (−).
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Let T ′ denote a cofibrant replacement of T (A) as an A-B bimodule. Since the functor (−) ∧A T ′

preserves weak equivalences between cofibrant A-modules, there is a total left-derived functor
(−) ∧L

A T ′ which models (−) ∧L
A T (A). Thus, the composite

(−) ∧A T ′ −→ (−) ∧A T (A) −→ T (−)

descends to the homotopy category to produce a natural map

(−) ∧L
A T (A) −→ TL(−).

The map is clearly an equivalence for the free A-module of rank 1, that is, A. Since both
sides commute with homotopy colimits, we can inductively deduce that the first map is an
equivalence for all cofibrant A-modules, and this implies that the map of derived functors is
an isomorphism.

To characterize the Thom spectrum functor amongst functors from spaces over BGL1R to
R-modules, it is useful to formulate Proposition 3.1 in terms of ∞-categories. One reason is
that (as we recall in § 3.4) the ‘algebraic’ Thom spectrum of [2] is the composition of a right
derived functor (which is an equivalence) and a left derived functor. We remark that much of
the technical difficulty in the neo-classical theory of the Thom spectrum functor arises from
the difficulties involved in dealing with point-set models of such composites. This is the kind
of formal situation that the ∞-category framework handles well.

3.2. Colimit-preserving functors

In this section, we study functors between ∞-categories which preserve colimits. Specializing
to module categories, we obtain a version of the Eilenberg–Watts theorem which applies to
both the algebraic and the geometric Thom spectrum.

We begin by considering cocomplete∞-categories. Let C be a small∞-category, and consider
the∞-topos Pre(C) = Fun(Cop,T) of presheaves of∞-groupoids on C. Recall that Pre(C) comes
equipped with a fully faithful Yoneda embedding

C −→ Pre(C), (3.2)

which exhibits Pre(C) as the ‘free cocompletion’ [11, 5.1.5.8] of C. More precisely, writing
FunL(C,D) for the full subcategory of Fun(C,D) consisting of the colimit-preserving functors,
we have the following lemma.

Lemma 3.3 [11, 5.1.5.6]. For any cocomplete ∞-category D, precomposition with the
Yoneda embedding induces an equivalence of ∞-categories

FunL(Pre(C),D) −→ Fun(C,D). (3.4)

We shall be particularly interested in the case where C is an ∞-groupoid, so that

Pre(C) = Fun(Cop,Gpd∞) � Gpd∞/C, (3.5)

as in Remark 2.4. In particular, given a functor f : C→ D, we may extend by colimits to a
colimit-preserving functor f̃ : Gpd∞/C → D.

Corollary 3.6. If g : Gpd∞/C → D is any colimit-preserving functor whose restriction

along the Yoneda embedding C→ Gpd∞/C is equivalent to f, then g is equivalent to f̃ .
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Lemma 3.7 [12, 1.4.4.4, 1.4.4.5]. Let C and D be presentable ∞-categories such that D is
stable. Then

Ω∞
− : Stab(C) −→ C

admits a left adjoint

Σ∞
+ : C −→ Stab(C),

and precomposition with the Σ∞
+ induces an equivalence of ∞-categories

FunL(Stab(C),D) −→ FunL(C,D).

Combining the universal properties of stabilization and the Yoneda embedding, we obtain
the following equivalence of ∞-categories.

Corollary 3.8. Let C and D be∞-categories such that D is stable and presentable. Then
there are equivalences of ∞-categories

FunL(Stab(Pre(C)),D) � FunL(Pre(C),D) � Fun(C,D).

Proof. This follows from the last two lemmas.

Now suppose that C and D have distinguished objects, given by maps ∗ → C and ∗ → D

from the trivial ∞-category ∗. Then Pre(C) and Stab(Pre(C)) inherit distinguished objects via
the composite

∗ −→ C
i−→ Pre(C)

Σ∞
+−→ Stab(Pre(C)),

where i denotes the Yoneda embedding. Note that the fiber sequence

Fun∗/(C,D) −→ Fun(C,D) −→ Fun(∗,D) � D

shows that the ∞-category of pointed functors is equivalent to the fiber of the evaluation map
Fun(C,D)→ D over the distinguished object of D.

Proposition 3.9. Let C and D be ∞-categories with distinguished objects such that D is
stable and cocomplete. Then there are equivalences of ∞-categories

FunL
∗/(Stab(Pre(C)),D) � FunL

∗/(Pre(C),D) � Fun∗/(C,D).

Proof. Take the fiber of FunL(Stab(Pre(C)),D) � FunL(Pre(C),D) � Fun(C,D) over
∗ → D.

Corollary 3.10. Let G be a group-like monoidal ∞-groupoid G, let BG be a one-object
∞-groupoid with G � AutBG(∗), and let D be a stable and cocomplete ∞-category with a
distinguished object ∗. Then

FunL
∗/(Stab(Pre(BG)),D) � FunL

∗/(Pre(BG),D)

� Fun∗/(BG,D) � Fun(BG,B AutD(∗));
that is, specifying an action of G on the distinguished object ∗ of D is equivalent to specifying
a pointed colimit-preserving functor from Pre(BG) (or its stabilization) to D.
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Proof. A basepoint-preserving functor BG→ D necessarily factors through the full
subgroupoid B AutD(∗).

Note that the ∞-category Fun(BG,B AutD(∗)) is actually an ∞-groupoid, as B AutD(∗) is
an ∞-groupoid.

Putting this all together, consider the case in which the target ∞-category D is the
∞-category of right R-modules for an associative S-algebra R, pointed by the free rank one
R-module R. Then AutD(∗) � GL1R, and we have an ∞-categorical version of the Eilenberg–
Watts theorem.

Corollary 3.11. The space of pointed colimit-preserving maps from the ∞-category of
spaces over BG to the ∞-category of R-modules is equivalent to the space of monoidal maps
from G to GL1R, or equivalently the space of maps from BG to BGL1R.

3.3. ∞-Categorical Thom spectra, revisited

We now return to the definition of Thom spectra from § 2 and interpret that construction in
light of the work of the previous subsections. To avoid confusion with the Thom spectrum
constructed in [2], in this section we write Mgeo for the Thom spectrum of § 2.

Let R be an algebra in Stab(Gpd∞), and form the ∞-categories R-mod and R-line. Given
a map of ∞-groupoids

f : X −→ R-line,

the ‘geometric’ Thom spectrum we constructed in § 2 is the pushforward of the restriction to
X of the tautological R-line bundle idR-line, the identity of R-line. More precisely, Mgeof �
colim(f : X → R-line −→ R-mod), and in particular, Mgeo preserves (∞-categorical) colimits.

Proposition 3.12. The restriction of Mgeo : Gpd∞/R-line → R-mod along the Yoneda
embedding

R-line −→ Fun(R-lineop,Gpd∞) � Gpd∞/R-line

is equivalent to the inclusion R-line −→ R-mod of the full ∞-subgroupoid on R.

Proof. Consider the colimit-preserving functor Gpd∞/R-line → R-mod induced by the
canonical inclusion R-line→ R-mod. As we explain in Corollary 3.6, it sends X → R-line to
the colimit of the composite X → R-line→ R-mod.

Together with Corollary 3.6, the proposition implies the following.

Corollary 3.13 (Proposition 1.19). A functor Gpd∞/R-line → R-mod is equivalent to
Mgeo if and only if it preserves colimits and its restriction along the Yoneda embedding R-line→
Fun(R-lineop,Gpd∞) � Gpd∞/R-line is equivalent to the inclusion of R-line into R-mod.

3.4. A review of the algebraic Thom spectrum functor

We briefly recall the ‘algebraic’ construction of the Thom spectrum from [2]. For an A∞-
ring spectrum R, the classical construction yields GL1R as an A∞-space. This means we
expect to be able to form constructions BGL1R and EGL1R, and so, given a classifying map
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f : X → BGL1R, obtain a GL1R-space P as the pullback of the diagram

X �� BGL1R EGL1R.��

We then define the Thom spectrum associated to f as the derived smash product

Malgf
def= Σ∞

+ P ∧L
Σ∞

+ GL1R R, (3.14)

where R is the Σ∞
+ GL1R-R bimodule specified by the canonical action of Σ∞

+ GL1R on R.
In order to make this outline precise, the companion paper used the technology of ∗-modules

[3, 4], which are a symmetric monoidal model for the category of spaces such that monoids are
precisely A∞-spaces and commutative monoids are precisely E∞-spaces. Denote the category
of ∗-modules by M∗. As an A∞ (or E∞) space, GL1R gives rise to a monoid in the category
of ∗-modules. We will abusively continue to use the notation GL1R to denote a model of
GL1R which is cofibrant as a monoid in ∗-modules. We can compute BGL1R and EGL1R as
two-sided bar constructions with respect to the symmetric monoidal product �:

E�GL1R = B�(∗, GL1R,GL1R) and B�GL1R = B�(∗, GL1R, ∗).
The map E�GL1R→ B�GL1R models the universal quasifibration [2, 3.8]. Furthermore, there
is a homotopically well-behaved category MGL1R of GL1R-modules in M∗ (see [2, 3.6]).

Now, given a fibration of ∗-modules f : X → B�GL1R, we take the pullback of the diagram

X �� B�GL1R E�GL1R��

to obtain a GL1R-module P . This procedure defines a functor from ∗-modules over B�GL1R to
GL1R-modules; since we are assuming f is a fibration, we are computing the derived functor.
Applying Σ∞

L+, we obtain a right Σ∞
L+GL1R-module Σ∞

L+P , and so we can define Malgf as
above. (Here Σ∞

L+ is the appropriate model of Σ∞
+ in this setting.)

The functor which sends f to P induces an equivalence of ∞-categories

N((M∗/B�GL1R)cf) � N((MGL1R)cf),

as a consequence of [2, 3.19]. Together with Proposition 3.1, this gives a characterization of
the algebraic Thom spectrum functor.

Proposition 3.15. Let

T : MGL1R −→MR

be a continuous, colimit-preserving functor which sends GL1R to an R-module R′ homotopy
equivalent to R in such a way that

GL1R � EndMGL1R
(GL1R) −→ EndMR

(R′) � EndMR
(R)

is homotopy equivalent to the inclusion GL1R � Aut(R)→ End(R). (Here Aut and End
refer to the derived automorphism and endomorphism spaces, respectively.) Then TL, the
left-derived functor of T, is homotopy equivalent to

Σ∞
L+(−) ∧L

Σ∞
L+GL1R R : MGL1R →MR.

Proof. The stability of R-mod and Proposition 3.1 together imply that TL is homotopy
equivalent to Σ∞

L+(−) ∧L
Σ∞

L+GL1R B for some (Σ∞
L+GL1R,R)-bimodule B. Since T (Σ∞

L+GL1R) �
R, we must have B � R; since the left action of GL1R on itself induces (via the equivalence
R′ � R) the canonical action of Σ∞

L+GL1R on R, we conclude that B � R as (Σ∞
L+GL1R,R)-

bimodules.
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3.5. Comparing notions of Thom spectrum

In this section, we show that, on underlying ∞-categories, the algebraic Thom R-module
functor is equivalent to the geometric Thom spectrum functor via the characterization of
Corollary 3.13.

Let MS be the category of EKMM S-modules [6]. According to the discussion in [12, § 1.4.3]
(and using the comparisons of [13]), there is an equivalence of ∞-categories

NMcf
S � Stab(Gpd∞), (3.16)

which induces equivalences of ∞-categories of algebras and commutative algebras

NAlg(MS)cf � Alg(Stab(Gpd∞)), NCAlg(MS)cf � CAlg(Stab(Gpd∞)). (3.17)

Let R be a cofibrant–fibrant EKMM S-algebra and let R′ be the corresponding algebra in
Alg(Stab(Gpd∞)). The equivalence (3.16) induces an equivalence of ∞-categories

N(Mcf
R) � R′-mod. (3.18)

Proposition 2.14 gives an equivalence of ∞-groupoids

BGL1R � N((R-line)cf), (3.19)

and so, putting (3.18) and (3.19) together with the comparisons of [2, 3.7], we have equivalences
of ∞-categories

N((M∗/B�GL1R)cf) � N((Top/BGL1R)cf) � Gpd∞/R′-line .

Proposition 3.20. The functor

Gpd∞/R′-mod � N((Top/BGL1R)cf)
NMalg−−−−→ N(Mcf

R) � R′-mod,

obtained by passing the Thom R-module functor Malg of [2] though the indicated equivalences
is equivalent to the Thom R′-module functor of § 2.

Proof. Let C denote the topological category with a single object ∗ and

mapC(∗, ∗) = GL1R = AutR(Rcf) � AutR′(R′).

Note that C is naturally a topological subcategory of MGL1R (the full topological subcategory
on GL1R) and by definition a topological subcategory of MR. Note also that

NC � B Aut(R′) � R′-line.

As in Proposition 3.15, the continuous functor

TL : MGL1R −→MR

determined by Malg has the property that its restriction to C is equivalent to the inclusion of
the topological subcategory C→MR. Taking simplicial nerves, and recalling that

N(Mcf
GL1R) � N((Top/BGL1R)cf) � Fun(NCop,Gpd∞),

we see that

N(TL) : Fun(NCop,Gpd∞) � N(Mcf
GL1R) −→ N(Mcf

R) � R′-mod

is a colimit-preserving functor whose restriction along the Yoneda embedding

NC→ Fun(NCop,Gpd∞) � Gpd∞/R′-line

is equivalent to the inclusion of the ∞-subcategory NC � R′-line→ R′-mod. It follows from
Corollary 3.13 that N(TL) is equivalent to the ‘geometric’ Thom spectrum functor of § 2.
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Remark 3.21. The argument also implies the following apparently more general result.
Recall from § 3.2 that any map k : BGL1R→ BGL1R defines a functor from the ∞-category
of spaces over BGL1R to the ∞-category of R-modules, defined by sending f : X → BGL1R
to the colimit of the composite

Xop f−→ BGL1R
k−→ BGL1R→ R-mod. (3.22)

On the other hand, according to Proposition 3.26, we can describe the derived smash product
from § 3.1 associated to k as the colimit of the composite

Xop f−→ BGL1R
k−→ BGL1R

Σ∞
+−−→ Σ∞

+ GL1R-mod
(−)∧Σ∞

+ GL1RR

−−−−−−−−−−→ R-mod.

Since both functors are given by the formula M(k ◦ f), the Thom R-module of f composed
with k, we conclude that these two procedures are equivalent for any k, not just the identity.

3.6. The ‘neo-classical’ Thom spectrum functor

In this section, we compare the Lewis–May operadic Thom spectrum functor to the Thom
spectrum functors discussed in this paper. Since the May–Sigurdsson construction of the Thom
spectrum in terms of a parameterized universal spectrum over BGL1S (see [15, 23.7.4]) is easily
seen to be equivalent to the space-level Lewis–May description, this will imply that all of the
known descriptions of the Thom spectrum functor agree up to homotopy. Our comparison
proceeds by relating the Lewis–May model to the quotient description of Proposition 2.21.

We begin by briefly reviewing the Lewis–May construction of the Thom spectrum functor;
the interested reader is referred to Lewis’ thesis, published as [9, Chapter IX], and the excellent
discussion in [15, Chapter 22] for more details and proofs of the foundational results below.
Nonetheless, we have tried to make our discussion relatively self-contained.

The starting point for the Lewis–May construction is an explicit construction of GL1S in
terms of a diagrammatic model of infinite loop spaces. Let Ic be the symmetric monoidal
category of finite or countably infinite-dimensional real inner product spaces and linear
isometries. Define an Ic-space to be a continuous functor from Ic to spaces. The usual left
Kan extension construction (i.e., Day convolution) gives the diagram category of Ic-spaces a
symmetric monoidal structure. It turns out that monoids and commutative monoids for this
category model, respectively, A∞ and E∞ spaces; for technical felicity, we focus attention on
the commutative monoids which satisfy two additional properties.

(1) The map T (V )→ T (W ) associated to a linear isometry V →W is a homeomorphism
onto a closed subspace.

(2) Each T (W ) is the colimit of the T (V ), where V runs over the finite-dimensional subspaces
of W and the maps in the colimit system are restricted to the inclusions.

Denote such a functor as an Ic-FCP (functor with cartesian product) [15, 23.6.1]; the
requirement that T be a diagrammatic commutative monoid implies the existence of a
‘Whitney sum’ natural transformation T (U)× T (V )→ T (U ⊕ V ). This terminology is of
course deliberately evocative of the notion of FSP (functor with smash product), which is
essentially an orthogonal ring spectrum [13].

An Ic-FCP gives rise to an E∞-space structured by the linear isometries operad L;
specifically, T (R∞) = colimV T (V ) is an L-space with the operad maps induced by the Whitney
sum [14, 1.9; 15, 23.6.3]. In fact, as alluded to above, one can set up a Quillen equivalence
between the category of Ic-FCPs and the category of E∞-spaces, although we do not discuss
this matter herein (see [10] for a nice treatment of this comparison).

Moving on, we now focus attention on the Ic-FCP specified by taking V ⊂ R
∞ to the space

of based homotopy self-equivalences of SV ; this is classically denoted by F (V ). Passing to the
colimit over inclusions, F (R∞) = colimV F (V ) becomes an L-space which models GL1S, this is
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essentially one of the original descriptions from [14]. Furthermore, since each F (V ) is a monoid,
applying the two-side bar construction levelwise yields an FCP specified by V �→ BF (V );
here BF (V ) denotes the bar construction B(∗, F (V ), ∗), and the Whitney sum transformation
is defined using the homeomorphism B(∗, F (V ), ∗)×B(∗, F (W ), ∗) ∼= B(∗, F (V )× F (W ), ∗).
The colimit BF (R∞) provides a model for BGL1S.

Now, since F (V ) acts on SV , we can also form the two-sided bar construction B(∗, F (V ), SV ),
abbreviated EF (V ), and there is a universal quasifibration

πV : EF (V ) = B(∗, F (V ), SV ) −→ B(∗, F (V ), ∗) = BF (V ),

which classifies spherical fibrations with fiber SV . Given a map X → BF (R∞), by pulling
back subspaces BF (V ) ⊂ BF (R∞), we get an induced filtration on X; denote the space
corresponding to pulling back along the inclusion of V ∈ R

∞ by X(V ) (see [9, IX.3.1]).
Denote by Z(V ) the pullback

X(V ) �� BF (V ) EF (V ).��

The V th space of the Thom prespectrum is then obtained by taking the Thom space of Z(V )→
X(V ), that is, by collapsing out the section induced from the basepoint inclusion ∗ → SV ;
denote the resulting prespectrum by TF (see [9, IX.3.2], and note that some work is involved
in checking that these spaces in fact assemble into a prespectrum).

Next, we will verify that the prespectrum TF associated to the identity map on BF (R∞) is
stably equivalent to the homotopy quotient S/GL1S � S/F (R∞). For a point-set description
of this homotopy quotient, it follows from [2, 3.9] that the category of EKMM (commutative)
S-algebras is tensored over (commutative) monoids in ∗-modules: the tensor of a monoid in
∗-modules M and an S-algebra A is Σ∞

L+M ∧A, with multiplication

(Σ∞
L+M ∧A) ∧ (Σ∞

L+M ∧A) ∼= (Σ∞
L+M ∧ Σ∞

L+M) ∧ (A ∧A)
∼= (Σ∞

L+(M � M)) ∧ (A ∧A) −→ (Σ∞
L+M) ∧A.

Thus, we can model the homotopy quotient as a bar construction in the category of (commu-
tative) S-algebras. However, we can also describe the homotopy quotient as colimV S/F (V ),
where here we use the structure of F (V ) as a monoid acting on SV . It is this ‘space-level’
description that we will employ in the comparison below.

We find it most convenient to reinterpret the Lewis–May construction in this situation,
as follows: The Thom space in this case is by definition the cofiber (EF (V ), BF (V )) of the
inclusion BF (V )→ EF (V ) induced from the basepoint inclusion ∗ → SV . Now,

BF (V ) � ∗/F (V ),

and similarly

EF (V ) � SV /F (V ).

Hence, the Thom space is likewise the cofiber (SV , ∗)/F (V ) of the inclusion ∗ → SV , viewed
as a pointed space.

More generally, we can regard the prespectrum {MF (V )} as equivalently described as

MF (V ) def= SV /F (V ),

the homotopy quotient of the pointed space SV by F (V ) via the canonical action, with structure
maps induced from the quotient maps SV → SV /F (V ) together with the pairings

MF (V ) ∧MF (W ) � SV /F (V ) ∧ SW /F (W ) −→ SV ⊕W /F (V )× F (W )

−→ SV ⊕W /F (V ⊕W ),
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where F (V )× F (W )→ F (V ⊕W ) is the Whitney sum map of F . It is straightforward to
check that the structure maps in terms of the bar construction described in [9, IX.3.2] realize
these structure maps.

The associated spectrum MF is then the colimit colimV S/F (V ) � S/F (R∞). A key point
is that the Thom spectrum functor can be described as the colimit over shifts of the Thom
spaces [9, IX.3.7, IX.4.4]:

MF = colim
V

Σ−V Σ∞MF (V ).

Furthermore, using the bar construction, we can see that the spectrum quotient (ΣV S)/F (V )
is equivalent to Σ∞SV /F (V ). Putting these facts together, we have the following chain
of equivalences:

MF = colim
V

Σ−V Σ∞MF (V ) = colim
V

Σ−V Σ∞SV /F (V )

� colim
V

Σ−V (ΣV S)/F (V ) � colim
V

(Σ−V ΣV S)/F (V ) � S/F (R∞).

More generally, a slight elaboration of this argument implies the following proposition.

Proposition 3.23. The Lewis–May Thom spectrum MG associated to a group-like A∞-
map ϕ : G→ GL1S modeled by the map of Ic-FCPs G→ F is equivalent to the spectrum
S/G, the homotopy quotient of the sphere by the action of ϕ.

Note that any A∞-map X → F (R∞) can be rectified to a map of Ic-FCPs X ′ → F (see [10]).

Corollary 3.24. Given a map of spaces f : X → BGL1S, write MLMf for the spectrum
associated to the Lewis–May Thom spectrum of f . Then MLMf �Mgeof as objects of the
∞-category of spectra.

Proof. A basic property of the Thom spectrum functor MLM is that it preserves colimits
[9, IX.4.3]. Thus, we can assume that X is connected. In this case, X � BG for some group-
like A∞-space G, and f : BG→ BGL1S is the delooping of an A∞-map G→ GL1S. Hence,
Mgeof � S/G by Proposition 3.23 and MLMf �Mgeof by Proposition 2.21.

3.7. The algebraic Thom spectrum functor as a colimit

We sketch another approach to the comparison of the ‘geometric’ and ‘algebraic’ Thom
spectrum functors. This approach has the advantage of giving a direct comparison of the
two functors. It has the disadvantage that it does not characterize the Thom spectrum functor
among functors

T/BGL1R −→ R-mod,

and it does not exhibit the conceptual role played by Morita theory. Instead, it identifies both
functors as colimits.

Suppose that R is an S-algebra. Let R-mod be the associated ∞-category of R-modules, let
R-line be the sub-∞-groupoid of R-lines, and let j : R-line→ R-mod denote the inclusion. For
a space X, the ‘geometric’ Thom spectrum functor sends a map f : Xop → R-line to

colim(Xop f−→ R-line
j−→ R-mod).

As in [2, § 3], let G be a cofibrant replacement of GL1R as a monoid in ∗-modules. By
definition of R-line, we have an equivalence B�G � R-line. But observe that we also have a
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natural equivalence
B�G � G-line.

That is, let G-mod = N(MG
cf) be the∞-category of G-modules and let G-line be the maximal

∞-groupoid generated by the G-lines, that is, G-modules which admit a weak equivalence to
G. By construction, G-line is connected, and so equivalent to B Aut(G) � B�G.

Recall that we have an equivalence of ∞-categories

Gpd∞/G-line � G-mod. (3.25)

The key observation is the following. Let k : G-line→ G-mod denote the tautological inclusion.
To a map of ∞-groupoids

f : Xop −→ G-line,

we can associate the G-module

Pf = colim(Xop f−→ G-line k−→ G-mod).

Inspecting the proof of [11, 2.2.1.2] implies that the functor P : Gpd∞/G-line → G-mod gives
the equivalence (3.25).

In other words, if f : X → B�G is a fibration of ∗-modules, then we can form P as in the
pullback along E�G→ B�G. Alternatively, we can form

f : X −→ B�G � G-line,

and then form Pf = colim(kf), and obtain an equivalence of G-modules

Pf � P.

Proposition 3.26. Let f : X → B�G be a fibration of ∗-modules. The ‘algebraic’ Thom
spectrum functor sends f to

colim(Xop f−→ B�G � G-line k−→ G-mod
Σ∞

+−−→ Σ∞
+ G-mod

∧Σ∞
+ GR

−−−−−→ R-mod).

Proof. We have
P � colim(Xop f−→ B�G � G-line k−→ G-mod), (3.27)

and so

Mf = Σ∞
+ P ∧Σ∞

+ G R

� Σ∞
+ colim(kf) ∧Σ∞

+ G R

� colim(Σ∞
+ kf) ∧Σ∞

+ G R

� colim(Σ∞
+ kf ∧Σ∞

+ G R).

From this point of view, the coincidence of the two Thom spectrum functors amounts to the
fact that diagram

Xop
f ��

f �������
���� G-line

� Σ∞
+ (− )∧Σ∞

+ GR

��

k �� G-mod

Σ∞
+ (− )∧Σ∞

+ GR

��
R-line

j
�� R-mod

evidently commutes.
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