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Abstract. Given a map of simplicial topological spaces, mild conditions on degeneracies and the levelwise maps
imply that the geometric realization of the simplicial map is a cofibration. These conditions are not formal conse-
quences of model category theory, but depend on properties of spaces, and similar results have not been available for
any model for the stable homotopy category of spectra. In this paper, we prove such results for symmetric spectra.
Consequently, we get a set of conditions which ensure that the geometric realization of a map of simplicial symmet-
ric spectra is a cofibration. These conditions are “user-friendly” in that they are simple, often easily checked, and do
not require computation of latching objects.
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1. Introduction.

Let f• : X• → Y• be a morphism of simplicial objects in some category of topological interest (e.g. spaces,
spectra, equivariant spectra, . . . ). It is often useful to know whether the induced map of geometric realizations

(1.1) | f•| : |X•| → |Y•|

is a cofibration1.
It is well-known that, given a model category C , there exists a model structure (called the Reedy model

structure due to its origin in C. Reedy’s thesis [9]) on the category of simplicial objects in C such that, if f• is
a Reedy cofibration, then the map 1.1 is a cofibration in the original model category C . The map f• is a Reedy
cofibration if, for each nonnegative integer n, the latching comparison map

Xn

∐
L̃nX•

L̃nY• → Yn

is a cofibration in C . Here L̃n is a certain colimit called the latching object construction, whose definition we
recall in Definition 2.1.

From the definition of a Reedy cofibration one can see that, in practical situations, it is often difficult to check
that a given map f• is a Reedy cofibration. The purpose of this paper is to give a straightforward, practical, often
easily-checked set of conditions on a simplicial map of spectra f• which ensure that it is a Reedy cofibration,
and hence that the map 1.1 is a cofibration of spectra.

The main approach is to try to “import” some classical results from unstable homotopy theory into the
setting of symmetric spectra. In pointed topological spaces, it is typically quite easy to check that a simplicial
map f• : X• → Y• is a Reedy cofibration:

Date: September 2017.
1This problem arose for the authors in the process of constructing the “THH-May spectral sequence” of [1], but the problem is a very

general one of basic interest. The paper [1] makes essential use of the results of this paper.
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(1) if the degeneracy maps in X• and Y• are all closed cofibrations (i.e., X• and Y• are “good” simplicial
spaces, in the sense of [11] ), then an easy application of Lillig’s cofibration union theorem [6] shows
that X• and Y• are each Reedy cofibrant.

(2) Then one can show that, if X• and Y• are each Reedy cofibrant and each map fn : Xn → Yn is a closed
cofibration, then f• is a Reedy cofibration.

The key observation that makes this proof work is that the latching space L̃nX• is simply the union of the images
of the degeneracy maps in X•, and so the natural map L̃nX• → Xn is trivially seen to be a monomorphism, and
using Lillig’s theorem, a cofibration. As a consequence of this result, in the setting of simplicial topological
spaces one only needs the degeneracy maps in X• and Y• to be closed cofibrations and for each map fn : Xn →

Yn to be a closed cofibration in order for the map 1.1 to be a cofibration. See [11] and [8] for these facts from
classical homotopy theory.

Now one wants to be able to do something similar in stable homotopy theory, i.e., to replace spaces with
(some model for) spectra. Problems immediately arise: for example, it is no longer necessarily true that the
latching object L̃nX• is the “union of the images of the degeneracy maps” when X• is a simplicial spectrum,
so the classical proofs of steps (1) and (2), above, do not “work” in spectra. If we are willing to work with
the levelwise model structure on symmetric spectra in simplicial sets of topological spaces, then the problems
that arise are easily surmountable (see Step 1 of the proof of Theorem 3.2 and the proof of Theorem 4.1), but
the levelwise model structure does not have all the desired properties of a model for the homotopy category
of spectra. It is therefore desirable to prove an analogue of the theorem for flat cofibrations (originally called
S -cofibrations in Shipley [12] and Hovey-Shipley-Smith [5] where they were introduced).

In this paper, we prove an analogue of this theorem for flat cofibrations in the setting of symmetric spectra
in pointed simplicial sets, of [5]; see [10] for an excellent introduction and reference for symmetric spectra
(though [10] is unpublished so we refer to published references instead whenever possible).

As noted above, we make the distinction between “levelwise cofibrations,” “flat cofibrations,” “positive
levelwise cofibrations,” and “positive flat cofibrations” because the category of symmetric spectra has more
than one useful notion of cofibration: see Definition 2.6 for a review of their definitions. The brief version
is that levelwise cofibrations have a simple definition which is often easy to verify for a given map, while
flat cofibrations give rise to a better-behaved model category (symmetric spectra with flat cofibrations admit a
symmetric monoidal stable model structure [5], while with levelwise cofibrations the model structure fails to
be monoidal [10]), but the defining condition for a map to be a flat cofibration is significantly more difficult to
verify. Every flat cofibration is a levelwise cofibration, but the converse implication does not hold (for example
S̄ defined in Definition 2.5 is not flat cofibrant because ν2(S̄ ) is not a monomorphism with notation from
Definition 2.5). The positive flat cofibrations require that one additional axiom be satisfied (see Definition 2.6),
but have the advantage that E∞-ring spectra are more easily modeled in the positive flat model structure on
symmetric spectra (of topological spaces or simplicial sets); see [5] [12] or [10] for more details.

If we combine Theorems 3.2 and 4.2 together, we get a result which has some “teeth”:

Theorem 1.1. Let f• : X• → Y• be a map of simplicial symmetric spectra in sSet∗. Suppose that all of the
following conditions are satisfied:

• the symmetric spectra Xn and Yn are flat-cofibrant for all n,
• each of the degeneracy maps si : Xn → Xn+1 and si : Yn → Yn+1 are levelwise cofibrations,
• and fn : Xn → Yn is a flat cofibration for all n.

Then f• is a Reedy flat cofibration. Consequently the map of symmetric spectra

| f•| : |X•| → |Y•|

is a flat cofibration.
If we furthermore assume that each Xn and each Yn is positive flat-cofibrant and that each fn is a positive

flat cofibration, then f• is a Reedy positive flat cofibration, and consequently the map of symmetric spectra | f•|
is a positive flat cofibration.

It is a pleasure to thank E. Riehl for helping us with our questions when we were trying to find out whether
the results in this paper were already known.



MAPS OF SIMPLICIAL SPECTRA WHOSE REALIZATIONS ARE COFIBRATIONS. 3

Conventions 1.2. In this paper, we consider symmetric spectra in pointed simplicial sets and this category
is denoted SpsSet∗ . When referencing a model structure on sSet∗, we will use the Quillen model structure
throughout and refer to the cofibrations as simply as “cofibrations.” Recall that the cofibrations in this model
structure are exactly the monomorphisms of pointed simplicial sets.

This category of symmetric spectra has several important notions of cofibration, and four of them are used
in this paper: the levelwise cofibrations, the flat cofibrations, the positive levelwise cofibrations, and the pos-
itive flat cofibrations. As a consequence, we have four “Reedy” notions of cofibration in the category of
simplicial symmetric spectra. To keep them distinct, we will speak of “Reedy levelwise cofibrations” as op-
posed to “Reedy flat cofibrations,” and “Reedy levelwise-cofibrant simplicial objects” as opposed to “Reedy
flat-cofibrant simplicial objects,” and so on.

When X is a symmetric spectrum in C and n is a nonnegative integer, we will write X(n) for the level n object
of X. When X• is a simplicial object, we will write Xn for the n-simplices object of X•. So, for example, given
a simplicial symmetric spectrum X•, we write X(n)• for the simplicial object of C whose m-simplices object is
X(n)m. The symbols X(n)m and Xm(n) have the same meaning, and we will use them interchangeably.

The word “levelwise” is used in two very different ways when speaking of maps between simplicial sym-
metric spectra, and for the sake of clarity, in this paper we consistently use the word “pointwise” instead
of “levelwise” for one of these two notions. As an example, consider a definition from [10]: given a map
of symmetric spectra f : X → Y , one says that f is a levelwise cofibration if each of the component maps
f (n) : X(n) → Y(n) is a cofibration in sSet∗. (See Definition 2.6, below, for this definition and the related
notion of a “flat cofibration.”) To distinguish this usage of the word “levelwise” from how the word “level-
wise” is used when speaking of a map between simplicial objects, whenever we have a map f• : X• → Y• of
simplicial symmetric spectra, we will say that f• is a pointwise flat cofibration if the map of symmetric spectra
fn : Xn → Yn is a flat cofibration for each n.

When working with simplicial symmetric spectra, we will need to notationally distinguish between latching
objects of simplicial objects, and latching objects of symmetric spectra; these notions are related but distinct
(compare Definition 2.1 and Definition 2.5). We will write L̃n(X•) for the nth latching object of a simplicial
object X•, and we write Ln(X) for the nth latching object of a symmetric spectrum X (see Definition 2.5 or
Construction I.5.29 of [10] for this second notion).

2. Review of the relevant model structures.

The definition of the latching object of a simplicial object dates back to Reedy’s thesis [9], but there are a
number of different (equivalent) versions of the construction. The following version, which is convenient for
what we do in this paper, appears as Remark VII.1.8 in [2]. Also, see Proposition 15.2.6 in [4] for a proof that
this definition is equivalent to the other common definitions of latching objects in the Reedy model structure
on functors from ∆op to a pointed model category A .

Definition 2.1. Let X• be a simplicial object in a pointed model category A . By convention, let L̃0X• be the
zero object in A . The latching object L̃1X• is X0 and the first latching map L̃1X• → X1 is the degeneracy map
s0 : X0 → X1.

For n > 1 define

L̃nX• := coeq

 ∐
0≤i< j≤n−1 Xn−2{i, j}

S ′ //

S ′′
//
∐n−1

k=0 Xn−1{k}


with S ′ and S ′′ defined as follows: for a given pair (i, j) with i < j we define maps

Xn−2{i, j}
si // Xn−1{ j}

ι j // ∐n−1
k=0 Xn−2{k}

and

Xn−2{i, j}
s j−1 // Xn−1{i}

ιi // ∐n−1
k=0 Xn−2{k}

where si, s j−1 are the degeneracy maps in our simplicial object and ιk is the inclusion into the k-th summand.
We then define S ′ using the first collection of maps and the universal property of the coproduct and we define
S ′′ using the second collection of maps and the universal property of the coproduct. The symbols { j} and {i, j}
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are simply formal symbols used to index the coproduct summands. We have a map
∐n−1

k=0 Xn−1{k} −→ Xn given
by the coproduct of the degeneracies and this produces a natural comparison map

ν̃n(X•) : L̃nX• −→ Xn

by universal property of the coequalizer and the simplicial identity s jsi = sis j+1. (See [2] for more details on
the natural transformation ν̃n(−).)

Theorem 2.2 ( Theorem 15.3.4 in [4]). There is a model structure on simplicial objects in a model category A
called the Reedy model structure, where the cofibrations are the maps X• → Y• such that, for each n, the map

Xn

∐
L̃nX•

L̃nY• → Yn

is a cofibration in A , the weak equivalences are the pointwise weak equivalences, and the fibrations are the
Reedy fibrations [4, Definition 15.3.3].

Remark 2.3. We do not define the fibrations in the Reedy model structure because they are not used in our
paper, but they can be defined in a similar (dual) way to the cofibrations using the matching object construction.

Example 2.4. The main examples of Reedy model categories that we will be interested in will be the Reedy
model structure on simplicial objects in symmetric spectra in pointed simplicial sets (for various model struc-
tures on symmetric spectra in pointed simplicial sets) and the Reedy model structure on pointed bisimiplicial
sets (where we think of them as simplicial objects in the category of pointed simplicial sets with the Quillen
model structure).

The following definition appears as Definition 5.2.1 in Hovey-Shipley-Smith [5].

Definition 2.5. Define S̄ to be the symmetric spectrum with S̄ n = S n for n ≥ 1 and S̄ 0 = ∗ with the evident
structure maps. Given a symmetric spectrum X define LnX to be (S̄ ∧X)n. The evident map S̄ → S of symmetric
spectra produces a natural transformation νn(−) : (S̄ ∧ −)n → (S ∧ −)n.

Definition 2.6. Let SpsSet∗ denote the category of symmetric spectra in pointed simplicial sets. A map f : X →
Y in sSet∗ is said to be:
• a levelwise cofibration if, for all nonnegative integers n, the map f (n) : X(n)→ Y(n) is a cofibration in sSet∗,
• a positive levelwise cofibration if f is a levelwise cofibration and f (0) : X(0)→ Y(0) is an isomorphism,
• a flat cofibration if, for all nonnegative integers n, the latching map X(n)

∐
LnX

LnY → Y(n) is a cofibration,

• and a positive flat cofibration if f is a flat cofibration and f (0) : X(0)→ Y(0) is an isomorphism.

Remark 2.7. The flat cofibrations were first defined in Hovey-Shipley-Smith [5] and Shipley [12] where they
are called “S -cofibrations.” Following Schwede, we refer to these cofibrations as the flat cofibrations. Note that
the definition of the flat cofibration in a more general simplicial pointed model category C requires that the map

X(n)
∐
LnX

LnY → Y(n)

is a Σn-cofibration. (See Definition 3.6 in [3] for the definition of G-cofibrations in a model category C enriched
in a cosmos V where G is a finite group. In [3], they define more general F -cofibrations for a family of
subgroups F of G and the G-cofibrations correspond to taking the family of all subgroups.) Since pointed
simplicial sets have the property that G-cofibrations are equivalent to the monomorphisms of pointed simplicial
sets, or in other words the cofibrations after forgetting the group action, the definition of flat cofibration in
Definition 2.6 is equivalent to the definition in a general simplicial pointed model category, see Proposition 2.16
of [13] for a proof of this fact.

The content of Theorem 2.8 below is contained in Theorem III.4.11 of [10]. For a published account in
the setting of simplicial sets and topological spaces see Corollary 5.3.8 in Hovey-Shipley-Smith [5] as well as
Proposition 2.2, Theorem 2.4, and Proposition 2.5 in [12]. To make sure that sSet∗ satisfies the assumptions
of Theorem III.4.11 in [10], we apply Proposition 1.3 in Shipley [12], which states that sSet∗ can be equipped
with the mixed equivariant model structure.
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Theorem 2.8. Let sSet∗ be the category of pointed simplicial sets. Then the flat cofibrations are the cofibrations
of a model structure on SpsSet∗ called the absolute flat stable model structure. while the positive flat cofibrations
are the cofibrations of a model structure on SpsSet∗ called the positive flat stable model structure,

Equipped with either of these model structures, SpC is a symmetric monoidal stable model category satis-
fying the pushout-product axiom and the homotopy category Ho(SpsSet∗ ) is equivalent to the classical stable
homotopy category, with its smash product.

The absolute flat model structure and the positive flat model structure have equivalent homotopy categories,
and have many good properties properties in common. The absolute flat model structure has the advantage
of being slightly simpler, while the positive flat model structure has some better properties than the absolute
flat model structure when one wants to work with structured symmetric ring spectra. See Section 5 in Hovey-
Shipley-Smith [5] and [10] for a discussion of some of the nice properties of the flat model structures. The
category of symmetric spectra does not have a well-behaved symmetric monoidal product when equipped with
the levelwise cofibrations or the positive levelwise cofibrations. See [10] for details.

Note that the cofibrations in the absolute flat stable model structure agree with those in the flat level model
structure. Since we are only working with cofibrations in this paper the results hold in any model structure on
symmetric spectra in pointed simplicial sets where the cofibrations are exactly the flat cofibrations. Similarly,
the results about positive flat cofibrations hold in any model structure on symmetric spectra in pointed simplicial
sets where the cofibrations are exactly the positive flat cofibrations.

3. Reedy cofibrant objects: sufficient conditions.

In classical references on simplicial spaces (see e.g. [11]), a simplicial topological space is called “good”
if its degeneracy maps are all closed cofibrations; we give an analogous definition of a “good” simplicial
spectrum.

Definition 3.1. Let C be a simplicial pointed model category satisfying the assumptions of Theorem 2.8. By a
good simplicial symmetric spectrum in C , we mean a simplicial object X• in the category SpC such that

(1) Xn is a flat-cofibrant symmetric spectrum for each n, and
(2) the degeneracy maps si : Xn −→ Xn+1 are levelwise cofibrations for each n and i.

We will say that X• is positive-good if X• is good and Xn is positive flat-cofibrant for each n.

Definition 3.1 is unusual-looking, because it refers to two different model structures (“flat” and “levelwise”).
Here is some explanation: every flat cofibration is also a levelwise cofibration, so if X• is a simplicial symmetric
spectrum which is pointwise flat-cofibrant and whose degeneracies are all flat cofibrations, then X• is good. In
Definition 3.1, however, we only ask for the degeneracies to be levelwise cofibrations, not flat cofibrations,
because:

(1) checking that a map is a levelwise cofibration in a specific case of interest is typically much easier than
checking that it is a flat cofibration, and

(2) our main theorem in this section, Theorem 3.2, only needs the degeneracy maps to be levelwise cofi-
brations, not necessarily flat cofibrations.

Finally, we state the main theorem in this section of the paper, which provides an easy-to-check criterion for
a simplicial symmetric spectrum to be Reedy flat-cofibrant. The rest of this section is devoted to proving this
theorem.

Theorem 3.2. Let X• be a good simplicial symmetric spectrum in sSet∗. Then X• is Reedy flat-cofibrant; i.e.
the map L̃nX• −→ Xn is a flat cofibration for each n. If X• is furthermore assumed to be positive-good, then X•
is Reedy positive flat-cofibrant.

Proof. We will prove this theorem in multiple steps.

Step 1. First, we will show that any good simplicial symmetric spectrum in sSet∗ is Reedy levelwise cofibrant;
i.e. the map L̃nX• −→ Xn of symmetric spectra is a levelwise cofibration for each n. We first consider,
for each fixed nonnegative integer n, the pointed bisimplicial set X(n)• whose pointed simplicial set of m
simplices is obtained by taking the level n pointed simplicial set of the symmetric spectrum of m-simplices in
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the simplicial symmetric spectrum X•. By Corollary 15.8.8 of [4], it is easy to deduce that all bisimplicial sets
are Reedy cofibrant. Since the model strucure on pointed bisimplicial sets is created by the forgetful functor,
the same statement is true for pointed bisimplicial sets. (Note that all three natural Reedy model structures on
((Sets∗)∆op

)∆op
are equivalent as model categories by Theorem 15.5.2 of [4].) Consequently, the map

L̃m(X(n)•)→ X(n)m

is a cofibration of pointed simplicial sets. Since the evaluation functor which takes a simplicial symmetric
spectrum X• to a pointed bisimplicial set X(n)• is a left adjoint (see Example 4.2 [10]) and the simplicial
latching construction L̃m(X•) is constructed as a colimit by Definition 2.1 the two commute. Hence, the map
(L̃mX•)(n)→ Xm(n) is a cofibration for each n, in other words L̃mX• → Xm is a levelwise cofibration.

Step 2. We will use the following observation: suppose we have a diagram in pointed simplicial sets of the
form

PB

g1

��

g2 // B

h1

��
f2

��

C
h2 //

f1
''

P
F

��
D

where PB is the pullback C
∏

D B, P is the pushout C
∐

PB B, and f1 and f2 are monomorphisms of pointed
simplicial sets. Then we want to show that F : P −→ D is a monomorphism. To prove this claim, we observe
that colimits and limits are computed pointwise in pointed simplicial sets because it is a category of functors
(see e.g. [7]). The proof for pointed sets is an easy exercise and is therefore left to the reader.

In order to prove that X• ∈ ob Sp∆op

sSet∗ is Reedy flat-cofibrant and not just Reedy levelwise-cofibrant, we need
to know that the map F in the commutative diagram

(3.2) LsL̃nX• //

��

Ls(Xn)

��

��

(L̃nX•)(s) //

**

PO1
F

$$
(Xn)(s)

is a cofibration in sSet∗, where PO1 is defined as the pushout (L̃nX•)(s)
∐

Ls L̃nX• Ls(Xn). We break this into two
further steps

Step 3. Define PB to be the pullback (L̃nX•)(s)
∏

(Xn)(s) Ls(Xn) in sSet∗. Then we will show that the universal
map F′ in the commutative diagram

(3.3) PB
g2 //

g1

��

Ls(Xn)

�� f1

��

(L̃nX•)(s) //

f2 **

PO2
F′

$$
(Xn)(s)

in sSet∗ is a cofibration, where PO2 is the pushout (L̃nX•)(s)
∐

PB Ls(Xn).
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The map f1 : Ls(Xn) → (Xn)(s) in diagram 3.3 is a cofibration in sSet∗ since, from the definition of a good
simplicial spectrum, the spectrum Xn is flat-cofibrant for each n, the map f2 in diagram 3.3 is a cofibration in
sSet∗ by Step 1. Since cofibrations in sSet∗ are exactly the monomorphisms, f1 and f2 are monomorphisms of
pointed simplicial sets and the fact that F′ is a cofibration follows by Step 2.

Note that by universal properties, we have maps G : LsL̃nX• −→ PB and F′′ : PO1 −→ PO2 and each of
these maps fits into Diagram 3.4, below. Since F′ is a cofibration and F = F′ ◦ F′′, we just need to show
that F′′ is a cofibration in sSet∗ and that will imply F is a cofibration in sSet∗. We claim that we just need to
prove that the map Gm is a surjection for each m, where Gm : (LsL̃nX•)m → PBm is the map of pointed sets
induced by the evaluation functor (−)m : sSet∗ → Sets∗. The claim follows by the following argument: given
the commutative diagram of pointed sets induced by applying the evaluation functor (−)m to the diagram

(3.4) LsL̃nX•

G
%%

g1

��

g2

**
PB

`1

//

`2

��

Ls(Xn)

h1

��

f1
��

��

(L̃nX•)(s)
f2 //

**
h2

((

**

PO1
F′′

##
PO2 F′

$$
(Xn)(s),

with monomorphisms of pointed sets (L̃nX•(s))m → (Xn(s))m, (Ls(Xn))m → (Xn(s))m, and (PO2)m → ((Xn)(s))m,
and the identifications

(PO1)m =
(
L̃nX•

)
(s))m

∐
(Ls L̃nX•)m

(Ls(Xn))m,

(PO2)m =
(
L̃nX•(s)

)
m

∐
(PB)m

(Ls(Xn))m, and

(PB)m =
(
L̃nX•(s)

)
m

∏
(Xn(s))m

(Ls(Xn))m,

(which hold because (−)m is both a right and a left adjoint and therefore commutes with limits and colimits in
pointed simplicial sets), then if in addition (

LsL̃nX•
)

m
→ (PB)m

is an epimorphism, then it is easy to check that (PO1)m → (PO2)m is a monomorphism. Hence, it suffices to
show that Gm is surjective for all m in order to show that F′′ : PO1 → PO2 is a cofibration of pointed simplicial
sets.

Step 4. By the previous step, given the commutative diagram (3.4), it suffices to show that the map of pointed
sets Gm :

(
LsL̃nX•

)
m
−→ PBm is an epimorphism for each m in order to show that F′′ is a cofibration. Through-

out, we use the fact that colimits and limits in pointed simplicial sets are computed pointwise and colimits and
limits in symmetric spectra in pointed simplicial sets are computed levelwise.

Let z̄ ∈ PBm. Then since PBm is a pullback, z̄ is represented by elements

x1 = (`1)m(z̄) ∈ (LsXn)m and x2 = (`2)m(z̄) ∈
(
L̃nX•)(s)

)
m

such that (h1)m(x1) = (h2)m(x2). Since x2 ∈
(
L̃nX•(s)

)
m

=
∐n−1

k=0(Xn−1(s))m{k}/ ∼, it can be chosen as an
equivalence class of some element in (Xn−1(s)))m{ j} for some j. Every element in Xn−1(s) is a face of some
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element in Xn(s), so we can choose j so that the composite

Xn
d j // Xn−1{ j} // ∐n−1

k=0 Xn−1{k} // ∐n−1
k=0 Xn−1{k}/ ∼,

which we call d̄ j, satisfies ((d̄) j(s)m ◦ (h2)m)(x2) = x2.
By functoriality of the evaluation functor (−)m and the spectral latching functor Ls there is also a map(

Ls(d̄ j)
)

m
: (LsXn)m −→ (LsL̃nX•)m. We claim the following:

(1) (g1 ◦ Ls(d̄ j)))m(x1) = x2, and
(2) (g2 ◦ Ls(d̄ j))m(x1) = x1.

Item (1) follows by naturality of νs, which we explain as follows. First, we know (g1)m = (νs(L̃nX•))m and
naturality states that the diagram

(LsXn)m
(Ls(d̄ j))m//

(νs(Xn))m

��

(LsL̃nX•)m

(νs(L̃nX•))m

��
(Xn(s))m

(d̄ j(s))m// (L̃n(X•(s)))m

commutes; i.e.,
(νs(L̃nX•) ◦ (Ls(d̄ j)))m(x1) = (d̄ j(s) ◦ νs(Xn))m(x1)

We then use the fact that h1 = νs(Xn) and the formula (h1)m(x1) = (h2)m(x2) to produce

(d̄ j(s))m((h1)m(x1)) = (d̄ j(s))m((h2)m(x2)).

This combines with the fact that (d̄ j ◦ h2)m(x2)) = x2 to produce

(g1 ◦ Ls(d̄ j))m(x1) = x2

as desired.
To prove Item (2), note that by naturality of νs the diagram

(Ls(Xn))m
(Ls(d̄ j))m//

(νs(Xn))m

��

(LsL̃nX•)m
(Ls(ν̃(X•)))m//

(νs(L̃n(X•)))m

��

(Ls(Xn))m

(νs(Xn))m

��
(Xn(s))m

(d̄ j(s))m// (L̃nX•(s))m
(ν̃(X•)(s))m // (Xn(s))m

commutes. We know that h1 = νs(Xn), so

(3.5) (h1)m ◦ (Ls(ν̃(X•)))m ◦ (Ls(d̄ j))m(x1) = (ν̃(X•)(s))m ◦ (d̄ j(s))m ◦ (h1)m(x1)

and since (h1)m(x1) = (h2)m(x2) and (d̄ j(s) ◦ h2)m(x2) = x2, we know that

(d̄ j(s) ◦ h1)m(x1) = (d̄ j(s) ◦ h2)m(x2)) = x2,

and hence that

(ν̃(X•)(s) ◦ d̄ j(s) ◦ h1)m(x1) = (ν̃(X•)(s) ◦ d̄ j(s) ◦ h2)m(x2) = (ν̃(X•(s)))m(x2).

Now note that ν̃(X•)(s) = h2 so

(ν̃(X•(s)))m(x2) = (h2)m(x2) = (h1)m(x1)

and hence, by Equation (3.5),

(h1)m ◦ (Ls(ν̃(X•)))m ◦ (Ls(d̄ j))m(x1)) = (h1)m(x1)

Since X• is pointwise flat-cofibrant, (h1)m is a monomorphism, so it is left cancellable and therefore

((Ls(ν̃(X•)) ◦ Ls(d̄ j))m(x1) = x1.

Now note that (g2)m = (Ls(ν̃(X•)))m by definition, so we have proven the claim.
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Thus, given an element z̄ in the pullback represented by x1 and x2, we have constructed an element z =

(Ls(d̄ j))m(x1)) ∈ (Ls(L̃nX•))m, such that (g1)m(z) = x2 and (g2)m(z) = x1 and hence Gm(z) = z̄ as desired. So Gm

is surjective for all m.

Step 5. The goal was to prove that a good symmetric spectrum in the flat model structure is Reedy flat-cofibrant.
By Step 1, we know that a good symmetric spectrum in the flat model structure is Reedy levelwise-cofibrant,
so we just need to elevate the map L̃nX• −→ Xn to a flat cofibration. It suffices to show that the map F in the
commutative diagram (3.2) is a cofibration in sSet∗. We then write F as a composite F′ ◦ F′′. The map F′ is
a cofibration in sSet∗ by Step 2, and the map F′′ is a cofibration in sSet∗ by Step 4 and Step 5. Hence, F is a
cofibration.

Now suppose furthermore that X• is positive-good. We need to know that X• is also cofibrant in the Reedy
positive-flat model structure, i.e., that νn(X•) : L̃nX• → Xn is a positive flat cofibration. Since we have already
shown that νn is a flat cofibration, all that remains is to show that νn(X•)(0) : (L̃nX•)(0) → Xn(0) is an iso-
morphism, i.e., that νn(X(0)•) : L̃n(X(0)•) → X(0)n is an isomorphism. Since X• is positive-good, each Xn is
positive flat-cofibrant, so X(0)n � 0 for all n. This implies that X(0)• is the zero object in pointed simplicial
sets, so its latching objects are also all the zero object in pointed sets, hence, νn(X(0)•) is an isomorphism, as
desired.

�

4. Reedy cofibrations: sufficient conditions.

Theorem 4.1. Let X•
f•
−→ Y• be a morphism of simplicial symmetric spectra in sSet∗. Make the following

assumptions:

• The map f• is a pointwise flat cofibration. That is, for each nonnegative integer n, the map of spectra

Xn
fn
−→ Yn is a flat cofibration.

• The simplicial spectrum Y• is Reedy levelwise-cofibrant.

Then f• is a Reedy levelwise cofibration. Hence, | f•| is a levelwise cofibration.
If we furthermore assume that f• is a pointwise positive flat cofibration, then f• is also a Reedy positive

levelwise cofibration. Hence | f•| is a positive levelwise cofibration.

Proof. For each nonnegative integer n, we need to show that the map of symmetric spectra

Xn

∐
L̃n(X•)

L̃n(Y•)→ Yn

is a levelwise cofibration, i.e., that

(4.6)

Xn

∐
L̃n(X•)

L̃n(Y•)

 (m)→ Yn(m)

is a cofibration in sSet∗ for all nonnegative integers m, n. Now colimits in SpsSet∗ are computed levelwise (see
example I.3.5 in [10]), so map 4.6 agrees, up to an isomorphism, with the map

(4.7) cn(m) : Xn(m)
∐

(L̃n(X•))(m)

(
L̃n(Y•)

)
(m)→ Yn(m).

We again write (−)` : sSet∗ → Sets∗ for the usual evaluation functor at a nonnegative integer `. As in
all functor categories, colimits in sSet∗ are computed pointwise and the monomorphisms in sSet∗, which are
also the cofibrations in sSet∗, are the pointwise monomorphisms. Hence, if we can show that (cn(m))` is
a monomorphism for each nonnegative integer `, then cn(m) is a cofibration, and we are done. Since (−)`
preserves finite colimits, the map (cn(m))` agrees (up to an isomorphism in the domain) with the map

(c̃n(m))` : (Xn(m))`
∐

((L̃n(X•))(m))`

((
L̃n(Y•)

)
(m)

)
`
→ (Yn(m))` .



10 G. ANGELINI-KNOLL AND A. SALCH

Now suppose that

x0, x1 ∈ ((Xn)(m))`
∐

((L̃n(X•))(m))`

((
L̃n(Y•)

)
(m)

)
`

satisfy (c̃n(m))`(x0) = (c̃n(m))`(x1). Then, by the usual description of pushouts in the category of pointed sets
as unions, there are three possibilities:

Case 1: Suppose x0 and x1 are both in ((Xn)(m))`. Since Xn → Yn is a flat cofibration, it is also a levelwise
cofibration (see [10]), i.e., the map Xn(m) → Yn(m) is a cofibration in C for all n. Hence (Xn(m))` → (Yn(m))`
is a monomorphism and hence x0 = x1.

Case 2: Suppose x0 and x1 are both in
((

L̃n(Y•)
)

(m)
)
`
. Since Y• is Reedy levelwise-cofibrant, the map L̃n(Y•)→

Yn is a levelwise cofibration, i.e., (L̃n(Y•))(m) → Yn(m) is a cofibration in sSet∗ for all m, and consequently
(L̃n(Y•)(m))` → (Yn(m))` is a monomorphism. Hence x0 = x1.

Case 3: Suppose x0 is in (Xn(m))` and x1 is in
((

L̃n(Y•)
)

(m)
)
`
. The same argument as below also works in the

case x1 is in (Xn(m))` and x0 is in
((

L̃n(Y•)
)

(m)
)
`
. This part requires a bit more thought than the previous parts.

Given any finitely complete, finitely co-complete category A and any simplicial object Z• of A , the latching
object L̃n(Z•) of Z• is isomorphic, by Definition 2.1, to the coequalizer of a pair of maps whose codomain is
a coproduct of n copies of Zn−1, namely, one for each degeneracy map Zn−1 → Zn, and the domains as well
as the maps themselves are built from finite limits and finite colimits of copies of Zm for various m < n − 1
and the degeneracy maps connecting them. If A is the category of sets (or pointed sets), then L̃n(Z•) is simply
a coproduct of n copies of Zn−1 modulo equivalence relations coming from identifying subsets of the copies
of Zn−1 given by intersections of copies of Zm for m < n − 1. For each k ∈ {0, . . . , n − 1} we have a map
dk : Zn → L̃nZ• given by applying the face map dk : Zn → Zn−1 and then including Zn−1 as the kth coproduct
summand in L̃nZ• =

(∐n−1
i=0 Zn−1

)
/ ∼ .

Now since taking the m-th pointed simplicial set is a functor from SpsSet∗ to sSet∗, applying the functor
Z 7→ Z(m) to a simplicial symmetric spectrum yields a simplicial object of sSet∗. As limits and colimits in
symmetric spectra are computed levelwise (see Example I.3.5 in [10]), this functor Z 7→ Z(m) also commutes
with limits and colimits. Let X•(m),Y•(m) denote the bisimplicial pointed set obtained by applying the mth
“space” functor to X• and Y•, respectively. The fact that the m-th pointed simplicial set functor preserves limits
and colimits now implies that the map (L̃n(Y•))(m)→ Yn(m) agrees, up to an isomorphism in the domain, with
the map ν : L̃n (Y•(m)) → Yn(m). Since (−)` preserves finite limits and finite colimits, the induced map (ν)`
agrees, up to an isomorphism in the domain, with the map νY : L̃n ((Y•)`(m)) → (Yn)`(m). Similarly, applying
(−)` to the map L̃n (X•(m))→ Xn(m) yields, up to an isomorphism in the domain, the map νX : L̃n ((X•)`(m))→
(Xn)`(m).

Here is the relevant consequence: we can choose an integer k ∈ {0, . . . , n − 1} such that

x1 ∈ ((L̃nY•)(m))` � L̃n((Y•)(m))`

is in the kth coproduct summand in L̃n(Y•(m))` =
(∐n−1

i=0 (Yn−1(m))`
)
/ ∼. Then dk(νY (x1)) = x1 by design. Now

the element dk(x0) ∈ L̃n((X•)`(m)) has two important features: we have equalities

(L̃n(( f•)`(m)))(dk(x0)) =
(
dk(( fn)`(m))

)
(x0)

= dk(νY (x1))
= x1,

and we have equalities

((( fn)(m))`)
(
νX(dk(x0))

)
=

(
νY (L̃n(( f•)`)(m))

)
(dk(x0))

= νY (x1)
= (( fn)(m))`(x0).
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Since each morphism of symmetric spectra fn : Xn → Yn is a flat cofibration, it is also a levelwise cofibra-
tion (see Corollary 3.12 in Schwede’s book [10]), hence each fn(m) is a cofibration in sSet∗ and hence each
(( fn)(m))s is a monomorphism of pointed sets, hence left-cancellable, and so

νX(dk(x0)) = x0.

Now νX(dk(x0)) = x0 and (L̃n(( f•)`(m)))(dk(x0)) = x1 together imply that the element dk(x0) ∈ L̃n((X•)`)(m)
maps to x0 and to x1 under the maps in the diagram

L̃n((X•)`(m))
L̃n(( f•)`(m)) //

νX

��

L̃n((Y•)`(m))

νY

��
((Xn)(m))`

(( fn)(m))` // (Yn(m))`

.

Consequently, x0 and x1 represent the same element in the pushout (L̃nY•(m))`
∐

(L̃nX•(m))` (Xn(m))`. Conse-
quently, the map

L̃n(((Y•)(m))`)
∐

L̃n(((X•)(m))`)

(Xn(m))` → (Yn(m))`

given by the universal property of the pushout is injective. Since the evaluation functor (−)` commutes with
finite limits and colimits, hence also with pushouts and with the formation of latching objects, we get that the
map given by the universal property of the pushoutL̃n(Y•)(m)

∐
L̃n(X•)(m)

Xn(m)


`

→ (Yn(m))`

is also a monomorphism, hence that

L̃n(Y•)(m)
∐

L̃n(X•)(m)

Xn(m)→ Yn(m)

is a cofibration in sS et∗ for each n and m. Hence

L̃n(Y•)
∐

L̃n(X•)

Xn → Yn

is a levelwise cofibration in SpsSet∗ , hence f• is a Reedy levelwise cofibration, as claimed.
If we furthermore assume that f• is a pointwise positive flat cofibration, then fn(0) : Xn(0) → Yn(0) and

Ln f (0) : LnX(0)→ LnY(0) are isomorphisms for all n. Consequently, the map

L̃n(Y•)(0)
∐

L̃n(X•)(0)

Xn(0)→ Yn(0)

is an isomorphism, and consequently the canonical comparison mapL̃n(Y•)
∐

L̃n(X•)

Xn

 (0)→ Yn(0)

is an isomorphism, which makes f• not only a Reedy levelwise cofibration but a Reedy positive levelwise
cofibration.

�

Theorem 4.2. Let X•
f•
−→ Y• be a morphism of simplicial symmetric spectra in sSet∗. Make the following

assumptions:

• The map f• is a pointwise flat cofibration. That is, for each nonnegative integer n, the map Xn
fn
−→ Yn

is a flat cofibration.
• Both X• and Y• are Reedy flat-cofibrant.
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Then f• is a Reedy flat cofibration, and consequently the map of geometric realizations | f•| : |X•| → |Y•| is
a flat cofibration.

If we furthermore assume that f• is a pointwise positive flat cofibration, then f• is a Reedy positive flat
cofibration, hence | f•| is a positive flat cofibration.

Proof. Let POn denote the symmetric spectrum in sSet∗ defined to be the pushout in the square

L̃n(X•)
L̃n( f•) //

ν̃n

��

L̃n(Y•)

��
Xn // POn,

and let PO(n,m) denote the pointed simplicial set defined to be the pushout in the square

Lm(POn)

νn

��

// Lm(Yn)

��
POn(m) // PO(n,m).

We need to show that the canonical map cn,m : PO(n,m) → Yn(m), given by the universal property of the
pushout, is a cofibration in sSet∗ for all nonnegative integers m and n. Indeed, fix n, and suppose we have
shown that cn,m is a cofibration for all values of m. This is exactly the condition required for the canonical
map POn → Yn, given by the universal property of the pushout, to be a flat cofibration. If we show that this
canonical map is a flat cofibration for all n, then we have shown f• a Reedy flat cofibration, by definition.

To show that cn,m is a cofibration, we explicitly check for each nonnegative integer ` that, after applying the
functor (−)` as in Theorem 4.1, the map (cn,m)` is a monomorphism. Throughout, we freely make use of the fact
that (−)` preserves finite limits and finite colimits, and consequently sends latching objects to latching objects,
as discussed in the proof of Theorem 4.1. Suppose that x, y ∈ (PO(n,m))` are elements satisfying (cn,m)`(x) =

(cn,m)`(y). Then, since pushouts in simplicial sets are computed pointwise, there are three possibilities:

Case 1: Suppose x, y are the images of elements x, y ∈ (Lm(Yn))` under the map (Lm(Yn))` → (PO(n,m))`. Y•
is assumed to be Reedy flat cofibrant, hence is levelwise flat-cofibrant, hence Yn is flat-cofibrant and hence the
map (Lm(Yn))` → (Yn(m))` is a monomorphism of pointed sets for all m, and consequently x = y.

Case 2: Suppose y is the image of some element y under the map (Lm(Yn))` → (PO(n,m))` and x is the image
of some element x under the map (POn(m))` → (PO(n,m))`. Then there are two sub-cases to consider:

Case 2.1: Suppose x is the image of some element x′ ∈ (Xn(m))` under the map (Xn(m))` → (POn(m))`. Since

f• is assumed a levelwise flat cofibration, the map Xn
fn
−→ Yn is a flat cofibration, and hence the map

(Xn(m))`
∐

(Lm(Xn))`

(Lm(Yn))` → (Yn(m))`

is a monomorphism of pointed sets. This map factors through a map

(Xn(m))`
∐

(Lm(Xn))`

(Lm(Yn))` −→ (PO(n,m))`

which is also a monomorphism since it is the first map in a composite map that is a monomorphism. By
commutativity of the relevant diagrams, this implies that x = y.

Case 2.2: Suppose x is the image of some element x′ ∈ ((L̃n(Y•))(m))` under the map
((L̃n(Y•))(m))` → (POn(m))`. Then x′, y′ each define an element x′, y′ in the pushout set(L̃n(Y•))(m)

∐
Lm(L̃n(Y•))

Lm(Yn)


`

,
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and these two elements map to the same element of (Yn(m))`, since (cn,m)`(x) = (cn,m)`(y). Since Y• is Reedy
flat-cofibrant, the map of pointed sets(L̃n(Y•))(m)

∐
Lm(L̃n(Y•))

Lm(Yn)


`

→ (Yn(m))`

is a monomorphism; consequently x′ = y′, and hence x′, y′ both pull back to a single element u ∈ (Lm(L̃n(Y•)))`,
and the image of this element under the map

(Lm(L̃n(Y•)))` → (PO(n,m))`

is equal to both x and y; hence x = y.

Case 3: Suppose x, y are the images of elements x, y ∈ (POn(m))` under the map

(POn(m))` → (PO(n,m))`.

By Theorem 4.1 the map POn → Yn is a levelwise cofibration so ((POn)m)` → (Yn(m))` is a monomorphism
and therefore x̄ = ȳ, which implies x = y.

The above argument shows that the canonical comparison map

cn,m : PO(n,m) = Lm(Yn)
∐

Lm(POn)

POn(m)→ Yn(m)

is a cofibration in sSet∗ for all m and n, hence that the canonical map of symmetric spectra in pointed simplicial
sets

(4.8) L̃n(Y•)
∐

L̃n(X•)

Xn = POn → Yn

is a flat cofibration for all n, hence that f• : X• → Y• is a Reedy flat cofibration. If we furthermore assume that
f• is a pointwise positive flat cofibration, then by Theorem 4.1, the map (4.8) is a positive levelwise cofibration
in addition to being a flat cofibration; so f• is a Reedy positive flat cofibration, as claimed. �

5. Application

We now give an example of a situation where the main theorem is useful in a practical situation. Suppose we
have an explicit model for the pointwise cofiber of a map of simplicial symmetric spectra in pointed simplicial
sets X• → Y•, where by pointwise cofiber we mean a simplicial object Z• with a map Y• → Z• so that, for
each n, the object Zn is the colimit (the categorical colimit, not a homotopy colimit requiring factorizations or
replacements of the maps in the diagram!) of the diagram

Xn //

��

Yn

0

If the map of simplicial symmetric spectra in pointed simplicial sets X• → Y• is a pointwise flat cofibration
then Zn is isomorphic to the the homotopy cofiber of the map Xn → Yn. If, in addition, the objects X• and Y•
are Reedy cofibrant simplicial objects in SpsSet∗ , then Theorem 4.2 applies, elevating the map X• → Y• to a
Reedy cofibration so that

(5.9) |X•| → |Y•| → |Z•|.

is a homotopy cofiber sequence in spectra.
In other words, we do not need to cofibrantly replace any of the objects or use any factorization systems and

yet the maps |X•| → |Y•| and 0 → |Z•| are still flat cofibrations so |Z•| is indeed the homotopy cofiber of the
map |X•| → |Y•|. Consequently, |Z•| is a spectrum constructed by an explicit point-set, levelwise pushout con-
struction, but whose homotopy groups are concretely computable via the long exact sequence of the homotopy
cofiber sequence (5.9). We use this in a critical way in [1] for example.
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