
ALGEBRAIC K-THEORY

OF REAL TOPOLOGICAL K-THEORY

GABRIEL ANGELINI-KNOLL, CHRISTIAN AUSONI, AND JOHN ROGNES

Abstract. We calculate the A(1)-homotopy of the topological cyclic homol-

ogy of the connective real topological K-theory spectrum ko, and show that
it is a finitely generated and free F2[v322 ]-module of even rank between 390

and 444, on explicit generators in stems −1 ≤ ∗ ≤ 198. This is achieved by
using syntomic cohomology of ko as introduced by Hahn–Raksit–Wilson, ex-

tending work of Bhatt–Morrow–Scholze from the case of classical rings to E∞
rings. In our case there are nontrivial differentials in the motivic spectral se-
quence from syntomic cohomology to topological cyclic homology, unlike in the

case of complex K-theory at odd primes that was studied by Hahn–Raksit–

Wilson.
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1. Introduction

Work of Hahn–Raksit–Wilson [HRW22] extends the notions of prismatic coho-
mology and syntomic cohomology to the setting of E∞ rings. This produces a
new tool for computing topological cyclic homology and, consequently, algebraic
K-theory. In the present paper, we use this tool to compute the A(1)-homotopy of
algebraic K-theory of the E∞ ring ko known as connective real topological K-theory
(cf. Notation 2.16). Throughout, we work at the prime p = 2.

This paper continues the program of the second and third authors of under-
standing the arithmetic of ring spectra through the lens of telescopically localized
algebraic K-theory. In particular, the second and third authors conjectured, in
a family of predictions known as the redshift conjectures [AR08], that algebraic
K-theory increases chromatic complexity by one. This has now been proven in a
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qualitative form for all E∞ rings in a tour de force [BSY22] building on [Yua21],
[CMNN20], and [LMMT20].

To better understand the arithmetic of E∞ rings, it is still desirable to prove more
quantitative forms of the redshift conjectures, such as the one originally appearing
as the “chromatic redshift problem” in [Rog00]. In the present paper, we solve this
problem in the case of ko. Explicitly, we prove the following theorem.

Theorem A (Theorem 6.1). There is a subset S ⊂ Z≥0 of the form S = T+32Z≥0,
with T ⊂ {0, 1, . . . , 31} satisfying 0, 1, 4 ∈ T and 2, 3 /∈ T , such that

A(1)∗ TC(ko) ∼= F2{vi2 | i ∈ S}
⊕ F2[v2]{∂, ς, ν, λ′1, w, λ2}
⊕ F2[v2]{ςν, ν2, ∂λ2, νw, νλ2, λ′1λ2}

⊕ F2{vj2ν2w | j ≥ 0, j + 2 ∈ S}

is a finitely generated free F2[v322 ]-module of rank 384 + 2 card(T ).

Conjecture B (Eight-deck blackjack). S = {i ≥ 0 | i ≡ 0, 1 mod 4}.

As a consequence, we determine the A(1)-homotopy of the algebraic K-theory
of ko, with the same indeterminacy as Theorem A.

Theorem C (Theorem 6.4). There is an exact sequence of F2[v322 ]-modules

0 → Σ3F2 −→ A(1)∗ K(ko)
trc−→ A(1)∗ TC(ko) −→ F2{∂, ς} → 0 ,

with |∂| = −1 and |ς| = 1.

Let K(n) denote the 2-primary height n Morava K-theory, which has coeffi-
cients K(n)∗ = F2[v±1

n ]. Let Ln denote Bousfield localization at K(0)⊕· · ·⊕K(n).
Let Lf

n denote Bousfield localization at T (0) ⊕ · · · ⊕ T (n), where T (m) is the vm-
telescope v−1

m F (m) of a spectrum F (m) of type m, i.e., a finite 2-local spectrum
such that K(m)∗F (m) ̸= 0 and K(m− 1)∗F (m) = 0.

Definition 1.1. We say that X satisfies the height n telescope conjecture (at the
prime 2) if the canonical map Lf

nX → LnX is an equivalence.

By recent groundbreaking work of Burklund–Hahn–Levy–Schlank [BHLS], we
know that not all spectra satisfy the height n telescope conjecture. However, it
is still interesting to consider the question of which spectra satisfy the height n
telescope conjecture, for example see [MR99, Conjecture 7.3].

Theorem D (Theorem 7.1). The spectrum TC(ko)∧2 satisfies the height 2 telescope
conjecture.

In [AR08], the second and third authors phrased the redshift conjecture in terms
of telescopic complexity. We say that a 2-local spectrum X has telescopic complex-
ity n if the map X → Lf

nX is an equivalence in all sufficiently large degrees.

Theorem E (Theorem 7.2). The spectrum K(ko)(2) has telescopic complexity 2.

Conventions. We let A and A∨ denote the mod 2 Steenrod algebra and its dual,
respectively. We write H∗(X) := H∗(X;F2) and

ν : H∗(X) −→ A∨ ⊗H∗(X)
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for the A∨-coaction. We write A(1) for the subalgebra ⟨Sq1,Sq2⟩ of A and note
that A(1)∨ = F2[ξ1, ξ2]/(ξ41 , ξ

2
2).

Let Zop be the category whose objects are integers, such that HomZop(n,m) = ∗
if n ≥ m and empty otherwise. Let Zδ be the integers as a discrete category. Given
a presentably symmetric monoidal stable ∞-category C, we write

Cfil := Fun(Zop, C) and Cgr := Fun(Zδ, C) .

Given I⋆ ∈ Cfil and J∗ ∈ Cgr, we write Iw := I(w) and Jw := J(w). We recall that
there is a monoidal functor

gr∗ : Cfil −→ Cgr

defined on an object I by grwI = Iw/Iw+1. As in the notation above, for consis-
tency we use the superscript ⋆ as in I⋆ for a filtered object, the superscript ∗ as
in J∗ for a graded object, and a superscript • as in K• for a cosimplicial object.

We use the terminology from [Isa19, Definition 4.1.2] for (hidden) extensions in
spectral sequences.

In Sections 2–5, we use the following conventions: We implicitly 2-complete

each of the following invariants: THH := THH(−)∧2 , TC− :=
(
THH(−)hT

)∧
2

,

TP :=
(
THH(−)tT

)∧
2

, TC := TC(−)∧2 , and K := K(−)∧2 . We write ko, ku, KU, MU,
MUP and S for the 2-completions of connective real topological K-theory, connec-
tive complex K-theory, periodic complex K-theory, complex cobordism, periodic
complex cobordism and the sphere spectrum. We will simply write Z for the 2-adic
integers. We write Sp2 for the ∞-category of 2-complete spectra with symmetric
monoidal product ⊗. Note that our smash product is implicitly 2-completed in
Sections 2–5 so that ⊗R := (−⊗R −)∧2 for any 2-complete E∞ ring R and we omit
R from the notation when R is the 2-complete sphere spectrum. We also write ⊗
for the (underived) tensor product over the 2-adic integers and expect the intended
meaning to be clear from context. We write T for the circle regarded as the sub-
group T ⊂ C× of the units in the complex numbers. We write CBT := Fun(BT, C).

As in Section 1, we explicitly include notation for 2-completion in Sections 6
and 7. Therefore, we write ⊗R for the usual relative smash product over an E∞
ring R in these sections. We also write ⊗ for the usual tensor product over the
integers and expect the meaning to be clear from context. Note that the canonical
map TC(ko)∧2 → TC(ko∧2 )∧2 is an equivalence by [Mad94, p. 274-275] (cf. [NS18,
p. 351-352]) so we do not include 2-completion in the argument of TC(−)∧2 .

Acknowledgments. The first author would like to thank Jeremy Hahn and
Dylan Wilson for helpful conversations during the course of this project. This
project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
1010342555.

2. Hochschild homology and motivic filtrations

We first introduce filtrations on THH, TC−, TP, and TC. The reader is en-
couraged to read [BHM93,BM94,BM95,HN20] for background on these invariants
and [HRW22] for a thorough account of the filtrations that we use in this paper.

Definition 2.1. Given a map f : A→ B of 2-complete E∞ rings, we write C•(B/A)
for the associated cosimplicial Amitsur complex with Cq(B/A) = B⊗A1+q.
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Recall that there is a map of E∞ rings c : ko → ku called the complexification
map. By restricting the E∞ ring map MUP → KU of [HY20, Theorem 4.3], we
produce an E∞ ring map MU → ku (cf. [HL18, p. 3]). We choose the generators xi
of MU∗ once and for all such that the image of xi is zero in ku∗ = Z[u] for i ≥ 2.
This can be arranged since x1 7→ u and we can correct xi by elements in the kernel
of the canonical quotient map ku∗ → Z to produce these generators.

This provides an E∞ Cq(MU /S)-algebra structure on Cq(ku/ ko), compatibly
for each q ≥ 0. We write

τ≥⋆ : Sp2 −→ Spfil
2

for the monoidal Whitehead filtration [Lur17, Proposition 1.4.3.6, Example 2.2.1.10].

Definition 2.2. We define E∞-algebras in Spfil
2

fil⋆mot F (ko) := Tot (τ≥2⋆F (C•(ku/ ko)/C•(MU /S))) ,

gr∗mot F (ko) := gr∗ (fil⋆mot F (ko))

for F ∈ {THH,TC−,THHtC2 ,TP}. Here Tot denotes the totalization of a cosim-
plicial object. We refer to π∗ gr∗mot TP(ko) as the prismatic cohomology of ko.

Remark 2.3. We will show in Proposition 2.14 that π∗ gr∗mot TP(ko) agrees with pris-
matic cohomology in the sense of [HRW22, Definition 1.2.4] building on [BMS19].

We also fix terminology for gradings.

Definition 2.4. Given M ∈ Spgr
2 and x ∈ πnM

w then we say that x has stem n
(= topological degree n), weight w (= half internal degree w) and motivic filtra-
tion 2w−n, and write ∥x∥ = (n, 2w−n). We refer to each of the spectral sequences

En,2w−n
2 = πn grwmot F (ko) =⇒ πnF (ko)

for F ∈ {THH,THHtC2 ,TC−,TP} as the motivic spectral sequence. We plot the
motivic spectral sequence with stem on the horizontal axis and motivic filtration
on the vertical axis. Given this convention, if ∥x∥ = (n, 2w − n) then ∥dr(x)∥ =
(n − 1, 2w − n + r). Note that we write En,2w−n

r where it is also standard to
write E2w−n,2w

r in the literature. With these conventions, the motivic spectral
sequence En,s

r -term is concentrated in degrees n+s = 2w and, consequently, dr = 0
for all even integers r ≥ 2.

We will now show that the filtrations from Definition 2.2 agree with the motivic
filtrations considered in [HRW22, Variant 4.2.2] (where stem=degree and motivic
filtration=Adams weight).

Definition 2.5 ([HRW22, Definition 2.2.1] ). A map of (discrete) 2-complete com-
mutative rings A → B is discretely 2-completely faithfully flat if for every A-
module C the spectrum HC ⊗HA HB is discrete and (HC ⊗HA HB) ⊗HA HA/2
is a faithfully flat HA/2 module concentrated in homological degree zero.

Definition 2.6 ([HRW22, Definition 2.2.13] ). A map A → B of 2-complete E∞
rings is eff if, for all even E∞ A-algebras C, the graded commutative ring π∗(B⊗AC)
is concentrated in even degrees and the ungraded C∗-module π∗(B ⊗A C) is 2-
completely faithfully flat over π∗C = C∗.

Warning 2.7. We only consider discretely 2-completely eff maps in this paper and
therefore we omit “discretely 2-completely” from our terminology throughout.
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Definition 2.8. A map A→ B of 2-complete E∞ rings is evenly free if for all even
E∞ A-algebras C ̸= 0 the graded commutative ring π∗(B ⊗A C) is concentrated in
even degrees and the ungraded C∗-module π∗(B ⊗A C) is free and non-zero.

Remark 2.9. An evenly free map A→ B of 2-complete E∞ rings is eff.

Lemma 2.10. The complexification map ko → ku is evenly free. Moreover, there
is an isomorphism of C∗-algebras

π∗(ku⊗koC) ∼= C∗[b1]/(b̂21)

where b̂21 = b21 + c2b1 + c4 for some c2, c4 ∈ C∗ where |c2| = 2 and |c4| = 4.

Proof. Let C ̸= 0 be an E∞ ko-algebra. Then consider the Wood cofiber sequence

Σ ko
η−→ ko

c−→ ku
R−→ Σ2 ko

where we use the (non-standard) notation R for the map satisfying R(u · −) = Σ2r
where r is the realification map ku → ko. The resulting cofiber sequence

ΣC
η−→ C −→ ku ⊗ko C

R−→ Σ2C

induces a short exact sequence of C∗-modules

0 → C∗ −→ π∗(ku ⊗ko C)
R−→ π∗Σ2C → 0(2.1)

since C is even and therefore π∗ΣC
η→ C∗ is zero. We conclude that π∗(ku ⊗ko C)

is concentrated in even degrees.
A choice of class b1 ∈ π2(ku ⊗ko C) with R(b1) = Σ21 is equivalent to a choice

of splitting of (2.1) so that π∗(ku ⊗ko C) ∼= C∗{1, b1} is non-zero and free over C∗.

Writing b̂21 = b21 +c2b1 +c4 for the polynomial in C∗{1, b1} that vanishes, then there
is an isomorphism

π∗(ku ⊗ko C) ∼= C∗[b1]/(b̂21)

of C∗-algebras. □

Remark 2.11. Note that c2 and c4 in the statement of Lemma 2.10 need not be zero.
For example, when C = ku with C∗ = ku∗ = Z[u] and |u| = 2 then b̂21 = b21 − ub1
as in [DLR22, Lemma 5.1].

Proposition 2.12. The map THH(ko) → THH(ku/MU) induced by the complex-
ification map c : ko → ku and the unit map S → MU is evenly free.

Proof. Let C ̸= 0 be an even E∞ THH(ko)-algebra. Then C = THH(C/C) and

THH(ku/MU) ⊗THH(ko) C = THH(ku/MU) ⊗THH(ko) THH(C/C)

≃ THH(ku ⊗ko C/MU⊗C) ,

where the last equivalence holds because THH commutes with pushouts of E∞
rings. Since C is an even E∞ THH(ko)-algebra, we have an isomorphism of C∗-
algebras π∗(MU⊗C) ∼= C∗[bk : k ≥ 1] for some choice of generators bk for k ≥ 1.

By Lemma 2.10, we know that π∗(ku ⊗ko C) ∼= C∗[b1]/(b̂21) as a C∗-module. Note
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that the unit map π∗(MU⊗C) → π∗(ku⊗koC) sends b1 to b1. To see this, consider
the commutative diagram

π2(MU⊗τ≥0C)
∼= //

��

π2(ku ⊗ko τ≥0C)

��

π2((MU /S) ⊗ τ≥0C)
∼= // π2(Σ2τ≥0C)

where MU /S denotes the cofiber of the unit map S → MU. The horizontal maps
in the commutative diagram above are isomorphisms because the map MU → ku
is 4-connected and the map S → ko is 3-connected. We know π∗(MU⊗τ≥0C) =
π∗(τ≥0C)[bk : k ≥ 1] because τ≥0C is an even E∞ ring. Consequently, we can
adjust our choice of generator b1 by dividing by a unit in order to ensure that b1 ∈
π2(MU⊗τ≥0C) maps to b1 ∈ π2(ku⊗ko τ≥0C). We then choose b1 ∈ π2(MU⊗C) to
be the image of b1 ∈ π2(MU⊗τ≥0C). We can also choose our algebra generators bk
for k ≥ 2 so that they map to zero in π∗(ku⊗koC) by subtracting a linear polynomial
in b1 from our original choice of generators. From now on in this proof, we write
bk for the generators chosen as above by a slight abuse of notation.

We then apply the Künneth spectral sequence

TorC∗[bk : k≥1]
∗ (C∗[b1]/(b̂21), C∗[b1]/(b̂21)) =⇒ π∗((C ⊗ko ku) ⊗(C⊗MU) (C ⊗ko ku)).

Since b̂21 and bk for k ≥ 2 act trivially on C∗[b1]/(b̂21), we compute

TorC∗[bk:k≥1]
∗ (C∗[b1]/(b̂21), C∗[b1]/(b̂21)) ∼= C∗[b1]/(b̂21) ⊗ Λ(σb̂21, σbk : k ≥ 2)

where the triviality of the product (σb̂21)2 follows from the fact that the product
in Tor is given by the shuffle product. Since the algebra generators are all in
filtration ≤ 1, the Künneth spectral sequence collapses at the E2-term. Note that
this is a homological spectral sequence associated to an increasing filtration. Since
the E∞-term is a non-zero free C∗-module after forgetting the grading and the
abutment is also a C∗-module after forgetting the grading, we conclude that the
abutment is a free non-zero C∗-module after forgetting the grading.

We can rule out all potential hidden multiplicative extensions because Tor0 splits
off from the abutment and all the classes in Künneth filtration one are in odd degree.
Therefore, we have

D∗ := π∗((C ⊗ko ku) ⊗(C⊗MU) (C ⊗ko ku)) ∼= C∗[b1]/(b̂21) ⊗ Λ(σb̂21, σbk : k ≥ 2)

We then apply the Künneth spectral sequence

E2
∗,∗ = TorD∗

∗ (C∗[b1]/(b̂21), C∗[b1]/(b̂21)) =⇒ π∗ THH(ku ⊗ko C/MU⊗C).

The E2-term of this spectral sequence is concentrated in even degrees so the spectral
sequence collapses at the E2-term and the abutment is also concentrated in even
degrees.

Since the E∞-term is a non-zero free C∗-module after forgetting the grading and
the abutment is also a C∗-module after forgetting the grading, we conclude that
the abutment is a free non-zero C∗-module after forgetting the grading. □

Corollary 2.13. The spectrum Cq(THH(ku/MU)/THH(ko)) is an even E∞ ku-
algebra whose homotopy groups are free as a ku∗-module.
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Proof. By Proposition 2.12, it suffices to show π∗ THH(ku/MU) is free as a ku∗-
module and concentrated in even degrees. We compute that

π∗(ku ⊗MU ku) ∼= Z[u] ⊗ Λ(σxi | i ≥ 2)

using the Künneth spectral sequence, which collapses at the E2-term. Here, we
rule out all hidden multiplicative extensions because Tor0 splits off of the abutment
and all generators in Künneth filtration 1 are in odd degrees. We then apply the
Künneth spectral sequence

Torπ∗(ku⊗MUku)
∗ (ku∗, ku∗) =⇒ THH∗(ku/MU) .

We compute the input by filtering π∗(ku ⊗MU ku) such that the associated graded
is the E∞-term of the Künneth spectral sequence above. This produces a spectral
sequence

Tor
ku∗[b1]/(b̂

2
1)⊗Λ(σbk|k≥2)

∗ (ku∗, ku∗) =⇒ Torπ∗(ku⊗MUku)
∗ (ku∗, ku∗)

whose input is ku∗ ⊗Γ(σ2xi | i ≥ 2), which is a free ku∗-module concentrated in
even degrees. Consequently, the Künneth spectral sequence collapses and the same
argument as in the proof of Proposition 2.12 applies to show that THH∗(ku/MU)
is free as a ku∗-module concentrated in even degrees. □

Proposition 2.14. The filtration from Definition 2.2 agrees with the motivic fil-
tration considered in [HRW22, Definition 4.2.1]. Moreover there exist filtered maps

can, φ : fil⋆mot TC−(ko) −→ fil⋆mot TP(ko).

that converge to the canonical map and Frobenius map from [NS18].

Proof. The first statement follows from [HRW22, Corollary 2.2.14] and Proposi-
tion 2.12 where A = M = THH(ko) and B = THH(ku/MU). In this case

M ⊗A B
⊗A1+q = A⊗A B

⊗A1+q = B⊗A1+q

and B⊗A1+q is even by Corollary 2.13 so that the even filtration agrees with the
double-speed Whitehead filtration. In light of this, the second statement follows
from [HRW22, Theorem 4.2.10]. □

Definition 2.15. In light of Proposition 2.14, we define

fil⋆mot TC(ko) := fib(can−φ : fil⋆mot TC−(ko) −→ fil⋆mot TP(ko))

gr∗mot TC(ko) := gr∗ (fil⋆mot TC(ko))

and in light of [HRW22, §5] and [BMS19], we refer to grwmot TC(ko) as the syntomic
cohomology of connective real topological K-theory and we refer to the spectral
sequence

En,2w−n
2 = πn grwmot TC(ko) =⇒ πn TC(ko)

as the motivic spectral sequence and follow the same conventions as Definition 2.2.

We now introduce the relevant coefficients. Let Cη denote the cofiber of the Hopf
map η : ΣS → S and let C2 denote the cofiber of the map 2: S → S. By [DM81,
Proposition 2.1], there exist four choices of finite spectrum (C2 ⊗ Cη)/v1 each
characterized by the Sq4-action in its mod 2 cohomology.
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Notation 2.16. Following [BEM17, §1], we write A(1)[ij] with i, j ∈ {0, 1} for
the spectrum (C2 ⊗ Cη)/v1 where Sq4 on the generator in degree 0 of its mod 2
cohomology is i times the generator in degree 4, and Sq4 on the generator in degree 2
of its mod 2 cohomology is j times the generator in degree 6. We write A(1) in
place of A(1)[ij] when implicitly the statement holds for any choice of i, j ∈ {0, 1}.

The mod 2 cohomology H∗(A(1);F2) is free of rank one over A(1) and there is
an equivalence A(1) ⊗ ko ≃ F2. Hence A(1) ⊗ ko admits a unique E∞ ko-algebra
structure.

Remark 2.17. If R is an E∞ ko-algebra, then there are identifications

A(1) ⊗R = A(1) ⊗ ko⊗koR = HF2 ⊗ko R

and we may therefore regard A(1) ⊗ R as an E∞ ko-algebra. For example, we
identify

A(1) ⊗ THH(ko) = THH(ko,F2)

and may therefore consider A(1) ⊗ THH(ko) as an E∞ ko-algebra.

Lemma 2.18. Let A := THH(ko, HF2) and B := A(1) ⊗ THH(ku/MU). Then
there is an isomorphism

A∗ ∼= F2[µ] ⊗ Λ(λ′1, λ2)

of graded F2-algebras where |λ′1| = 5, |λ2| = 7, and |µ| = 8. There is also an
isomorphism

B∗ ∼= F2[µ] ⊗ Λ(ξ̄21) ⊗ P

of A∗-algebras where P is a polynomial algebra with generators in even degrees,
|ξ̄21 | = 2, and |µ| = 8. The A∗-algebra structure is determined by the map A∗ → B∗
sending µ to µ and mapping λ′1 and λ2 trivially.

Proof. The complexification map c : ko → ku and the unique E∞ ring map ku →
HF2 induce monomorphisms

H∗(ko) = F2[ξ̄41 , ξ̄
2
2 , ξ̄k : k ≥ 3] → H∗(ku) = F2[ξ̄21 , ξ̄

2
2 , ξ̄k : k ≥ 3] → A∨

of A∨-comodule algebras. By Milnor’s construction of the ξi, the map MU → ku →
F2 induces the homomorphism H∗(MU) = F2[bi | i ≥ 1] → H∗(F2) = A∨ given by
b2i−1 7→ ξ2i and bj 7→ 0 for j ̸= 2i−1. Hence these formulas also hold in H∗(ku). Let
b̄i = χbi denote the conjugate classes in H∗(MU), so that b̄2i−1 7→ ξ̄2i and b̄j 7→ 0 for
j ̸= 2i−1. Standard Hochschild homology computations (cf. [MS93, Proposition 2])
produce

HH∗(H∗(ko)) = H∗(ko) ⊗ Λ(σξ̄41 , σξ̄
2
2 , σξ̄k : k ≥ 3) and

HH∗(H∗(ku)) = H∗(ku) ⊗ Λ(σξ̄21 , σξ̄
2
2 , σξ̄k : k ≥ 3).

The usual argument for hidden extensions (cf. [AR05, Theorem 6.2]) implies

σξ̄2
k−3

3 = σξ̄k

in the Bökstedt spectral sequence and produces identifications

H∗(THH(ko)) ∼= H∗(ko) ⊗ Λ(σξ̄41 , σξ̄
2
2) ⊗ F2[σξ̄3] and

H∗(THH(ku)) ∼= H∗(ku) ⊗ Λ(σξ̄21 , σξ̄
2
2) ⊗ F2[σξ̄3].

By Remark 2.17, we have

H∗(A(1) ⊗ ku) = H∗(HF2 ⊗ko ku)
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and then applying a Künneth spectral sequence that collapses at the E2-term, we
have an identification

H∗(A(1) ⊗ ku) ∼= A∨ ⊗ Λ(ξ21)

where hidden extensions are ruled out for filtration and bidegree reasons. Here
ξ21 denotes the A∨-comodule primitive class so that π∗(A(1) ⊗ ku) = Λ(ξ21). We
conclude that

π∗ THH(ko, HF2) = Λ(λ′1, λ2) ⊗ F2[µ] and

π∗(A(1) ⊗ THH(ku)) = Λ(ξ21 , λ1, λ2) ⊗ F2[µ]

where the map

π∗ THH(ku, HF2) = π∗(A(1) ⊗ THH(ko)) −→ π∗(A(1) ⊗ THH(ku))

induced by the complexification map sends λ2 to λ2, λ′1 to zero and µ to µ.
Next, we compute π∗(THH(ku/MU) ⊗A(1)) using the fact that

A(1) ⊗ THH(ku/MU) ≃ (A(1) ⊗ THH(ku)) ⊗THH(MU) MU .

We know

π∗ THH(MU) ∼= MU∗ ⊗Λ(σb̄i : i ≥ 1)

by [MS93, Remark 4.3] (cf. [Rog20, Proposition 4.5]). We expand

THH(MU) −→ THH(ku) −→ A(1) ⊗ THH(ku)

as the composite

MU⊗MU⊗MU MU −→ ku⊗ku⊗ku ku

−→ A(1) ⊗ ku⊗A(1)⊗ku⊗ kuA(1) ⊗ ku

where

MU∗[b̄i | i ≥ 1] = π∗(MU⊗MU) −→ π∗(ku ⊗ ku)

−→ π∗(A(1) ⊗ ku⊗ ku) = Λ(ξ21) ⊗H∗(ku)

takes b̄2i−1 to ξ̄2i and b̄j to 0 for j ̸= 2i − 1. Hence π∗ THH(MU) → π∗(A(1) ⊗
THH(ku)) is given by σb̄1 7→ σξ̄21 = λ1, σb̄3 7→ σξ̄22 = λ2, and σb̄i 7→ 0 for i ̸∈ {1, 3}.
(This uses that σb̄2i−1 7→ σξ̄2i = σξ̄i · ξ̄i + ξ̄i · σξ̄i = 0 for i ≥ 3, while ξ̄1 and ξ̄2
do not exist in H∗(ku)). The π∗ THH(MU)-algebra structure on MU∗ is given by
mapping xi to xi and mapping σb̄i trivially for all i ≥ 1. The Künneth spectral
sequence therefore has E2-term

Λ(ξ21) ⊗ F2[µ] ⊗ Γ(σ2b̄2i−1 | i ≥ 3) ⊗ Γ(σ2b̄j | j ̸= 2i − 1) .

This spectral sequence is concentrated in even degrees and therefore collapses at
the E2-term. We resolve the hidden multiplicative extensions using Steinberger’s
computation [BMMS86, III.2] of the Dyer–Lashof operations on H∗(HF2) ∼= A∨

and Kochman’s computation [Koc74, Theorem 6] of the Dyer–Lashof operations
on H∗(BU) ∼= H∗(MU), as in the proof of [HW22, Lemma 2.4.1]. (Note that
[BMMS86, III.2] is used for the σ2b̄2i−1, while [Koc74, Theorem 6] is used for the
remaining σ2b̄j). This produces the identification

π∗(A(1) ⊗ THH(ku/MU)) = Λ(ξ21) ⊗ F2[µ] ⊗ P

where

P := F2[wi | i ≥ 0] ⊗ F2[yj,i | j ≥ 2 even, i ≥ 0]
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is a polynomial algebra with algebra generators in even degrees, where wi is any
choice of lift of γ2i(σ

2b̄7) and yj,i is any choice of lift of γ2i(σ
2b̄j). We conclude

that A(1)⊗THH(ku/MU) is an even E∞ ring and the π∗(A(1)⊗THH(ko))-algebra
structure is determined by λ′1 and λ2 mapping trivially (for degree reasons) and µ
mapping to µ by the first half of this proof. □

Definition 2.19. We define

fil⋆mot THH(ko, HF2) = Tot (τ≥2⋆ (A(1) ⊗ C•(THH(ku/MU)/THH(ko)))) .

Corollary 2.20. The map A(1) ⊗ THH(ko) → A(1) ⊗ THH(ku/MU) induced by
the complexification map c : ko → ku and the unit map S → MU is eff.

Proof. This can be proven directly using Lemma 2.18, but instead we simply point
out that it follows from Proposition 2.12 and Remark 2.17 by base change. □

Convention 2.21. To be consistent with our conventions, we write fil⋆ev for the
functor denoted fil⋆ev,2 in [HRW22, Variant 2.1.7].

Remark 2.22. By [HRW22, Corollary 2.2.14], Corollary 2.20, an Remark 2.17, we
can identify

fil⋆mot THH(ko, HF2) ≃ fil⋆ev THH(ko, HF2)

in the sense of [HRW22, Construction 2.1.2].

Theorem 2.23. We can identify

π∗ gr∗mot THH(ko, HF2) ∼= F2[µ] ⊗ Λ(λ′1, λ2)

as a bigraded F2-algebra with ∥λ′1∥ = (5, 1), ∥λ2∥ = (7, 1), and ∥µ∥ = (8, 0).

Proof. We closely follow [HW22] and [HRW22]. Starting with the proof of [HW22,
Proposition 6.1.6], let A := THH(ko,F2) = A(1) ⊗ THH(ko) and B := A(1) ⊗
THH(ku/MU), so that π∗A = A∗ ∼= F2[µ] ⊗ Λ(λ′1, λ2) and π∗B = B∗ ∼= F2[µ] ⊗
Λ(ξ21) ⊗ P by Lemma 2.18. The descent spectral sequence associated to the cosim-
plicial Amitsur resolution C•(B/A) = B⊗A1+• for A→ B has E1-term

qE1(B/A) = π∗(B⊗A1+q)

for q ≥ 0, and converges to A∗. Since B∗ is concentrated in even stems, Proposi-
tion 2.12 implies that Σ := π∗(B ⊗A B) is even and free over B∗, so that (B∗,Σ)
is a flat Hopf algebroid. Let C∗

Σ(B∗, B∗) denote the associated cobar complex. It
follows by induction on q that the natural homomorphism

Cq
Σ(B∗, B∗) = Σ ⊗B∗ · · · ⊗B∗ Σ

∼=−→ π∗((B ⊗A B) ⊗B · · · ⊗B (B ⊗A B))

∼= π∗(B ⊗A · · · ⊗A B) = qE1(B/A)

is an isomorphism for each q ≥ 0, since the relevant Künneth spectral sequences
collapse. Passing to cohomology, we obtain an isomorphism

Ext∗Σ(B∗, B∗) ∼= E∗
2 (B/A) ,

identifying the descent spectral sequence E2-term with the Hopf algebroid cohomol-
ogy of (B∗,Σ). We claim that in each stem this E2-term has the same finite order
as A∗, so that the descent spectral sequence for A→ B must collapse at E2 = E∞.

By convergence, the descent E2-term is an upper bound for A∗. To show that the
bound is exact, we consider the multiplicative Whitehead filtrations τ≥∗A and τ≥∗B
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of A and B, respectively. For each q ≥ 0 we equip B⊗Aq+1 with the relative
convolution filtration

fil∗B⊗Aq+1 = (τ≥∗B)
⊗(τ≥∗A)q+1

,

having associated graded E∞-ring

gr∗B⊗Aq+1 = Hπ∗B
⊗Hπ∗Aq+1 .

HereHπ∗A andHπ∗B can be interpreted as the graded E∞-rings gr∗ τ≥∗A and gr∗ τ≥∗B.
We proved in Lemma 2.18 that A∗ → B∗ is given by µ 7→ µ, λ′1 7→ 0 and λ2 7→ 0,
so that

Σ̄ := π∗(Hπ∗B∗ ⊗Hπ∗A Hπ∗B) ∼= F2[µ] ⊗ Λ(ξ21) ⊗ P ⊗ Λ(ξ21) ⊗ P ⊗ Γ(σλ′1, σλ2)

is even and free over B∗. Hence (B∗, Σ̄) is a flat Hopf algebroid, and as above we
have compatible isomorphisms

Cq

Σ̄
(B∗, B∗) = Σ̄ ⊗B∗ · · · ⊗B∗ Σ̄

∼=−→ Hπ∗B
⊗Hπ∗Aq+1

for all q ≥ 0. Since these bigraded groups are concentrated in even stems, and
differentials reduce the stem by one, the convolution filtration spectral sequence

π∗(Hπ∗B
⊗Hπ∗Aq+1) =⇒ π∗(B⊗Aq+1)

collapses at this term. This proves that π∗(B⊗Aq+1) = qE1(B/A) has a descending
filtration with associated graded given by Cq

Σ̄
(B∗, B∗). These filtrations are com-

patible for varying q ≥ 0, so the descent E1-term is a filtered differential graded
algebra with associated graded E1 = C∗

Σ̄
(B∗, B∗). Passing to cohomology, we obtain

the May–Ravenel spectral sequence

E2 = ExtΣ̄(B∗, B∗) =⇒ ExtΣ(B∗, B∗)

converging to the descent E2-term, cf. [Rav86, Theorem A1.3.9].
We now view the Hopf algebroid (B∗, Σ̄) as the tensor product of the three Hopf

algebroids

(F2[µ],F2[µ]) , (Λ(ξ1) ⊗ P,Λ(ξ1) ⊗ P ⊗ Λ(ξ1) ⊗ P ) and (F2,Γ(σλ′1, σλ2)) .

These have cohomology algebras F2[µ], F2 and Λ(λ′1, λ2), respectively, with µ ∈
Ext0 and λ′1, λ2 ∈ Ext1. This confirms that the May–Ravenel E2-term

ExtΣ̄(B∗, B∗) ∼= F2[µ] ⊗ Λ(λ′1, λ2)

has the same finite order in each stem as A∗, which implies that the May–Ravenel
spectral sequence and the descent spectral sequence both collapse at their E2-terms.
Moreover, there is no room for hidden multiplicative extensions, since λ′1 and λ2
both square to zero in A∗.

We have now established that the descent spectral sequence

E∗,q
1 (B/A) = π∗(B⊗Aq+1) =⇒ A∗

is concentrated in even internal degrees n+ q = 2w, having E2-term

E2(B/A) = ExtΣ(B∗, B∗) = Λ(λ′1, λ2) ⊗ F2[µ]

with (n, q)-bidegrees |λ′1| = (5, 1), |λ2| = (7, 1) and |µ| = (8, 0). Following [HRW22,
Example 4.2.3] we apply [HRW22, Corollary 2.2.14(1)] to the eff map A → B, to
see that

fil∗evA
≃−→ Tot

(
fil∗evB

⊗A•+1
)

= Tot
(
τ≥2∗(B⊗A•+1)

)
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is an equivalence. For each integer weight w there is a spectral sequence converging
to π∗ Tot

(
τ≥2w(B⊗A•+1)

)
, with E1-term given by the part of the descent spectral

sequence E1(B/A) that is located in internal degrees n+q ≥ 2w. The d1-differential
preserves this part, so the E2-term for weight w is given by the part of E2(B/A)
in the same range of internal degrees. By naturality, this spectral sequence must
collapse at the E2-term, since the full descent spectral sequence does so. It follows
that

π∗ filwevA −→ A∗

maps the source isomorphically to the subgroup of classes in internal degree ≥ 2w,
and π∗ grwevA is isomorphic to the summand in A∗ consisting of classes in internal
degree = 2w. Hence

π∗ gr∗evA
∼= Λ(λ′1, λ2) ⊗ F2[µ]

as bigraded algebras, with (n, 2w − n)-bidegrees ∥λ′1∥ = (5, 1), ∥λ2∥ = (7, 1)
and ∥µ∥ = (8, 0). □

Following [HRW22, Corollary 2.2.17], the map S → MU is eff and MU is even so
that fil⋆ev S ≃ Tot

(
τ≥2⋆C

•(MU /S)
)

and gr∗ev S = TotHπ2∗C
•(MU /S). Note that

the even filtration is symmetric monoidal, so gr∗ev S is an E∞-algebra in graded 2-
complete spectra, and gr∗ev is a lax symmetric monoidal functor from 2-complete
spectra to gr∗ev S-modules.

Convention 2.24. We will simply write ⊗ for ⊗gr∗ev S when it is clear that we are
in the category of modules over gr∗ev S from the context.

Construction 2.25. We construct a gr∗ev S-module A(1) as follows. Note that
by [GIKR22], we can identify gr∗ev S with Cτ in the C-motivic homotopy cat-
egory SH(C) (cf. [HRW22, Remark 1.1.7]). Consequently, by [GWX21, Theo-
rem 1.13, Remark 4.15] there is a gr∗ev S-module corresponding to the MU∗ MU-
comodules MU∗ Cη and an E∞ gr∗ev S-algebra corresponding to MU /(2, v1, . . . , vk)
for k ≥ 0. We write Cη for the former gr∗ev S-module and V (k) for the latter. We
then have an equivalence of V (1)-modules A(1) ≃ V (1)⊗Cη, corresponding to the
isomorphism MU∗(A(1)) ∼= MU∗ /(2, v1) ⊗MU∗ MU∗(Cη) of MU∗ /(2, v1)-modules
in MU∗ MU-comodules. Consequently, we know that A(1) is a V (1)-module. When
M is a gr∗ev S-module and V ∈ {Cη, V (k), Cη ⊗ V (k)}, we write

V ∗M := π∗(V ⊗M).

Note that we are applying Convention 2.24 throughout this construction.

Lemma 2.26. The MU∗ MU-comodule MU∗ Cη is not MU∗ MU-comodule algebra.

Proof. Note that the coaction ν : MU∗ Cη → MU∗ MU⊗MU∗ MU∗ Cη satisfies

ν(1) = 1 ⊗ 1

ν(b1) = b1 ⊗ 1 + 1 ⊗ b1 .

If b21 = p+ qb1 with p ∈MU4 = Z{x21} and q ∈MU2 = Z{x1} we would get

ν(b21) = b21 ⊗ 1 + 2b1 ⊗ b1 + 1 ⊗ (p+ qb1) = ν(p+ qb1) = p⊗ 1 + qb1 ⊗ 1 + q ⊗ b1 ,

so that b21+ηR(p) = p+qb1 and 2b1+ηR(q) = q . From ηR(x1) = x1+2b1 it follows
that q = −x1, so that ηR(p) − p = −x1b1 − b21 . Since ηR(x21) − x21 = 4x1b1 + 4b21 ,
this cannot happen for p an integer multiple of x21. □



ALGEBRAIC K-THEORY OF REAL TOPOLOGICAL K-THEORY 13

Remark 2.27. A consequence of Lemma 2.26 is that A(1) is not an E1-algebra
in gr∗ev S-modules. See Remark 4.7 for further consequences.

Lemma 2.28. There is an equivalence

A(1) ⊗ gr∗mot THH(ko) ≃ gr∗mot THH(ko, HF2)

of gr∗ev S-modules.

Proof. Let v1 : Σ2V (0)⊗Cη → V (0)⊗Cη be one of the eight v1-maps, with cofiber
one of the four spectra A(1). Since 2 and η come from π∗ gr∗ev S, the structure map

V (0) ⊗ Cη ⊗ gr∗ev ku
≃−→ gr∗ev(V (0) ⊗ Cη ⊗ ku)

is an equivalence. The cofiber of gr∗ev(v1) ⊗ 1 acting on the left is A(1) ⊗ gr∗ev ku,
and the cofiber of v1 ⊗ 1 acting on V (0)⊗Cη⊗ ku is A(1)⊗ ku ≃ F2 ∨Σ2F2. Since
MU∗(V (0) ⊗ Cη ⊗ ku) is concentrated in even degrees, it follows as in [GIKR22,
Proposition 3.18] that applying gr∗ev to the latter cofiber sequence again gives a
cofiber sequence, so that the cofiber of gr∗ev(v1 ⊗ 1) acting on the right is indeed
gr∗ev(A(1) ⊗ ku).

Consequently, there are equivalences

A(1) ⊗ gr∗ev C
q(THH(ku/MU)/THH(ko))

≃ gr∗ev
(
A(1) ⊗ Cq(THH(ku/MU)/THH(ko))

)
≃ gr∗ev

(
Cq(A(1) ⊗ THH(ku/MU)/A(1) ⊗ THH(ko))

)
for each q ≥ 0 compatible with the cosimplicial structure maps. Altogether, this
implies that

A(1) ⊗ gr∗mot THH(ko) ≃ gr∗ev (A(1) ⊗ C•(THH(ku/MU)/THH(ko)))

and the result follows from Corollary 2.20. □

Remark 2.29. By Remark 2.27, the gr∗ev S-module A(1) is not an E1 gr∗ev S-algebra.
However, by Lemma 2.28, there is an identification of gr∗ev S-modules

A(1) ⊗ gr∗mot THH(ko) = gr∗mot THH(ko, HF2)

where the right-hand side is an E∞ gr∗ev S-algebra. We therefore use this to equip
the left-hand side with an E∞ gr∗ev S-algebra structure. Note that the left-hand side
also has a canonical action of the circle T, but this T-action is not an action by E∞
ring maps because the right-hand side is not equipped with a compatible T-action.

Corollary 2.30. There are preferred isomorphisms of bigraded F2-algebras

A(1)∗ gr∗mot THH(ko) ∼= Λ(λ′1, λ2) ⊗ F2[µ]

and

(V (2) ⊗ Cη)∗ gr∗mot THH(ko) ∼= Λ(ε2, λ
′
1, λ2) ⊗ F2[µ]

Proof. The first isomorphism is a direct consequence of Theorem 2.30, Lemma 2.28,
and Remark 2.29. The second isomorphism holds because we can choose a null
homotopy of v2 compatible with the map

V (2)∗ gr∗mot THH(ko) −→ (V (2) ⊗ Cη)∗ gr∗mot THH(ko) .

□
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Lemma 2.31. There is a multiplicative, strongly convergent, trigraded η-Bockstein
spectral sequence

(2.2) A(1)∗ gr∗mot THH(ko)[η] =⇒ V (1)∗ gr∗mot THH(ko).

Proof. Following [HRW22, Corollary 2.2.17], the map S → MU is eff and MU∗ ko
is even so that

fil⋆ev S ≃ Tot
(
τ≥2⋆ (ko⊗C•(MU /S))

)
and

gr∗ev ko = Tot
(
Hπ2∗(ko⊗MU⊗1+•)

)
.

We first show that the η-Bockstein spectral sequence associated to the filtered
object in graded spectra

. . .
η−→ Σ1,1V (1) ⊗ gr∗ev(ko)

η−→ V (1) ⊗ gr∗ev(ko)(2.3)

is multiplicative. Note that the normalized Tot-filtration of

TotC•(ku/ ko) ≃ ko

is the same as the η-adic tower

· · · −→ Σ2 ko
η−→ Σ ko

η−→ ko .

Equivalently, the normalized Tot-tower ends

. . .→ lim
(

ku
//

// ku⊗ko kuoo
)
−→ ku

and is equivalent to

. . .→ Cη2 ⊗ ko → Cη ⊗ ko .

Here we are using the Wood cofiber sequence

Σ ko
η−→ ko

c−→ ku
R−→ Σ2 ko

of ko-modules. The Bousfield–Kan homotopy spectral sequence for the cosimpli-
cial E∞ gr∗ev ko-algebra

C•(gr∗ev ku / gr∗ev ko)

is multiplicative, and converges conditionally and strongly to π∗ gr∗ev ko. Its nor-
malized E1-term in codegree q is

Σq,q gr∗ev ku ,

which is concentrated in even internal degrees (= integral weights). In the same
way, the descent = Bousfield–Kan homotopy spectral sequence for the cosimplicial
gr∗ev ko-algebra

C•(gr∗ev ku / gr∗ev ko) ⊗gr∗ev ko V

is multiplicative, and converges conditionally and strongly to π∗V . The even-
ness/integrality noted above shows that its normalized E1-term in codegree q is

Eq
1 = Σq,q gr∗ev ku⊗gr∗ev koV .

This is the cofiber of

h1 ⊗ 1: Σq+1,q+1 gr∗ev ko⊗gr∗ev koV −→ Σq,q gr∗ev ko⊗gr∗ev koV

as well as of

1 ⊗ h1 : Σq+1,q+1 gr∗ev ko⊗gr∗ev koV −→ Σq,q gr∗ev ko⊗gr∗ev koV ,
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since h1 lies in the homotopy of gr∗ev ko. Hence Eq
1 is equivalent to

Σq,q gr∗ev ko⊗gr∗ev koA = A{hq1} ,

with A = A(1) ⊗ gr∗mot THH(ko). This uses the cofiber sequence

Σ1,1V
h1−→ V → A −→ Σ2,0V

of gr∗ev ko-modules, which follows from

Σ1,1V (1)
h1−→ V (1) −→ A(1) → Σ2,0V (1) .

To summarize, the descent spectral sequence along gr∗ev ko → gr∗ev ku for V (1) ⊗
gr∗mot THH(ko) has E1-term

E∗
1 = A(1)∗ gr∗mot THH(ko)[h1]

and converges to V (1)∗ gr∗mot THH(ko). □

Remark 2.32. Note that A(1)∗ gr∗ev ko = F2. The η-Bockstein spectral sequence

A(1)∗(gr∗ev ko)[η] =⇒ V (1)∗ gr∗ev ko

collapses to give V (1)∗ gr∗ev ko = F2[η] with |η| = (1, 1). The v1-Bockstein spectral
sequence

V (1)∗(gr∗ev ko)[v1] → V (0)∗ gr∗ev ko

collapses to give V (0)∗ gr∗ev ko = F2[η, v1] with |v1| = (2, 0). The v0-Bockstein
spectral sequence

V (0)∗(gr∗ev ko)[v0] → π∗ gr∗ev ko

with |v0| = (0, 0) has E1 = F2[v0, η, v1] and d1(v1) = v0η. It then collapses at

E2 =
F2[v0, η]

(v0η)
⊗ F2[v21 ] ,

and gives π∗ gr∗ev ko = Z[η, v21 ]/(2η). The motivic spectral sequence

E2 = π∗ gr∗ev ko → π∗ ko

then has d3(v21) = η3 and collapses at

E4 =
(
Z{1, 2v21} ⊕ F2{η, η2}

)
⊗ Z[v41 ] ,

and converges to π∗ ko = Z[η,A,B]/(2η, η3, ηA,A2 = 4B), with A detected by 2v21
and B detected by v41 .

Proposition 2.33. The η-Bockstein spectral sequence

(2.4) A(1)∗ gr∗mot THH(ko)[η] =⇒ V (1)∗ gr∗mot THH(ko)

has differentials

d1(λ2) = ηλ′1

d3(λ′1λ2) = η3µ

and no further differentials besides those generated by the Leibniz rule. Conse-
quently, we can identify

V (1)∗ gr∗mot THH(ko) ∼=
F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 = c · η2µ, η3µ)

as a bigraded F2-algebra where ∥η∥ = (1, 1), ∥µ∥ = (8, 0) and ∥λ′1∥ = (5, 1) and c ∈
F2. Moreover, there is no room for η extensions.
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Proof. We deduce these differentials using a small part of the known (implicitly 2-
complete) computation of π∗ THH(ko) from [AHL10, §7]. The unit ko → THH(ko)
and augmentation ϵ : THH(ko) → ko exhibit ko as a retract of THH(ko) in the cat-
egory of E∞-rings. We write THH(ko)/ ko for the complementary summand in ko-
modules. In degrees ∗ < 12 we have H∗(ko){σξ̄41 , σξ̄22 , σξ̄3} ∼= H∗(THH(ko)/ ko),
so there is an 11-connected map Σ5ksp ≃ ko⊗(S5 ∪η e

7 ∪2 e
8) → THH(ko)/ ko.

By [AHL10, Corollary 7.3, Figure 5], the η2-multiple in π6ksp ∼= π11Σ5ksp maps to
zero in THH, so π∗(THH(ko)/ ko) ∼= (Z, 0, 0, 0,Z,Z/2, 0) for 5 ≤ ∗ ≤ 11.

We consider the η-Bockstein spectral sequence

E1 = Λ(λ′1, λ2) ⊗ F2[η, µ] =⇒ V (1)∗ gr∗mot THH(ko)

with |λ′1| = (5, 1), |λ2| = (7, 1), |µ| = (8, 0) and |η| = (1, 1), the v1-Bockstein
spectral sequence

E1 = V (1)∗ gr∗mot THH(ko)[v1] → V (0)∗ gr∗mot THH(ko)

with |v1| = (2, 0), the v0-Bockstein spectral sequence

E1 = V (0)∗ gr∗mot THH(ko)[v0] =⇒ π∗ gr∗mot THH(ko)

with |v0| = (0, 0), and the motivic spectral sequence

E2 = π∗ gr∗mot THH(ko) =⇒ π∗ THH(ko) .

In each case the spectral sequence for ko splits off as a direct summand. Taking
this into account, there is no possible source or target for a differential affecting λ′1
in any of these spectral sequences. Hence λ′1 survives in bidegree (5, 1) to detect
the generator of π5(THH(ko)/ ko) ∼= Z. Since π6(THH(ko)/ ko) = 0, it follows
that ηλ′1 in bidegree (6, 2) is an infinite cycle that detects zero, i.e., a boundary
in one of these spectral sequences. Since ηλ′1 is not a v1- or v0-multiple, it cannot
be a v1-Bockstein or v0-Bockstein boundary. Since the motivic E2-term is readily
seen to be zero in bidegree (7, 0), it can also not be a motivic boundary. Hence
d1(λ2) = ηλ′1 in the η-Bockstein spectral sequence is the only remaining possibility.

There is no room for other η-Bockstein d1-differentials, so the next differential
to be determined is d3(λ′1λ2) ∈ F2{η3µ}. On one hand, if d3(λ′1λ2) = η3µ then the
η-Bockstein E∞-term (modulo the summand for ko) will be

F2{λ′1, µ, ηµ, η2µ}

in stems ≤ 12. On the other hand, if d3(λ′1λ2) = 0 then it will be

F2{λ′1, µ, ηµ, η2µ, η3µ}

in stems ≤ 11, with the 12-stem concentrated in motivic filtrations ≥ 2. In either
case this determines V (1)∗ gr∗mot THH(ko) in these stems.

The first nonzero v1-Bockstein differential is d1(µ) = v1λ
′
1. If it were not there,

then v1λ
′
1 would survive to V (0)∗ gr∗mot THH(ko) and π∗ gr∗mot THH(ko) to detect a

nonzero class in π7(THH(ko)/ ko) = 0, which is impossible. There is no room for
other v1-Bockstein differentials affecting stems ≤ 11, so if d3(λ′1λ2) = η3µ then the
v1-Bockstein E∞-term (modulo the summand for ko) will be

F2{λ′1, ηµ, η2µ, v1ηµ}

in stems ≤ 11, while if d3(λ′1λ2) = 0 then it will be

F2{λ′1, ηµ, η2µ, η3µ, v1ηµ}
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in these stems. In either case the 12-stem is concentrated in motivic filtrations ≥ 2,
and these expressions determine V (0)∗ gr∗mot THH(ko) in this range of stems.

In the v0-Bockstein spectral sequence, there is no room for differentials on (λ′1
and) ηµ. Multiplying by η2, it follows that η3µ is an infinite cycle (but possibly
zero). Since it is not a v0-multiple, it cannot be a v0-Bockstein boundary, and
since it is in motivic filtration 3, and the motivic E2-term is now known to be
zero in bidegrees (12, 0) and (12, 1), it cannot be a motivic dr-boundary for r ≥
2. Hence if d3(λ′1λ2) were zero, then η3µ would survive to V (0)∗ gr∗mot THH(ko)
and π∗ gr∗mot THH(ko) to detect a nonzero class in π11(THH(ko)/ ko) = 0, which is
impossible.

This contradiction shows that d3(λ′1λ2) = η3µ, as claimed. This leaves the
η-Bockstein E4-term

Λ(λ′1) ⊗ F2[η, µ]

(ηλ′1, η
3µ)

.

There is no room for further differentials, so this is also the E∞-term. The only
possible multiplicative extension in the abutment V (1)∗ gr∗mot THH(ko) is the one
stated, with λ′1 · λ′1 ∈ F2{η2µ}. □

Remark 2.34. In fact, we will show in Proposition 4.11 that c = 1 and λ′1 · λ′1 =
η2µ. We therefore determine the complete computation of V (1)∗ gr∗mot THH(ko) ,
including the multiplicative structure, in Corollary 4.12.

Corollary 2.35. We can identify

V (2)∗ gr∗mot THH(ko) ∼= Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 = c · η2µ, η3µ)

as a bigraded F2-module, with |ε2| = (7,−1) for some c ∈ F2.

Proof. This follows because v2 acts trivially on V (1)∗ gr∗mot THH(ko) and a choice
of null-homotopy of v2 produces the class ε2. We can conclude that ε22 = 0 in
in V (2)∗ gr∗mot THH(ko) because the group is trivial in this bidegree. □

3. Detection

The (classical mod 2) Adams spectral sequence

AdE2(X) = Ext∗,∗A∨(F2, H∗(X)) =⇒ π∗(X∧
2 )

is strongly convergent for bounded below spectra X with H∗(X) of finite type.
Its E2-term can be calculated as the cohomology of the normalized cobar complex

0 −→ H∗(X)
d0
1−→ Ā∨ ⊗H∗(X)

d1
1−→ Ā∨ ⊗ Ā∨ ⊗H∗(X) −→ . . . .

Here Ā∨ = cok(F2 → A∨), and we will use the notation [a]m = a⊗m ∈ Ā∨⊗H∗(X).
Recall that d01 is given by the normalized A∨-coaction on H∗(X), while d11 also
involves the coproduct ψ : A∨ → A∨ ⊗A∨.

When X = A(1)[ij] as in Notation 2.16, the Adams E2-terms

AdE2 = ExtA(H∗(A(1)[ij]),F2) =⇒ π∗A(1)[ij]

are readily calculated in a finite range using Bruner’s ext software [Bru93] (cf. [BR21]).
The results in stems ∗ ≤ 28 are shown in Figure 3.1, with the usual (stem, Adams
filtration) bigrading. In each case, the 1-cochains

(3.1) [ξ41 ]1 , [ξ22 ]1 + [ξ41 ]ξ21 and [ξ3]1 + [ξ22 ]ξ1 + [ξ41 ]ξ2
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in Ā∨ ⊗A(1)∨ are cocycles, but not coboundaries, hence represent nonzero classes
in AdE2(A(1)[ij]) in (stem, Adams filtration) bidegrees (3, 1), (5, 1) and (6, 1),
respectively. For sparsity reasons, these survive to AdE∞(A(1)[ij]), and detect
nonzero homotopy classes in stems 3, 5 and 6, denoted

ν , w and v2 ∈ π∗A(1)[ij] .

for each i, j ∈ {0, 1}. In Figure 3.1, lines of bidegree (0, 1), (1, 1) and (3, 1) (dashed)
indicate multiplications by h0, h1 and h2, respectively.

Lemma 3.1. In the Adams spectral sequences for the A(1)[ij] the differentials
originating in stems ∗ ≤ 24 are all zero.

Proof. This mostly follows from sparsity and the module structure over the Adams
spectral sequence for S, using that d2(h4) = h0h

2
3 maps to zero under S → A(1).

Only the Adams d2-differential from bidegree (t − s, s) = (19, 2) requires special
attention, but the Novikov E2-term shows that π19A(1) has order 22 = 4, so there
is no room for such an Adams differential. □

To calculate the Novikov E2-term

NovE2 = ExtMU∗ MU(MU∗,MU∗A(1)) ∼= ExtBP∗ BP(BP∗,BP∗A(1))

for these spectra, we can note that BP∗A(1) = BP∗ /I2{1, t1} and use the long
exact sequence obtained by applying ExtBP∗ BP(BP∗,−) to the BP∗ BP-comodule
extension

0 −→ BP∗ /I2 −→ BP∗A(1) −→ Σ2 BP∗ /I2 → 0

classified by

h10 = [t1] ∈ Ext1,1BP∗ BP(BP∗,BP∗) .

The groups

ExtBP∗ BP(BP∗,BP∗ /I2)

are calculated in a range as in [Rav86, §4.4, p. 162], starting with the isomorphism

ExtA(F2,F2) ∼= ExtBP∗ BP(BP∗,BP∗ /I∞)

that doubles internal degrees, followed by the vn-Bockstein spectral sequences

E1 = ExtBP∗ BP(BP∗,BP∗ /In+1) [vn] =⇒ ExtBP∗ BP(BP∗,BP∗ /In)

for descending n ≥ 2. The v2-Bockstein spectral sequence E∞-term for BP∗ /I2
in stems ∗ ≤ 26 is shown in Figure 3.2, corresponding to [Rav86, Fig. 4.4.23(c)].
Lines of bidegree (1, 1), (3, 1) and (7, 1) (dashed) indicate multiplications by h10 =
[t1], h11 = [t21] and h12 = [t41], respectively. (Some) hidden extensions are shown in
black.

Alternatively, one can start with the internal degree-doubling isomorphism

ExtA(H∗(C2),F2) ∼= ExtBP∗ BP(BP∗,BP∗ /I∞{1, t1})

and calculate the vn-Bockstein spectral sequences

E1 = ExtBP∗ BP(BP∗,BP∗ /In+1{1, t1}) [vn] =⇒ ExtBP∗ BP(BP∗,BP∗ /In{1, t1})

for descending n ≥ 2. The Adams E2-term for C2 in stems ∗ ≤ 16 is shown in
Figure 3.3, and the resulting v2-Bockstein E∞-term for BP∗ /I2{1, t1} = BP∗A(1)
in stems ∗ ≤ 26 is shown in Figure 3.4. Again, (some) hidden extensions are shown
in black.
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Figure 3.1. Adams E2-terms for A(1)[00], A(1)[10], A(1)[01]
and A(1)[11] (from top to bottom)
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Figure 3.4. E∞ =⇒ ExtBP∗ BP(BP∗,BP∗A(1))

Lemma 3.2. In the Novikov spectral sequences for the A(1)[ij] the nonzero differ-
entials originating in stems ∗ ≤ 22 are

d3(v22) = h211w and d3(v32) = v2h
2
11w .

In the cases A(1)[10] and A(1)[11] there is a nonzero d3 from bidegree (t− s, s) =
(23, 1).

In every case d3(v42) = 0 and d5(v42) ̸= 0.

Proof. This follows by comparison of the order in each stem of the Adams E∞-
term, which equals that of the abutment π∗A(1)[ij], with the order in each stem of
the Novikov E2-term. In particular, π12A(1) = Z/2 implies that v22 must support a
nonzero differential. Similarly, the group π18A(1) has order 22, so v32 must support
a nonzero differential. The groups π22A(1)[ij] have order 23 = 8 for i = 0 and
order 22 = 4 for i = 1, while the groups π23A(1)[ij] have order 24 for i = 0 and 23

for i = 1. To account for this, the Novikov differential d3 from bidegree (t− s, s) =
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(23, 1) to (22, 4) must be nonzero when i = 1. Moreover, there must be a rank 1
Novikov differential from the 24-stem to the 23-stem. By h11-linearity, it cannot
originate in bidegree (24, 2), hence it is either a d3 or a d5 starting on v42 .

Inspection of the Novikov E2-term for S in [Rav86, Figure 4.4.45] shows that
νκ̄ ∈ π23(S) is detected by a generator x of the Z/8 in (stem, Novikov filtration)
bidegree (23, 5) of NovE2(S). The unit map S → A(1) takes this generator x to
the generator y of the Z/2 in the same bidegree of NovE2(A(1)), see Figure 3.4.
Since νκ̄ maps to zero in π23A(1) (by Lemma 3.1) it follows that this nonzero
class y is a boundary. It cannot be a d3-boundary, by h11-linearity and the first
part of this proof, so d5(v42) = y ̸= 0 is the only possibility. In particular, we must
have d3(v42) = 0. □

The circle group T acts freely on S1 ⊂ S3 ⊂ · · · ⊂ S∞ = ET, and we can form
the “approximate homotopy fixed point” spectrum F (S3

+,THH(ko))T. There is a
cofiber sequence

(3.2) Σ−2 THH(ko)
i−→ F (S3

+,THH(ko))T
p−→ THH(ko)

σ−→ Σ−1 THH(ko) ,

where σ is induced by the T-action on THH(ko), and a commutative diagram

S //

��

TC−(ko) //

((

F (S3
+,THH(ko))T

p

��

ko // THH(ko) .

By truncating the homotopy fixed point spectral sequence

E2 = A(1)∗ THH(ko)[t] =⇒ A(1)∗ TC−(ko) ,

where t is in stem −2, we obtain a two-column approximate homotopy fixed point
spectral sequence

(3.3) E2 = A(1)∗ THH(ko){1, t} =⇒ A(1)∗F (S3
+,THH(ko))T ,

which is really just the long exact sequence in A(1)-homotopy associated to the
cofiber sequence (3.2). We have the following analogue of [AR02, Proposition 4.8].

Proposition 3.3. The unit images in A(1)∗ TC−(ko) and A(1)∗F (S3
+,THH(ko))T

of the classes ν, w and v2 ∈ π∗A(1) are detected by

tλ′1 , tλ2 and tµ ,

respectively, in the homotopy fixed point and approximate fixed point spectral se-
quences.

Proof. By naturality, it suffices to prove this in the approximate fixed point case.
The unit map takes the infinite cycles in (3.1), detecting ν, w and v2 in π∗A(1), to
the 1-cocycles

(3.4)

[ξ41 ](1 ⊗ 1)

[ξ22 ](1 ⊗ 1) + [ξ41 ](ξ21 ⊗ 1)

[ξ3](1 ⊗ 1) + [ξ22 ](ξ1 ⊗ 1) + [ξ41 ](ξ2 ⊗ 1)

in Ā∨ ⊗A(1)∨ ⊗H∗(F (S3
+,THH(ko))T). We claim that these are not in the image

of the coboundary d01 from the 0-cochains

A(1)∨ ⊗H∗(F (S3
+,THH(ko))T) ,
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hence represent nonzero classes in AdE∞(A(1) ⊗ F (S3
+,THH(ko))T), detecting the

(nonzero) images of ν, w and v2 in A(1)∗F (S3
+,THH(ko))T.

Recall that H∗(ko) = F2[ξ̄41 , ξ̄
2
2 , ξ̄3, . . . ], H∗ THH(ko) = H∗(ko) ⊗ Λ(σξ̄41 , σξ̄

2
2) ⊗

F2[σξ̄3] and A(1)∨ = F2[ξ1, ξ2]/(ξ41 , ξ
2
2). In the long exact sequence associated

to (3.2), the map σ has kernel F2{1, σξ̄41 , σξ̄
2
2} in degrees ≤ 7, and the image of i

consists of t-multiples. In the extension

0 −→ A(1)∨ ⊗ im(i) −→ A(1)∨ ⊗H∗F (S3
+,THH(ko))T −→ A(1)∨ ⊗ ker(σ) → 0

the coboundaries on classes in A(1)∨ ⊗ im(i) will lie in Ā∨ ⊗A(1)∨ ⊗ im(i), hence
do not contribute any terms of the form [a](m ⊗ 1). The classes 1, σξ̄41 and σξ̄22
are A∨-comodule primitive in ker(σ), hence lift to classes in H∗F (S3

+,THH(ko))T

that are A∨-comodule primitive modulo im(i), so also the coboundaries on (the
lifts of) A(1)∨⊗F2{1, σξ̄41 , σξ̄

2
2} do not contain any terms of the form in (3.4). This

proves our claim.
It remains to be determined where in (3.3) the (nonzero) unit images of ν, w

and v2 are detected. Recall that A(1)∗ THH(ko) = Λ(λ′1, λ2) ⊗ F2[µ] is equal
to F2{1, λ′1, λ2, µ} in stems ≤ 8. The composite map

A(1) −→ A(1) ⊗ F (S3
+,THH(ko))T

p−→ A(1) ⊗ THH(ko)

factors through A(1) ⊗ ko ≃ F2, so the images of ν, w and v2 in A(1)∗ THH(ko)
are all zero. (This was obvious for ν and v2.) Hence the nonzero images of ν, w
and v2 must all be detected by t-multiplies in the approximate fixed point spectral
sequence, and for degree reasons the only possible detecting classes are tλ′1, tλ2 and
tµ, respectively. □

Since MU∗A(1) is even, the motivic spectral sequence

(3.5) π∗A(1) =⇒ π∗A(1)

can be identified with the Novikov spectral sequence

NovE2 = Ext∗,∗MU∗ MU(MU∗,MU∗A(1)) =⇒ π∗A(1)

by [HRW22, Corollary 2.2.17]. The spectral sequence must collapse in stems ≤ 10,
for sparsity reasons, so these three classes detect ν, w and v2, respectively, see
Lemma 3.2.

Corollary 3.4. The classes h11, w and v2 in π∗A(1) map by the unit to classes in

A(1)∗ gr∗mot TC−(ko) and A(1)∗ gr∗mot F (S3
+,THH(ko))T

detected by tλ′1, tλ2 and tµ, respectively. Likewise, the images of h11 and w
in π∗V (2)⊗Cη are detected by tλ′1 and tλ2 in (V (2)⊗Cη)∗ gr∗mot F (S3

+,THH(ko))T.

The classes h11 and v2 in π∗V (1) map by the unit to classes in

V (1)∗ gr∗mot F (S3
+,THH(ko))T ,

and, consequently, V (1)∗ gr∗mot TC−(ko) , detected by tλ′1 and tµ, respectively. Like-
wise, the class h11 in π∗V (2) maps by the unit to a class in

V (2)∗ gr∗mot F (S3
+,THH(ko))T ,

and, consequently, V (2)∗ gr∗mot TC−(ko) , detected by tλ′1.
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Proof. The motivic spectral sequence

A(1)∗ gr∗mot F (S3
+,THH(ko))T = Λ(λ′1, λ2) ⊗ F2[µ]{1, t}

=⇒ A(1)∗F (S3
+,THH(ko))T

is concentrated in filtrations 0 ≤ ∗ ≤ 2 and integer weights, hence collapses, and
the result follows from Proposition 3.3. The claim with coefficients in V (2) ⊗ Cη
follows by passing to cofibers for multiplication by v2.

In the case of V (1), there is no analogue of Proposition 3.3 and we must work
directly with the Novikov spectral sequence. Since h11 and v2 in V (1) map to h11
and v2 in A(1), the claim with V (1) coefficients follows from the commuting square

V (1) //

��

A(1)

��

V (1) ⊗ F (S3
+,THH(ko))T // A(1) ⊗ F (S3

+,THH(ko))T

and the sparsity of the Novikov spectral sequences in this range (cf. Figure 3.2).
The claim with V (2) coefficients follows by passing to cofibers for multiplication

by v2. □

4. Prismatic cohomology

We consider the V (2)-homotopy T-Tate spectral sequence

(4.1) Ê2 = V (2)∗ gr∗mot THH(ko) [t±1] =⇒ V (2)∗ gr∗mot TP(ko)

with t in stem −2, and the V (2) ⊗ Cη-homotopy T-Tate spectral sequence

(4.2) Ê2 = (V (2) ⊗ Cη)∗ gr∗mot THH(ko) [t±1] =⇒ (V (2) ⊗ Cη)∗ gr∗mot TP(ko) .

They can be reindexed as cohomologically graded periodic t-Bockstein spectral
sequences, in which case Ê2r and d2r correspond to Er and dr. However, we shall
need to make a comparison with similar C2-Tate spectral sequences, for which our
indexing is more convenient.

Theorem 4.1 (Prismatic cohomology of ko mod (2, v1, v2)). The V (2)-homotopy T-
Tate spectral sequence (4.1) is an algebra spectral sequence with E2-term

Ê2 = Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

⊗ F2[t±1]

and differentials

d2(ε2) = tµ

d2(t−1) = η

d6(t−2) = tλ′1

d6(t−1λ′1) = t2(λ′1)2 = t2η2µ ,

leading to

Ê∞ = F2{1, t2λ′1, t
4(λ′1)2, λ′1} ⊗ F2[t±4] .

Hence there is a preferred isomorphism

V (2)∗ gr∗mot TP(ko) ∼= F2{1, η, η2, λ′1} ⊗ F2[t±4] ,
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where 1, η, η2, λ′1 and t±4 in bidegrees (0, 0), (1, 1), (2, 2), (5, 1) and (∓8, 0) are
detected by 1, t2λ′1, t

4(λ′1)2 = t4η2µ, λ′1 and t±4, respectively.

Theorem 4.2 (Prismatic cohomology of ko mod (2, η, v1, v2)). The V (2) ⊗ Cη-
homotopy T-Tate spectral sequence (4.2) is a module spectral sequence over (4.1),
with E2-term

Ê2 = Λ(ε2) ⊗ Λ(λ′1){1, λ2} ⊗ F2[µ] ⊗ F2[t±1]

and differentials

d2(ε2) = tµ

d6(t−1) = t2λ′1

d6(t−2) = tλ′1

d6(t−1λ2) = t2λ′1λ2

d6(t−2λ2) = tλ′1λ2

d8(t−3) = tλ2

d8(t−1λ′1) = t3λ′1λ2

leading to
Ê∞ = Λ(λ′1){1, λ2} ⊗ F2[t±4] .

Hence there is a preferred isomorphism

(V (2) ⊗ Cη)∗ gr∗mot TP(ko) ∼= Λ(λ′1){1, λ2} ⊗ F2[t±4] ,

where 1, λ′1, λ2, λ
′
1λ2 and t±4 in bidegrees (0, 0), (5, 1), (7, 1), (12, 2), and (∓8, 0)

are detected by the classes in the E∞-term with the same names.

The proofs of these theorems will occupy the remainder of this section. We
provide Figure 4.1 and Figure 4.2 for reference during the course of the proofs.

By Proposition 2.33, we can identify

Ê2 = Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 = c · η2µ, η3µ)

⊗ F2[t±1] .

where we have yet to determine the coefficient c ∈ F2.

Proposition 4.3. The spectral sequence (4.1) is multiplicative and it has differen-
tials

d2(η) = 0 , d2(t−1) = η , d2(ε1) = tµ , d2(µ) = tηµ , and d2(λ′1) = 0 .

Consequently, we can identify

Ê4 = F2{1, tλ′1, λ
′
1, η

2µ} ⊗ F2[t±2]

with η2µ = η3ε2. Moreover, the class η is an infinite cycle.

Proof. The first claim follows because V (1) ⊗ gr∗mot THH(ko) is an E∞ gr∗ev S-
algebra. Using the T-equivariant attaching maps of the standard T-CW complex
structure on S∞ = ET, we compute differentials

d2(t−1) = η and d2(η) = 0

as in [Hes96, Lemma 1.4.2].
We know d2(tλ′1) = 0 because tλ′1 detects ν by Corollary 3.4. Consequently, we

know that d2(λ′1) = 0 by the Leibniz rule and the fact that η · λ′1 = 0.
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Figure 4.1. T-Tate spectral sequence converging
to V (2)∗ gr∗mot TP(ko)

Since ε2 arises from a choice of null homotopy of v2 and by Corollary 3.4 the
class v2 is detected in V (1)-homotopy by tµ, there is a differential d2(ε2) = tµ.
Hence tµ is a d2-cycle, and the Leibniz rule implies that d2(µ) = tηµ . The last
statement follows because η is the image of η in π∗V (1). □

Proposition 4.4. The classes t4 and λ′1 are permanent cycles in the spectral se-
quence (4.1) for all integers k. Moreover, there is a differential

d6(t−2) = tλ′1

and there is a differential

d6(t−1λ′1) = ct2η2µ

for some c ∈ F2. The spectral sequence (4.1) collapses at Ê7 = Ê∞.

Proof. We know tλ′1 is an infinite cycle in the spectral sequence (4.1), because
it detects ν by Corollary 3.4. Let C(2) denote the complex 1-dimensional T-
representation where z ∈ T acts as multiplication by z2, so that S(C(2)) ∼= T/C2.
Then the T-equivariant cofiber sequence

S(C(2))+ −→ S0 e−→ SC(2)

induces a cofiber sequence

(Σ−C(2) THH(ko))hT −→ TC−(ko)
F−→ THH(ko)hC2

of TC−(ko)-modules, mapping to the cofiber sequence

(Σ−C(2) THH(ko))tT −→ TP(ko)
F−→ THH(ko)tC2

of TP(ko)-modules.
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Figure 4.2. T-Tate spectral sequence converging to (V (2) ⊗
Cη)∗ gr∗mot TP(ko)

We obtain a commutative square of spectral sequences converging to

V (2)∗ gr∗mot TC−(ko)
F //

can

��

V (2)∗ gr∗mot THH(ko)hC2

can

��

V (2)∗ gr∗mot TP(ko)
F // V (2)∗ gr∗mot THH(ko)tC2 ,

with E2-terms

V (2)∗ gr∗mot THH(ko) ⊗ F2[t] //

��

V (2)∗ gr∗mot THH(ko) ⊗ F2[t] ⊗ Λ(u1)

��

V (2)∗ gr∗mot THH(ko) ⊗ F2[t±1] // V (2)∗ gr∗mot THH(ko) ⊗ F2[t±1] ⊗ Λ(u1) .

In the two right-hand cases, u1 maps by the connecting homomorphism to ΣΣ−C(2)1
and has (stem, motivic filtration) bidegree |u1| = (−1,−1).

We know that ν maps to zero in V (2)∗ gr∗mot THH(ko), because the target is zero
in the relevant bidegree. Therefore, there must be a differential

(4.3) d6(t−2) = tλ′1 .
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in the V (1)-homotopy C2-Tate spectral sequence by a diagram chase in the diagram

S

��

TF(ko)
F //

Γ

��

THH(ko)C2
R //

Γ1

��

THH(ko)

Γ̂1=φhT
2

��

TC−(ko)
Fh

//

��

THH(ko)hC2
Rh=can //

Fh

��

THH(ko)tC2

F (S3
+,THH(ko))T

p
// THH(ko)

as in [AR02, Theorem 5.5]. There is no earlier C2-Tate differential of the form

dr(t1−rη6−r) = tλ′1

for 2 ≤ r ≤ 5, since η is an infinite cycle. Consequently, there are differentials

d6(t−2) = tλ′1 and d6(t−1λ′1) = t2(λ′1)2 = c · t2η2µ

in the V (2)-homotopy T-Tate spectral sequence, and the classes t±4 and λ′1 are
infinite cycles.

To complete the proof, we deduce d6(t−1λ′1) from d6(t−2) = tλ′1 and the Leibniz
rule. We educe that dr(t−4) = 0 and dr(λ′1) = 0 for all r ≥ 4 by the sparsity of the
E4-term determined in Proposition 4.3.

There are no further differentials because the target groups of all dr-differentials
for r ≥ 7 are trivial (cf. Figure 4.1). □

Remark 4.5. The coefficients denoted c ∈ F2 in Proposition 2.4, Corollary 2.35,
and Proposition 4.4 are all the same. We determine that c = 1 in Proposition 4.11.

Even with incomplete information about (λ′1)2 and d6(t−1λ′1), we can extract
the following computation.

Corollary 4.6. We identify

V (2)n gr∗mot TP(ko) =



F2{1} if n = 0 ,

F2{t2λ′1} if n = 1 ,

F2{t4η2µ} if n = 2 ,

0 if n = 3, 4 ,

F2{λ′1} if n = 5 .

Moreover, we have

V (2)n gr∗mot TP(ko) = 0 if n = 6, 7 ,

if c = 1 and

V (2)n gr∗mot TP(ko) =

{
F2{η2µ} if n = 6 ,

F2{t−1λ′1} if n = 7 ,

if c = 0. These repeat 8-periodically, via multiplication by t±4.
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We now move towards computing the spectral sequence (4.2). By Corollary 2.30,
we can identify the E2-term of (4.2):

Ê2 = Λ(ε2) ⊗ Λ(λ′1, λ2) ⊗ F2[µ] ⊗ F2[t±1] .

Remark 4.7. We emphasize that the differentials in the spectral sequence (4.2) do
not satisfy the Leibniz rule. This is a consequence of Remark 2.29.

Proposition 4.8. The spectral sequence (4.2) is a module over the spectral sequence
(4.1). There are differentials

d2(ε2) = tµ

d6(t−2) = tλ′1

d8(t−3) = tλ2

in the spectral sequence (4.2) and multiplication by t±4 and λ′1 commutes with all
differentials in this spectral sequence.

Proof. The unit map V (2) → V (2) ⊗ Cη is a map of V (2)-modules, so (4.2) is a
module spectral sequence over (4.1), and the map from (4.1) to (4.2) respects this
module structure. This implies that multiplication by the infinite cycles t±4 and λ′1
will commute with each differential in (4.2).

For the differential d2(ε2) = tµ we observe that ε2 exhibits a null-homotopy
of v2, and v2 is detected by tµ. It follows that

Ê4 = Λ(λ′1, λ2) ⊗ F2[t±1] .

We know ν is detected by tλ′1 and w is detected by tλ2, so these classes are
also detected in (V (2) ⊗ Cη)∗ gr∗mot THH(ko)hC2 . However, we know that ν and w
are trivial in (V (2) ⊗ Cη)∗ gr∗mot THH(ko) so this means that tλ′1 and tλ2 map
trivially to (V (2) ⊗ Cη)∗ gr∗mot THH(ko)tC2 . This means that they must be hit by
differentials in the V (2)⊗Cη-homotopy C2-Tate spectral sequence. By examination
of bidegrees, the only possibility is the differentials d6(t−2) = tλ′1 and d8(t−3) = tλ2.
Since the map of spectral sequences converging to the map

(V (2) ⊗ Cη)∗ gr∗mot TP(ko) → (V (2) ⊗ Cη)∗ gr∗mot THH(ko)tC2

is injective in the relevant bidegrees, we also have the stated differentials in the
spectral sequence (4.2). □

Proposition 4.9. There are differentials

d6(t−1) = t2λ′1

d6(t−1λ2) = t2λ′1λ2

d6(t−2λ2) = tλ′1λ2

d6(λ2) = 0

in the spectral sequence (4.2).

Proof. Since t−3 survives to the E8-term in the spectral sequence (4.1) by Propo-
sition 4.8, we know d6(t−3) = 0 in the spectral sequence (4.2). By Proposi-
tion 4.4 we have d6(t−2) = tλ′1 in the spectral sequence (4.1). Using the mod-
ule structure of the spectral sequence (4.2) over the spectral sequence (4.1), we
have d6(t−5) = d6(t−2 · t−3) = tλ′1 · t−3 + t−2 · 0 = t−2λ′1 and d6(t−1) = t2λ′1.
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Since tλ2 is a d8-boundary by Proposition 4.8 it must be a d6-cycle, which implies
that d6(t−1λ2) = d6(t−2 · tλ2) = tλ′1 · tλ2 + t−2 · 0 = t2λ′1λ2.

The fact that tλ2 is a d8-boundary also implies that λ′1 · tλ2 = tλ′1λ2 must be a
dr-boundary for some r ≤ 8. Since t−3λ′1 is a d6-boundary, it cannot be the source
of this dr-differential, so the only remaining possibility is that d6(t−2λ2) = tλ′1λ2.
Using the module structure over the spectral sequence (4.1), we also conclude that

d6(λ2) = d6(t2 · t−2λ2) = t5λ′1 · t−2λ2 + t2 · tλ′1λ2 = 0 .

□

Corollary 4.10. There are isomorphisms

(V (2) ⊗ Cη)n gr∗mot TP(ko) ∼=


F2{1} if n = 0 ,

0 if n ∈ {1, 2, 3} ,
F2{t4λ′1λ2} if n = 4 ,

F2{λ′1} if n = 5 ,

and these repeat 8-periodically, via multiplication by t±4.

Proof. This follows directly from Proposition 4.8 and Proposition 4.9. □

Proposition 4.11. We have the following results:

(a) The multiplicative relation (λ′1)2 = η2µ holds in the abutment V (1)∗ gr∗mot THH(ko)
of the η-Bockstein spectral sequence (2.2).

(b) There is a nonzero differential

d6(t−1λ′1) = t2η2µ

in the spectral sequence (4.1). Hence

V (2)n gr∗mot TP(ko) = 0

for n ∈ {6, 7}.
(c) The unit images of η and η2 are detected by t2λ′1 and t4η2µ, respectively,

in the spectral sequence (4.1).
(d) There is a nonzero differential

d8(t−1λ′1) = t3λ′1λ2

in the V (2) ⊗ Cη-homotopy T-Tate spectral sequence (4.2). Hence

(V (2) ⊗ Cη)n gr∗mot TP(ko) =

{
0 if n = 6,

F2{λ2} if n = 7,

and these repeat 8-periodically, via multiplication by t±4.

Proof. The V (1)-module cofiber sequence

Σ1,1V (2)
η−→ V (2)

i−→ V (2) ⊗ Cη
j−→ Σ2,0V (2)

induces a long exact sequence

· · · −→ (V (2) ⊗ Cη)n+2 gr∗+1
mot TP(ko)

j−→ V (2)n gr∗mot TP(ko)
η−→

η−→ V (2)n+1 gr∗+1
mot TP(ko)

i−→ (V (2) ⊗ Cη)n+1 gr∗+1
mot TP(ko) −→ . . . .

By case n = 0 of Corollary 4.6, the cases n ∈ {0, 1} of Corollary 4.10, and the fact
that i(1) = 1, we deduce from exactness that V (2)n gr∗mot TP(ko) = 0 for n ≡ −1
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mod 8. Referring back to Proposition 4.4, this implies that t−1λ′1 in stem 7 =
−1 + 8 cannot survive to the E∞-term of (4.1), so the differential d6(t−1λ′1) =
t2(λ′1)2 = c · t2η2µ must be nonzero. Hence c = 1, which proves that (λ′1)2 = η2µ
and d6(t−1λ′1) = t2η2µ. This means that the E∞-term of (4.1), and its abutment,
must be trivial in stems 6 and 7.

By the cases n ∈ {1, 2, 3} of Corollary 4.10, and exactness, it also follows that η
and η2 generate V (2)n gr∗mot TP(ko) ∼= F2 for n = 1 and 2, hence are detected by
the only classes in stems 1 and 2, namely t2λ′1 and t4η2µ, in the E∞-term of (4.1).

By (4.11) and exactness, it follows that (V (2)⊗Cη)n gr∗mot TP(ko) is 0 for n = 6
and F2 for n = 7. Hence t3λ′1λ2 in stem 6 cannot survive to the E∞-term of (4.2),
and since d6(λ2) = 0 by Proposition 4.9 the only possible source of a differential
killing it is t−1λ′1. Hence d8(t−1λ′1) = t3λ′1λ2, and the lone surviving class in stem 7
of the E∞-term of (4.2) is λ2. Note that we have η(1) = t2λ′1 and η(t2λ′1) = t4η2µ,
we have i(1) = 1 and i(λ′1) = λ′1, and we have j(t4λ′1λ2) = t4η2µ and j(λ2) =
λ′1. □

Corollary 4.12. We have a preferred isomorphism of bigraded F2-algebras

V (1)∗ gr∗mot THH(ko) ∼=
F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

.

We can now prove Theorem 4.1 and Theorem 4.2.

Proof of Theorem 4.1. By Corollary 4.12, the spectral sequence (4.1) has E2-term:

(4.4) Ê2 = F2[t±1] ⊗ F2[η, λ′1, µ]/(ηλ′1, (λ
′
1)2 = η2µ) ⊗ Λ(ε2) .

The differentials follow from Propositions 4.3, 4.4, and 4.11 leaving

Ê4 = Ê6 = F2{1, tλ′1, λ
′
1, (λ

′
1)2} ⊗ F2[t±2]

and

Ê∞ = F2{1, t2λ′1, t
4(λ′1)2, λ′1} ⊗ F2[t±4] ,

with 1, η, η2, λ′1 and t±4 being detected by 1, t2λ′1, t4(λ′1)2, λ′1 and t±4 respectively
in the E∞-term. □

Proof of Theorem 4.2. By Corollary 2.30, the spectral sequence (4.2) has E2-term:

(4.5) Ê2 = Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

⊗ F2[t±1] .

The differentials follow from Propositions 4.8, 4.9,and 4.11 leaving

Ê4 = Λ(λ′1){1, λ2} ⊗ F2[t±1] and

Ê∞ = Λ(λ′1){1, λ2} ⊗ F2[t±4] .

□

5. Syntomic cohomology

We shall now calculate the syntomic cohomology π∗ gr∗mot TC(ko) of ko (cf. Def-
inition 2.15). We first carry out these computations in V (2)- and V (2) ⊗ Cη-
homotopy, and then use v2-Bockstein spectral sequences to lift the results to V (1)-
and A(1)-homotopy.
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By restricting the T-Tate spectral sequences (4.1) and (4.2) to the second quad-
rant, we obtain the V (2)-homotopy T-homotopy fixed point spectral sequence

(5.1)

E2 = V (2)∗ gr∗mot THH(ko) [t]

= Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

⊗ F2[t]

=⇒ V (2)∗ gr∗mot TC−(ko)

and the V (2) ⊗ Cη-homotopy T-homotopy fixed point spectral sequence

(5.2)

E2 = (V (2) ⊗ Cη)∗ gr∗mot THH(ko) [t]

= Λ(ε2) ⊗ Λ(λ′1){1, λ2} ⊗ F2[µ] ⊗ F2[t]

=⇒ (V (2) ⊗ Cη)∗ gr∗mot TC−(ko) .

The former is an algebra spectral sequence, and the latter is a module spectral
sequence over it. They can be reindexed as cohomologically graded t-Bockstein
spectral sequences, but the current indexing is the one inherited from the homo-
logically graded C2- and T-Tate spectral sequences.

Proposition 5.1. There is an isomorphism

V (2)∗ gr∗mot TC−(ko) ∼= F2[t4] ⊗ F2{1, t2λ′1, λ
′
1, (λ

′
1)2}

⊕ F2{tλ′1, (tλ′1)2}
⊕ F2[η]{η, η4ε2}
⊕ F2[µ̄]{µ̄, ηµ̄, η2µ̄, λ′1µ}

with µ̄ = µ+ ηε2, where (λ′1)2 = η2µ ̸= η2µ̄, η · η2µ̄ = η4ε2 and µ̄2 = µ2.

Proof. The map of spectral sequences induced by can: TC−(ko) → TP(ko) is given
at the E2-terms by inverting t, so the differentials in (4.1) from Theorem 4.1 lift to
differentials

d2(ε2) = tµ

d2(t) = t2η

d6(t2) = t5λ′1

d6(t3λ′1) = t6(λ′1)2

in (5.1). Some bookkeeping shows that

E4 = F2[t2] ⊗ F2{1, tλ′1, λ
′
1, (λ

′
1)2}

⊕ F2[η]{η, η4ε2}
⊕ F2[µ̄]{µ̄, ηµ̄, η2µ̄, λ′1µ}

with µ̄ = µ+ ηε2 and η · η2µ̄ = η4ε2, and

E8 = E∞ = F2[t4] ⊗ F2{1, t2λ′1, λ
′
1, (λ

′
1)2}

⊕ F2{tλ′1, (tλ′1)2}
⊕ F2[η]{η, η4ε2}
⊕ F2[µ̄]{µ̄, ηµ̄, η2µ̄, λ′1µ} .

□
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Figure 5.1. T-homotopy fixed point spectral sequence converg-
ing to V (2)∗ gr∗mot TC−(ko)

For a pictorial representation of the spectral sequence (5.1) see Figure 5.1.
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Proposition 5.2. There is an isomorphism

(V (2) ⊗ Cη)∗ gr∗mot TC−(ko) ∼=
F2[t4, µ]

(t4µ)
⊗ Λ(λ′1){1, λ2}

⊕ F2{t2λ′1, tλ′1, tλ2, t3λ′1λ2, t2λ′1λ2, tλ′1λ2} .

Proof. The differentials in (4.2) from Theorem 4.2 lift over the canonical map to
differentials d2(ε2) = tµ (repeating t-periodically) and

d6(t2) = t5λ′1

d6(t3) = t6λ′1

d6(t2λ2) = t5λ′1λ2

d6(t3λ2) = t6λ′1λ2

d8(t) = t5λ2

d8(t3λ′1) = t7λ′1λ2

(repeating t4-periodically) in (5.2). It follows that E4 = F2[t, µ]/(tµ)⊗Λ(λ′1){1, λ2}
and

E10 = E∞ =
F2[t4, µ]

(t4µ)
⊗ Λ(λ′1){1, λ2} ⊕ F2{t2λ′1, tλ′1, tλ2, t3λ′1λ2, t2λ′1λ2, tλ′1λ2} .

See also Figure 5.2. □

As discussed in the proof of Proposition 4.4, there is a V (2)-homotopy C2-Tate
spectral sequence

(5.3)

Ê2 = V (2)∗ gr∗mot THH(ko) ⊗ Λ(h) ⊗ F2[t±1]

= Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

⊗ Λ(h) ⊗ F2[t±1]

=⇒ V (2)∗ gr∗mot THH(ko)tC2 .

Similarly, we have a V (2) ⊗ Cη-homotopy C2-Tate spectral sequence

(5.4)

Ê2 = (V (2) ⊗ Cη) ∗ gr∗mot THH(ko) ⊗ Λ(h) ⊗ F2[t±1]

= Λ(ε2) ⊗ Λ(λ′1){1, λ2} ⊗ F2[µ] ⊗ Λ(h) ⊗ F2[t±1]

=⇒ (V (2) ⊗ Cη)∗ gr∗mot THH(ko)tC2 .

There is a map F of algebra spectral sequences from (4.1) to (5.3), and (5.4) is a
module spectral sequence over (5.3).

Proposition 5.3. There is an isomorphism

V (2)∗ gr∗mot THH(ko)tC2 ∼= F2{1, η, η2, λ′1} ⊗ Λ(h) ⊗ F2[t±4]

where η, η2 and λ′1 are detected by t2λ′1, (t2λ′1)2 and λ′1, respectively. Under this
correspondence, the cyclotomic structure map

φ2 : V (2)∗ gr∗mot THH(ko) −→ V (2)∗ gr∗mot THH(ko)tC2

is given by ε2 7→ ht−4, η 7→ η, λ′1 7→ λ′1 and µ 7→ t−4, hence can be identified with
the localization homomorphism

V (2)∗ gr∗mot THH(ko) −→ µ−1V (2)∗ gr∗mot THH(ko)
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Figure 5.2. T-homotopy fixed point spectral sequence converging
to (V (2) ⊗ Cη)∗ gr∗mot TC−(ko)
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that inverts µ.

Proof. Since φ2 is a ring map, we know that v2 acts trivially on

V (1)∗ gr∗mot THH(ko)tC2 .

A choice of null-homotopy compatible with this map corresponds to the class u1t
−4.

Consequently, dr(h) = 0 for r ≤ 8 and d9(ht−4) = tµ in the V (1)-homotopy C2-Tate
spectral sequence. When combined with the differentials in (4.1) from Theorem 4.1,
this shows that

Ê4 = F2{1, tλ′1, λ
′
1, (λ

′
1)2} ⊗ Λ(h) ⊗ F2[t±2]

and

Ê∞ = F2{1, t2λ′1, (t
2λ′1)2, λ′1} ⊗ Λ(h) ⊗ F2[t±4] .

The detection results then follow from those in Theorem 4.1.
It is clear that φ2(η) = η. To evaluate φ2 on ε2 and µ we use the commutative

diagram

V (2)∗ gr∗mot THH(ko)
φ2 //

c

��

V (2)∗ gr∗mot THH(ko)tC2

c

��

V (2)∗ gr∗mot THH(ku)
φ2 // V (2)∗ gr∗mot THH(ku)tC2 .

The complexification map

V (2)∗ gr∗mot THH(ko) ∼= Λ(ε2) ⊗ F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

→ Λ(ε2) ⊗ Λ(λ1, λ2) ⊗ F2[µ] ∼= V (2)∗ gr∗mot THH(ku)

is given by ε2 7→ ε2, η 7→ 0, λ′1 7→ 0 and µ 7→ µ. To see this, note that as in the
proof of Lemma 2.18 the map

V (2) ⊗ Cη∗ gr∗mot THH(ko) −→ V (2) ⊗ Cη∗ gr∗mot THH(ku)

is given by ε2 7→ ε2, λ2 7→ λ2, λ′1 7→ 0 and µ 7→ µ. The claim then follows by the
map of η-Bockstein spectral sequences, where the claim that η maps to zero follows
for bidegree reasons.

It follows from [HRW22, Theorem 6.1.2] for p = 2 that in the ku-case the cyclo-
tomic structure map

V (2)∗ gr∗mot THH(ku) ∼= Λ(ε2) ⊗ Λ(λ1, λ2) ⊗ F2[µ]

→ Λ(λ1, λ2) ⊗ Λ(h) ⊗ F2[t±4] ∼= V (2)∗ gr∗mot THH(ku)tC2

satisfies ε2 7→ ht−4, λ1 7→ λ1, λ2 7→ λ2 and µ 7→ t−4. Where the claim about ϵ2
follows because ht−4 is the only non-trivial class in the correct bidegree to be the
image of ε2 and we know that we can choose a null homotopy of v2 compatibly
with the cyclotomic structure map so that ε2 maps non-trivially.

Hence the cyclotomic structure map in the ko-case must likewise map ε2 to ht−4

and µ to t−4. Lastly, the relation (λ′1)2 = η2µ shows that φ2(λ′1)2 must be detected
by (t2λ′1)2 · t−4 = (λ′1)2, which can only happen if φ2(λ′1) is (detected by) λ′1.

The claim about localization then amounts to the isomorphism

µ−1 F2[η, λ′1, µ]

(ηλ′1, (λ
′
1)2 + η2µ)

∼= F2{1, η, η2, λ′1} ⊗ F2[µ±1] .
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□

Proposition 5.4. There is an isomorphism

(V (2) ⊗ Cη)∗ gr∗mot THH(ko)tC2 ∼= Λ(λ′1){1, λ2} ⊗ Λ(h) ⊗ F2[t±4]

where 1, λ′1, λ2 and λ′1λ2 are detected by classes with the same names. Under this
correspondence, the cyclotomic structure map

φ2 : (V (2) ⊗ Cη)∗ gr∗mot THH(ko) −→ (V (2) ⊗ Cη)∗ gr∗mot THH(ko)tC2

is given by ε2 7→ ht−4, λ′1 7→ λ′1, λ2 7→ λ2 and µ 7→ t−4, hence can be identified
with the localization homomorphism

(V (2) ⊗ Cη)∗ gr∗mot THH(ko) −→ µ−1(V (2) ⊗ Cη)∗ gr∗mot THH(ko)

that inverts µ.

Proof. As before, dr(h) = 0 for r ≤ 8. When combined with the differentials in (4.2)
from Theorem 4.2, this shows that

Ê4 = Λ(λ′1){1, λ2} ⊗ Λ(h) ⊗ F2[t±1]

and

Ê∞ = Λ(λ′1){1, λ2} ⊗ Λ(h) ⊗ F2[t±4] .

The detection results then follow from those in Theorem 4.2.
The evaluation of φ2 on ε2, λ′1 and µ follows from that in Proposition 5.3 by

comparison along V (2) → V (2)⊗Cη, while that of φ2 on λ2 follows by comparison
along V (2) ⊗ Cη → Σ2V (2), which maps λ2 to Σ2,0λ′1. □

Remark 5.5. The computations in Theorem 4.1, Theorem 4.2, Proposition 5.3, and
Proposition 5.4 are consistent with the isomorphisms

V (2)∗ gr∗mot TP(ko) ∼=V (1)∗ gr∗mot THH(ko)tC2 , and

(V (2) ⊗ Cη)∗ gr∗mot TP(ko) ∼=A(1) ⊗∗ gr∗mot THH(ko)tC2

in analogy with [HRW22, Theorem 6.2.1].

Theorem 5.6 (Syntomic cohomology of ko mod (2, v1, v2)). We have an algebra
isomorphism

V (2)∗ gr∗mot TC(ko) ∼= F2[η]{1, η4ϵ2} ⊕ F2{∂, ν, λ′1, ∂λ′1, ν2, (λ′1)2} ,

of F2[η]-modules with generators in bidegrees ∥∂∥ = (−1, 1), ∥η∥ = (1, 1), ∥ν∥ =
(3, 1), ∥λ′1∥ = (5, 1) and ∥η4ϵ2∥ = (11, 3). See also Figure 5.3.

Proof. To calculate the effect in V (2)-homotopy of can: TC−(ko) → TP(ko),
we use the map of spectral sequences from (5.1) to (4.1), described in Proposi-
tion 5.1 and Theorem 4.1, given at E2 by inverting t. To calculate the effect
of φhT

2 : TC−(ko) → (THH(ko)tC2)hT we appeal to Proposition 5.3 to see that
there is a T-homotopy fixed point spectral sequence

(5.5)

µ−1E2 = V (2)∗ gr∗mot THH(ko)tC2 [t]

= Λ(ϵ2) ⊗ F2{1, η, η2, λ′1} ⊗ F2[µ±1] ⊗ F2[t]

=⇒ V (2)∗ gr∗mot(THH(ko)tC2)hT ,



ALGEBRAIC K-THEORY OF REAL TOPOLOGICAL K-THEORY 37

and φhT
2 is calculated by the map of spectral sequences from (5.1) to (5.5) that is

given at E2 by inverting µ. The differentials

d2(ϵ2) = tµ and d2(µ) = tηµ

carry over from the proof of Proposition 5.1, leaving

µ−1E4 = µ−1E∞ = F2{1, η, η2, λ′1} ⊗ F2[µ̄±1]

concentrated on the vertical axis. As before, µ̄ = µ + ηϵ2. The V (2)-homotopy
isomorphism

F2{1, η, η2, λ′1} ⊗ F2[t±4]
∼=−→ F2{1, η, η2, λ′1} ⊗ F2[µ̄±1]

induced by the equivalence G : TP(ko) → (THH(ko)tC2)hT can then only be given
by η 7→ η, λ′1 7→ λ′1 and t±4 7→ µ̄∓1. Note that we know that G : TP(ko) →
(THH(ko)tC2)hT is an equivalence a priori by [BBLNR14, Proposition 3.8] (cf. [NS18,
Lemma II.4.2]).

We claim that the map can−φ induces isomorphisms

F2[t4]{t4} ⊗ F2{1, t2λ′1, (t
2λ′1)2, λ′1}

∼=−→ F2[µ̄−1]{µ̄−1} ⊗ F2{1, η, η2, λ′1)(5.6)

F2[µ̄]{µ̄} ⊗ F2{1, η, η2, λ′1}
∼=−→ F2[µ̄]{µ̄} ⊗ F2{1, η, η2, λ′1}(5.7)

F2{t2λ′1, (t2λ′1)2}
∼=−→ F2{η, η2}(5.8)

and the zero homomorphism

F2[η]{1, η4ϵ2} ⊕ F2{tλ′1, λ′1, (tλ′1)2, (λ′1)2} 0−→ F2{1, λ′1} .

The isomorphism (5.6) occurs in horizontal degrees (= filtrations) where invert-
ing t (or t4) is an isomorphism, and φhT

2 is zero. The isomorphism (5.7) occurs in
vertical degrees where inverting µ (or µ̄) is an isomorphism, and can is zero. The
isomorphism (5.8) uses that η and η2 in (5.1) are detected by t2λ′1 and (t2λ′1)2

in (4.1), but map to zero in (5.5). The homomorphisms can and φhT
2 agree on

classes coming from V (2)∗ gr∗mot S, such as 1, η and ν, hence their difference is zero
on F2[η]{1} and F2{tλ′1, (tλ′1)2}. Both can(λ′1) and φhT

2 (λ′1) are detected by λ′1,
hence agree in V (2)-homotopy since there are no other classes in the same total
degree, which implies that can−φhT

2 is zero on λ′1 and its square. Both can and φhT
2

take η4ϵ2 = η3µ̄ to zero, so their difference is zero on F2[η]{η4ϵ2}.
Hence we have an isomorphism

V (2)∗ gr∗mot TC(ko) ∼= F2[η]{1, η4ϵ2} ⊕ F2{∂, ∂λ′1, tλ′1, λ′1, (tλ′1)2, (λ′1)2} .

The classes tλ′1 and (tλ′1)2 detect ν and ν2, respectively. The algebra structure is
evident from the notation and sparsity, except for the fact that η · λ′1 = 0, which
follows from Theorem 5.7 below. □

Next we compute the v2-Bockstein spectral sequence

V (2)∗ gr∗mot TC(ko)[v2] =⇒ V (1)∗ gr∗mot TC(ko) .(5.9)

Proposition 5.7. In the spectral sequence (5.9) there is a d1-differential

d1(η4ε2) = v2η
4
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Figure 5.3. E1 =⇒ V (1)∗ gr∗mot TC(ko)

together with its various η- and v2-power multiples. This produces an algebra iso-
morphism

V (1)∗ gr∗mot TC(ko) ∼=
Λ(∂) ⊗ F2[η, ν, λ′1, v2]

(∂η, ∂ν, ην, ηλ′1, νλ
′
1, ν

3 = v2η3 = ∂(λ′1)2, (λ′1)3 = d · v22η3)
,

where d ∈ F2 and we have not resolved this indeterminacy.

Proof. The unit map S → TC(ko) induces a map of v2-Bockstein spectral sequences,
from

(5.10) ExtBP∗ BP(BP∗,BP∗ /I3) [v2] =⇒ ExtBP∗ BP(BP∗,BP∗ /I2)

shown in Figure 3.2 to (5.9) shown in Figure 5.3. Since v22h
4
10 = 0 in the abut-

ment of the former, we must have that v22η
4 is a boundary in the latter. Con-

sidering bidegrees and v2-powers, this can only happen if d1(v2η
4ϵ2) = v22η

4.
Hence d1(vi2η

jϵ2) = vi+1
2 ηj for all i ≥ 0 and j ≥ 4, as claimed. There is no

room for other v2-Bockstein differentials, so E2 = E∞ in (5.9).
The relation v2h

3
11 = v22h

3
10 in the abutment of (5.10) also implies that v2ν

3 =
v22η

3 in the abutment of (5.9). Hence we have hidden ν-extensions from vi2ν
2

to vi+1
2 η3 for all i ≥ 0. The products ∂η and ηλ′1 lie in trivial groups. The well-

known relation ην = 0 implies the vanishing of ∂ν and νλ′1. We postpone the proof
that ∂(λ′1)2 is equal to ν3 = v2η

3 to Remark 5.10. We have not determined whether
(λ′1)3 ∈ F2{v22η3} is zero or not □

Proposition 5.8. We have an isomorphism

A(1)∗ gr∗mot TC(ko) ∼= F2[v2] ⊗(
Λ(∂){1, λ′1, λ2, λ

′
1λ2} ⊕ F2{t2λ′1, tλ′1, tλ2, t3λ′1λ2, t2λ′1λ2, tλ′1λ2}

)
of finitely generated free F2[v2]-modules, where ∥v2∥ = (6, 0), ∥∂∥ = (−1, 1), ∥λ′1∥ =
(5, 1), ∥λ2∥ = (7, 1) and ∥t∥ = (−2, 0). See also Figure 5.4.

Proof. This proof is similar to that of Theorem 5.6, to which we refer for a more
elaborate review of some of the notations. To calculate the effect of can in V (2)⊗Cη-
homotopy we use the map of spectral sequences from (5.2) to (4.2), described in
Proposition 5.2 and Theorem 4.2, given at E2 by inverting t. To calculate the effect
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Figure 5.4. F2[v2]-basis for A(1)∗ gr∗mot TC(ko)

of φhT
2 we use Proposition 5.4 to see that there is a T-homotopy fixed point spectral

sequence

(5.11)

µ−1E2 = (V (2) ⊗ Cη)∗ gr∗mot THH(ko)tC2 [t]

= Λ(ϵ2) ⊗ Λ(λ′1){1, λ2} ⊗ F2[µ±1] ⊗ F2[t]

=⇒ (V (2) ⊗ Cη)∗ gr∗mot(THH(ko)tC2)hT ,

and φhT
2 is given by the map of spectral sequences from (5.2) to (5.11) that is given

at E2 by inverting µ. The differential d2(ϵ2) = tµ carries over from the proof of
Proposition 5.2, leaving

µ−1E4 = µ−1E∞ = Λ(λ′1){1, λ2} ⊗ F2[µ±1]

concentrated on the vertical axis. The V (2) ⊗ Cη-homotopy isomorphism

Λ(λ′1){1, λ2) ⊗ F2[t±4]
∼=−→ Λ(λ′1){1, λ2) ⊗ F2[µ±1]

induced by the equivalence G must thus be given by λ′1 7→ λ′1, λ2 7→ λ2 and t±4 7→
µ∓1.

The map can−φhT
2 induces isomorphisms

F2[t4]{t4} ⊗ Λ(λ′1){1, λ2}
∼=−→ F2[µ−1]{µ−1} ⊗ Λ(λ′1){1, λ2}

F2[µ]{µ} ⊗ Λ(λ′1){1, λ2}
∼=−→ F2[µ]{µ} ⊗ Λ(λ′1){1, λ2}

and the zero homomorphism

Λ(λ′1){1, λ2} ⊕ F2{t2λ′1, tλ′1, tλ2, t3λ′1λ2, t2λ′1λ2, tλ′1λ2}
0→ Λ(λ′1){1, λ2} ,

by the same arguments as in the proof of Theorem 5.6. Hence we have an additive
isomorphism

(V (2) ⊗ Cη)∗ gr∗mot TC(ko) ∼= Λ(∂){1, λ′1, λ2, λ
′
1λ2}

⊕ F2{t2λ′1, tλ′1, tλ2, t3λ′1λ2, t2λ′1λ2, tλ′1λ2} ,

There is no room for differentials in the v2-Bockstein spectral sequence

E1 = (V (2) ⊗ Cη)∗ gr∗mot TC(ko) [v2] =⇒ A(1)∗ gr∗mot TC(ko) .

□
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Lemma 5.9. The Hurewicz images in A(1)∗ gr∗mot TC(ko) of the classes 1, h11, w,
h211 = h10w, h10w and h211w in π∗A(1) are detected by 1, tλ′1, tλ2, t

3λ′1λ2 mod ∂λ2,
t2λ′1λ2 and ∂λ′1λ2, respectively. The product h10λ

′
1 is detected by tλ′1λ2.

Proof. The cofiber sequence

Σ1,1V (1)
η−→ V (1)

i−→ A(1)
j−→ Σ2,0V (1)

induces a long exact sequence

. . .
η−→ V (1)∗ gr∗mot TC(ko)

i−→ A(1)∗ gr∗mot TC(ko)

j−→ Σ2,0V (1)∗ gr∗mot TC(ko)
η−→ . . .

of F2[v2]-modules, see Figures 5.3 and 5.4. Having chosen λ′1 ∈ V (1)∗ gr∗mot TC(ko)
we choose λ′1, λ2 ∈ A(1)∗ gr∗mot TC(ko) so that i(λ′1) = λ′1 and j(λ2) = Σ2,0λ′1. By
exactness, i is then given by

1 7−→ 1

∂ 7−→ ∂

ν 7−→ tλ′1

λ′1 7−→ λ′1

∂λ′1 7−→ ∂λ′1

ν2 7−→ t3λ′1λ2 mod ∂λ2

(λ′1)2 7−→ tλ′1λ2 mod v2∂λ
′
1 ,

while j is given by

t2λ′1 7−→ Σ2,0∂

tλ2 7−→ Σ2,0ν

λ2 7−→ Σ2,0λ′1

∂λ2 7−→ Σ2,0∂λ′1

t2λ′1λ2 7−→ Σ2,0ν2

λ′1λ2 7−→ Σ2,0(λ′1)2

∂λ′1λ2 7−→ Σ2,0ν3 .

The formulas for i imply the claims for 1, ν = h11 and ν2 = h211. We know from
Corollary 3.4 that w is detected by tλ2, so the formulas for j imply the claims
for νw = h11w and ν2w = h211w.

The V (1)-module action on A(1) shows that ν ·λ2 = h11λ2 is detected by tλ′1 ·λ2,
since the latter product is nonzero in A(1)∗ gr∗mot TC−(ko). □

Remark 5.10. We can now complete the unfinished business in the proof of Theo-
rem 5.7. Since ν2w is detected by ∂λ′1λ2, and j maps w to Σ2,0ν and λ2 to Σ2,0λ′1,
it follows that Σ2,0ν3 is detected by Σ2,0∂(λ′1)2, so ∂(λ′1)2 is equal to ν3 = v2η

3

in V (1)∗ gr∗mot TC(ko).

Lemma 5.11. Let ς ∈ A(1)∗ gr∗mot TC(ko) be the class in bidegree (1, 1) detected
by t2λ′1. Then νς is the class in bidegree (4, 2) detected by ∂λ′1.
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Figure 5.5. F2[v2]-basis for A(1)∗ gr∗mot TC(ko), with lines of
slope −1, 1 and 1/3 indicating multiplication by ∂, η and ν, re-
spectively.

Proof. By [BHM93, Theorem 5.17], [Rog02, Cor. 1.21] there is a 2-complete equiv-
alence TC(S) ≃ S ∨ ΣCP∞

−1, and by [BM94, Proposition 10.9], [Dun97, Main The-
orem] the 3-connected map S → ko induces a 4-connected map TC(S) → TC(ko).
For each i ≥ −1 let Σβi ∈ H2i+1(ΣCP∞

−1) denote the generator. The Atiyah–
Hirzebruch spectral sequence

E2 = H∗(ΣCP∞
−1;π∗A(1)) =⇒ A(1)∗(ΣCP∞

−1)

has nonzero differentials d4(Σβ1) = νΣβ−1 and d6(Σβ2) = wΣβ−1. This follows
from [Mos68, Proposition 5.2, Proposition 5.4], using that w ∈ ⟨ν, η, ι⟩ in π∗A(1),
where ι is the class of S → A(1). Hence

A(1)∗ TC(S) ∼= F2{Σβ−1, ι,Σβ0, νι, νΣβ0}

in stems −1 ≤ ∗ ≤ 4, mapping isomorphically to

A(1)∗ TC(ko) ∼= F2{∂, 1, t2λ′1, tλ′1, ∂λ′1}

in this range. It follows that Σβ0 maps to the class ς detected by t2λ′1 and νΣβ0
to the class detected by ∂λ′1, which must therefore be equal to νς. □

Theorem 5.12 (Syntomic cohomology of ko mod (2, η, v1)). We have an isomor-
phism

A(1)∗ gr∗mot TC(ko) ∼= F2[v2] ⊗
(
F2{1, ∂, ν, w, ν2 = ηw, νw, λ′1λ2, ν

2w = ∂λ′1λ2}

⊕ F2{ς, λ′1, νς = ∂λ′1} ⊕ F2{λ2, ∂λ2, νλ2}
)

of V (1)∗ gr∗mot TC(ko)-modules, where the (stem, motivic filtration) bidegrees and
detecting classes of the F2[v2]-module generators are as in Table 5.1. See also
Figure 5.5.

Proof. This summarizes the results of Proposition 5.8 and Lemmas 5.9 and 5.11.
The lift of t3λ′1λ2 over π : TC(ko) → TC−(ko) is only defined modulo ∂λ2 in the
image under ∂ : Σ−1 TP(ko) → TC(ko), but the image of ν2 specifies one such
choice of lift. □
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generator bidegree detecting class
1 (0, 0) 1
∂ (−1, 1) ∂
ς (1, 1) t2λ′1
ν (3, 1) tλ′1
w (5, 1) tλ2
λ′1 (5, 1) λ′1
λ2 (7, 1) λ2
νς (4, 2) ∂λ′1
∂λ2 (6, 2) ∂λ2
ν2 (6, 2) t3λ′1λ2 mod ∂λ2
νw (8, 2) t2λ′1λ2
νλ2 (10, 2) tλ′1λ2
λ′1λ2 (12, 2) λ′1λ2
ν2w (11, 3) ∂λ′1λ2

Table 5.1. Bidegrees and detecting classes for F2[v2]-module gen-
erators of A(1)∗ gr∗mot TC(ko)

6. Topological cyclic homology and algebraic K-theory

We now use the motivic spectral sequence

(6.1) E2 = A(1)∗ gr∗mot TC(ko) =⇒ A(1)∗ TC(ko)

to compute the A(1)-homotopy of the topological cyclic homology of ko. The E2-
term is concentrated in even total degrees and motivic filtrations 0 ≤ ∗ ≤ 3, so the
only possibly nonzero differentials are

d3(vi2) ∈ F2{vi−2
2 ν2w}

for i ≥ 2. We show that some, but not all, of these differentials are nonzero.
This contrasts with the motivic spectral sequence converging to V (1)∗ TC(ℓ) at
odd primes p, which was shown to collapse at the E2-term by Hahn–Raksit–Wilson
in [HRW22, Cor. 1.3.3]

Theorem 6.1. In the motivic spectral sequence (6.1) there are nonzero differentials

d3(v22) = ν2w and d3(v32) = v2ν
2w ,

while d3(1) = d3(v2) = d3(v42) = 0. Let

S = {i ≥ 0 | d3(vi2) = 0} and T = {i ∈ S | i < 32} .

Then S = T + 32Z≥0, 0, 1, 4 ∈ T and 2, 3 /∈ T . Moreover

A(1)∗ TC(ko) ∼= F2{vi2 | i ∈ S}
⊕ F2[v2]{∂, ς, ν, λ′1, w, λ2}
⊕ F2[v2]{νς, ν2, ∂λ2, νw, νλ2, λ′1λ2}

⊕ F2{vj2ν2w | j ≥ 0, j + 2 ∈ S}

is a finitely generated free F2[v322 ]-module of rank 384 + 2 card(T ).
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Proof. Bhattacharya–Egger–Mahowald [BEM17, Main Theorem] proved (for each
version of A(1)) that there exists a v322 -self map Σ192A(1) → A(1), which induces
multiplication by v322 on (6.1) and its abutment. Hence d3(v322 v

i
2) = v322 d3(vi2) for

all i ≥ 0, which shows that S = T + 32Z≥0.
The unit map S → TC(ko) induces a map from the Novikov spectral sequence

for A(1), as discussed in Lemma 3.2, to the motivic spectral sequence (6.1). By
Lemma 5.9 this map of E2-terms sends vi2 to vi2 and vi2h

2
11w to vi2∂λ

′
1λ2 for each i ≥

0. Since d3(v22) = h211w, d3(v32) = v2h
2
11w and d3(1) = d3(v2) = d3(v42) = 0 in

the Novikov spectral sequence, we must have d3(v22) = ∂λ′1λ2, d3(v32) = v2∂λ
′
1λ2

and d3(1) = d3(v2) = d3(v42) = 0 in the motivic spectral sequence, as asserted.
It follows that all classes in motivic filtrations 1 and 2 survive to E∞. In filtra-

tions 0 and 3, only the classes vi2 with i ∈ S and vi−2
2 ν2w with i ≥ 2 and i ∈ S

survive. Setting j = i − 2 gives the asserted formulas. Since the E∞-term is
free over F2[v322 ], and is concentrated in finitely many filtrations, it follows that
the abutment is also free over F2[v322 ], on the same number of generators. There
are card(T ), 192, 192 and card(T ) of these in motivic filtrations 0, 1, 2 and 3,
respectively, adding to 384 + 2 card(T ). □

Remark 6.2. We expect that d3(vi2) in fact repeats 4-periodically, rather than with
the period 32 guaranteed by [BEM17]. If this is correct, then S = {i ≥ 0 | i ≡ 0, 1
mod 4} and card(T ) = 16, so that A(1)∗ TC(ko) is a free F2[v322 ]-module of rank 416
(or a free F2[v42 ]-module of rank 52). This is the content of Conjecture B.

Theorem 6.1 allows us to determine the A(1)-homotopy of the algebraic K-theory
spectra of ko and ko∧2 with the same residual indeterminacy. We begin with the
2-complete case.

Theorem 6.3. There is an exact sequence of F2[v322 ]-modules

0 → Σ1F2 ⊕ Σ3F2 −→ A(1)∗ K(ko∧2 )
trc−→ A(1)∗ TC(ko) −→ F2{∂, ς} → 0 ,

with |∂| = −1 and |ς| = 1.

Proof. By [HM97, Theorem D] and [Dun97, Main Theorem] (cf. [DGM13, Theo-
rem 7.3.1.8]) applied to the 1-connected (structured) ring spectrum map ko∧2 →
HZ2 there is a homotopy cofiber sequence

K(ko∧2 )∧2
trc→ TC(ko)∧2

p→ Σ−1HZ∧
2 .

The associated long exact sequence in A(1)-homotopy breaks up into four-term
exact sequences, as above.

In more detail, the 3-connected map A(1) → H = HF2 identifies A(1)∗HZ∧
2 with

F2{1, ξ21 , ξ̄2, ξ
2
1 ξ̄2} ⊂ H∗HZ∧

2 ⊂ A∨. By [BM94, Proposition 10.9], K(ko∧2 ) → K(Z2)
is 2-connected, where K0(Z∧

2 ) = Z and K1(Z∧
2 ) = (Z∧

2 )×, so that A(1)0 K(ko∧2 ) ∼=
A(1)0 K(Z∧

2 ) = Z/2 and A(1)1 K(ko∧2 ) ∼= A(1)1 K(Z∧
2 ) = (Z∧

2 )×/(±((Z∧
2 )×)2) ∼=

Z/2, generated by any u ∈ (Z∧
2 )× congruent to 3 or 5 modulo 8. This uses that

η ∈ π1(S) maps to −1 ∈ (Z∧
2 )× ∼= K1(Z∧

2 ). By exactness, we know p : ∂ 7→ Σ−11
and p : ς 7→ Σ−1ξ21 . Multiplication by ν acts trivially on HZ∧

2 , so p : νς 7→ 0 does not
hit Σ−1ξ21 ξ̄2. There is no class in degree 2 that p could map to Σ−1ξ̄2. Hence these
two classes instead appear as Σ−2ξ̄2 and Σ−2ξ21 ξ̄2 in A(1)∗ K(ko∧2 ), in degrees 1
and 3, respectively. □

The proof in the integral case relies on the proven Lichtenbaum–Quillen conjec-
ture for Z[1/2], cf. [Voe03] and [RW00].
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Theorem 6.4. There is an exact sequence of F2[v322 ]-modules

0 → Σ3F2 −→ A(1)∗ K(ko)
trc−→ A(1)∗ TC(ko) −→ F2{∂, ς} → 0 ,

with |∂| = −1 and |ς| = 1.

Proof. By [Rog02, Theorem 3.13] there are two homotopy cofiber sequences

K(ko)∧2
trc−→ TC(ko)∧2

q−→ X

Σ−2 ku∧
2

δ−→ Σ4 ko∧2 −→ X

with equivalent third terms. Passing to A(1)-homotopy, the second cofiber sequence
ensures that A(1)∗X = F2{x−1, x1, x4}, where |xi| = i. The long exact sequence as-
sociated to the first cofiber sequence then breaks up into four-term exact sequences,
as shown.

This time, the details are as follows. The 3-connected E∞ ring map S → ko
induces a 4-connected map K(S) → K(ko), where

K(S) ≃ S ∨ WhDiff(∗) .

Here WhDiff(∗) is 2-connected with π3 WhDiff(∗) = Z/2, cf. [Rog02, Theorem 5.8].
Hence A(1)0 K(ko) ∼= A(1)0 K(S) = Z/2{1}, A(1)1 K(ko) ∼= A(1)1 K(S) = 0,
A(1)2 K(ko) ∼= A(1)2 K(S) = 0 and A(1)3 K(ko) ∼= A(1)3 K(S) = Z/2{ν} ⊕ Z/2.
By exactness, we know q : ∂ 7→ x−1 and q : ς 7→ x1, while x4 must contribute
to A(1)3K(ko) and cannot be in the image of q. (It follows that νx1 = 0 ̸= x4.) □

7. The Lichtenbaum–Quillen property and the telescope conjecture

Recall from Definition 1.1 that a spectrum X satisfies the height n telescope
conjecture (at the prime 2) if the canonical map Lf

nX → LnX is an equivalence.

Theorem 7.1. The spectrum TC(ko)∧2 satisfies the height 2 telescope conjecture.

Proof. The argument in [HRW22, Theorem 6.6.4] applies directly since the E∞
ring Cq(THH(ku/MU)/THH(ko)) is even for each q ≥ 0 by Proposition 2.12, and
the Bousfield–Kan/motivic spectral sequence associated to the cosimplicial spec-
trum A(1)⊗C•(THH(ku/MU)/THH(ko))) has a horizontal vanishing line by The-
orem 2.23 and Lemma 2.28.

We spell out the details for completeness. By the fiber sequence

TC(ko)∧2 // TC−(ko)∧2
can−φhT

2 // TP(ko)∧2

from [NS18, Corollary 1.5] it suffices to prove that the telescope conjecture holds
for the spectrum TC−(ko)∧2 and the spectrum TP(ko)∧2 . Since ko is an E∞ ring,

we know that TP(ko)∧2 is a TC−(ko)∧2 -module. Since both Lf
2 and L2 are smashing

localizations, any module over a spectrum satisfying the height 2 telescope conjec-
ture also satisfies the height 2 telescope conjecture. Therefore, it suffices to prove
that TC−(ko)∧2 satisfies the height 2 telescope conjecture.
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We know Lf
1 = L1 at p = 2 by [Mah81] and [Mah82, Theorem 1.2]. By the map

of chromatic fracture squares (cf. [ACB22]) from

Lf
2X

//

��

LT (2)X

��

Lf
1X

// Lf
1LT (2)X

to

L2X //

��

LK(2)X

��

L1X // L1LK(2)X

for X = TC−(ko)∧2 , it suffices to prove that the map

(7.1) LT (2) TC−(ko)∧2 −→ LK(2) TC−(ko)∧2

is an equivalence. Since K(2)-local spectra are T (2)-local it suffices to prove that
the map (7.1) is an equivalence after T (2)-localization. By the thick subcategory
theorem, it therefore suffices to prove that the map (7.1) is an equivalence after
applying the functor v−1

2 A(1) ⊗−.
We claim that there are equivalences

A(1) ⊗ TC−(ko) ≃ A(1) ⊗
(
Tot (C• (THH(ku/MU)/THH(ko)))

)hT
≃

(
Tot (A(1) ⊗ C•(THH(ku/MU)/THH(ko)))

)hT
.

The first equivalence holds because the map THH(ko) → THH(ku/MU) is 1-
connected and therefore the relevant Bousfield–Kan/descent sequence converges.
The second equivalence holds because A(1) is a finite spectrum.

By Proposition 5.2 the motivic spectral sequence computing A(1)∗ TC−(ko) is

concentrated in motivic filtrations 0 ≤ s ≤ 2 (note that tk and vj2 have motivic
filtration 0 for all k ∈ Z and j ≥ 0). This motivic spectral sequence agrees with
the Bousfield–Kan spectral sequence associated to the cosimplicial spectrum(

A(1) ⊗ C•(THH(ku/MU)/THH(ko))
)hT

by Proposition 2.14. We know that whenever X is an even E∞ algebra in SpBT,
such as X = Cq(THH(ku/MU)/THH(ko)), then

(7.2) v−1
2 A(1) ⊗XhT ≃ Lf

nA(1) ⊗XhT ≃ LnA(1) ⊗XhT

because XhT is an even E∞ ring and therefore it is complex oriented it admits
the structure of an MU-module by [CM15]. The horizontal vanishing line in
the motivic/Bousfield–Kan spectral sequence implies that we can apply [CM21,
Lemma 2.34] to determine that the composite map

(7.3) v−1
2 A(1) ⊗ TC−(ko)

−→ v−1
2 A(1) ⊗ Tot (C•(THH(ku/MU)/THH(ko))

−→ v−1
2 Tot (A(1) ⊗ C•(THH(ku/MU)/THH(ko)

−→ Tot
(
v−1
2 A(1) ⊗ C•(THH(ku/MU)/THH(ko)

)
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is an equivalence. The target of the composite map (7.3) is equivalent to

Tot (L2A(1) ⊗ C•(THH(ku/MU)/THH(ko)))

by (7.2). Since totalizations of L2-local spectra are L2-local, this implies that
v−1
2 A(1) ⊗ TC−(ko) is L2-local and, consequently, the canonical map

v−1
2 A(1) ⊗ TC−(ko) ≃ Lf

2A(1) ⊗ TC−(ko) −→ L2A(1) ⊗ TC−(ko)

is an equivalence. □

Theorem 7.2. For X ∈ {K(ko),K(ko∧2 ),TC(ko)} and Y ∈ {X(2), X
∧
2 }, the canon-

ical map Y → Lf
2Y is an equivalence in all sufficiently large degrees.

Proof. Let X ∈ {K(ko),K(ko∧2 ),TC(ko)}. Then by Theorem 6.4, Theorem 6.3,
and Theorem 6.1 respectively we know that (A(1)/(v322 ))∗X

∧
2 is finite. This implies

that X∧
2 has fp-type 2 in the sense of [MR99, p. 5] by [MR99, Proposition 3.2]. By

[MR99, Theorem 8.2], the spectrum ICf
2X

∧
2 is bounded below and, consequently,

Cf
2X

∧
2 is bounded above and the map X∧

2 → Lf
2X

∧
2 is an equivalence in all suffi-

ciently large degrees (cf. [HW22, Theorem 3.1.3]). By the pullback

X(2)
//

��

X∧
2

��

X(2)[1/2] // X∧
2 [1/2] ,

and the fact thatX(2)[1/2] and X∧
2 [1/2] are Lf

2 -local, we conclude that the canonical

map X(2) → Lf
2X(2) is also an equivalence in all sufficiently large degrees. □
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[ACB22] Omar Antoĺın-Camarena and Tobias Barthel, Chromatic fracture cubes, Equivariant
topology and derived algebra. Based on the conference, Trondheim, Norway, 2019. In

honour of Professor J. P. C. Greenlees’ 60th birthday., 2022, pp. 100–118 (English).

[AR02] Christian Ausoni and John Rognes, Algebraic K-theory of topological K-theory, Acta
Math. 188 (2002), no. 1, 1–39 (English).

[AR08] Christian Ausoni and John Rognes, The chromatic red-shift in algebraic K-theory,
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