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Abstract. The periodic lambda algebra is a co-Koszul complex of the Steen-

rod algebra whose homology gives the E2 term for the Adams spectral se-

quence. Its elements are closely related to periodic homotopy theory, and
exhibit periodic properties. In this paper we discuss an algorithm to compute

the homology of the periodic lambda algebra, and investigate the algebraic

structure for the E2 page of the vn periodic elements.

1. Introduction

Computing the homotopy groups of spheres is of great interest in algebraic topol-
ogy. One method of achieving this is by the Adams spectral sequence. This is a
spectral sequence whose E2 term is ExtA∗(Z/p,Z/p), where A∗ is the Steenrod
algebra, that converges to the p-component of π∗(S

0).
A well studied object that gives an E1 term for the Adams spectral sequence

is the lambda algebra, which is the co-Koszul complex of the Steenrod algebra by
taking the dual to the admissible basis. In [1], Gray gives another algebra Λ, which
he terms the periodic lambda algebra, whose homology also gives the E2 term
for the Adams spectral sequence. This is a differential graded algebra generated
multiplicatively by elements λi and vn subject to certain relations.

Compared to the classical lambda algebra, the periodic lambda algebra is smaller
and simpler. Of interest to us is that the vn generators turn out to correspond to
the vn self maps in periodic homotopy theory.

It is known that H∗(Λλ) decomposes into vn periodic parts (see §2). This gives us
a method to recoverH∗(Λ) fromH∗(Λλ). Our interest here is mainly in determining
the algebraic structure of the various periodic parts. We did so by inverting the
generator vn. An understanding of this can give us information about the homotopy
groups of spheres. Since when we delete v1, · · · , vn−1 and invert vn, we obtain the
E1 term of an Adams spectral sequence that converges to π∗(v

−1
n V (n− 1)). If we

then run the Bockstein spectral sequence on the E∞ term, we obtain π∗(S
0).

The project was roughly split into two parts. The first part was writing a
computer program to compute the homology of the periodic lambda algebra and
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determine the vn (for n ≤ 3) periodic parts. We did this for the two cases p = 3 and
p = 5. The second part was attempting to understand the algebraic structure of the
periodic parts. This was mainly done through comparing the elements with known
results and finding patterns between the cases p = 3 and p = 5. Our main result is
determining the generators for the periodic parts, and proving certain elements to be
vn periodic. Our results also provide some insight into the “telescope conjecture”.

In §2 we give a brief overview of the periodic lambda algebra, which will be the
main object of study in our paper. In §3 we discuss our implementation of the
leading term algorithm to generate Curtis tables for the periodic lambda algebra,
and give a proof of its correctness. In §4, §5 and §7 we present some results we
have obtained through investigating the Curtis tables of the respective periodic
parts. We also include §6 in which we discuss how our work relates to the telescope
conjecture. In §8, we give a theorem for proving certain elements to be vn periodic.
Finally, in §9 we mention some problems that we wish to continue to work on.

2. The Periodic Lambda Algebra

The classical lambda algebra is derived from the Steenrod algebra by the taking
the Koszul dual of the admissible basis. In [1], Gray derives another co-Koszul
complex of the Steenrod algebra by taking the Milnor basis instead, which results
in the periodic lambda algebra.

The Milnor basis for the Steenrod algebra (see [3]) is given by the set of generators
{Qk} ∪ {P i}, with deg(Qk) = 2pk − 1 and deg(Pn) = 2n(p− 1). These satisfy the
relations

(1) If a<pb, then

P aP b =
∑

(−1)a+t
(

(p− 1)(b− t)− 1

a− pt

)
P a+b−tP t

(2) QkQl = −QlQk

(3) PnQk =

 QkP
n +Qk+1P

n−pk n>pk

QkP
n +Qk+1 n = pk

QkP
n n<pk

According to these relations, we may express all elements in the form

Qk1Qk2 · · ·P i1P i2 · · · ,
where

(1) all Qk’s occur before P i’s
(2) the Qk’s are listed in decreasing order
(3) the portion of the product consisting of P i’s are in admissible form.

By the result given in [4], we get a differential graded algebra, Λ, generated by
λi and vn with deg(λk) = 2k(p− 1) and deg(vn) = 2pn − 1 subject to the relations

(1) λiλpi+k =
∑

(−1)j+1
(
(p−1)(k−j)−1

j

)
λk+i−jλpi+j

(2) vnvk = vkvn
(3) λkvn = vnλk + vn−1λk+pn−1 if n>0
(4) λkv0 = v0λk

Homological degree is given by length of monomials. The differentials are given by

(1) d(vn) = vn−1λpn−1 if n>0
(2) d(v0) = 0
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(3) d(λk) =
∑

(−1)j+1
(
(p−1)(k−j)−1

j

)
λk−jλj

and satisfy the equality

d(xy) = d(x)y + (−1)deg(x)xd(y).

Since this is a subcomplex of the cobar complex of the Steenrod algebra, its homol-
ogy gives EA∗(Z/p,Z/p).

Now, if we consider the space Λ/v0 arising from the short exact sequence 0 →
Λ

v0−→ Λ → Λ/v0 → 0, we get a Bockstein spectral sequence H∗(Λ/v0) ⊗ P (v0) ⇒
H∗(Λ). We can continue the same process on Λ/v0, taking the quotient by v1,
to get H∗(Λ/(v1, v0)) ⊗ P (v0, v1) ⇒ H∗(Λ). If we let Λλ denote the subalgebra
of Λ generated by the λi terms only, then inductively we can obtain H∗(Λλ) ⊗
P (v0, v1, · · · ) ⇒ H∗(Λ). This shows that H∗(Λλ) is decomposed into periodic
parts.

To find the vn torsion free parts of Λ, we first compute Λ/(v0, · · · , vn−1) and then
invert vn. Computing this and investigating the structure of the periodic parts will
be the topic of the remaining of our paper. To simplify notation, we will abbreviate
v−1n Λ/(v0, · · · , vn−1) by v−1n Λ.

3. Leading Term Algorithm

In [8] Tangora describes an algorithm to compute the homology of the classical
lambda algebra. In our project, we modified the algorithm to compute the homology
of the periodic lambda algebra. We describe the algorithm and give a proof of
correctness.

3.1. The Algorithm. We first define an ordering for the terms in Λ. We define
all vn terms to be greater than λi, while vn and λi are ordered between themselves
by topological degree. Monomials in admissible form of the same bidegree are then
ordered lexicographically. We say a polynomial is expressed in “proper form” if all
monomials are admissible and in decreasing order. Then the order on monomials
induces a lexicographic order on polynomials. We will call the greatest monomial
in a polynomial the leading term.

The algorithm will proceed inductively on total degree and on topological degree
for each fixed total degree. At each step, we consider a source and target pair, from
a box of bidegree (r, s) to (r−1, s+1). We will say that a proper polynomial x tags
a cycle basis y if it is the smallest polynomial such that d(x) = y + (terms < y).

Suppose a basis at target has already been found. The base case is trivial.
For each admissible monomial x from small to large at source, run the following
procedure.

If d(x) = 0, then add the leading term of x to the basis at source. Otherwise,
let m be the leading term of d(x). If m has not been tagged, then m is tagged by
the leading term of x. Otherwise, suppose m has been tagged by y. Then replace
x by x− y and run the above again.

At the end of this process, each basis cycle at target will either remain a basis
cycle for the homology group or will be tagged by some element at source in which
case both do not belong to the basis. However, the basis elements and tags thus
expressed may not necessarily be cycles themselves. They complete to complete
cycles or full tags, and are the leading terms of such completions.

The claim is that at each box, the basis is given by the minimal monomial in
the homology class it represents.
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3.2. Proof of correctness.

Theorem 3.1. The algorithm given in §3.1 is finite and correct.

Proof. We first consider finiteness and correctness in the case that we record full
cycles and tags. In this case, we are working with complete basis cycles, so we
know that at each iteration the leading term of the differential is driven strictly
downwards, so the algorithm is finite. It must also return the correct result, as all
monomials have either been completed to a full tag or complete cycle. Minimality
follows from the fact that the procedure is run in increasing order on the elements
at source.

To prove the leading term algorithm correct, we first note two things. First, we
may assume that in each box the leading terms of the complete basis cycles are
different. For if x + y and x + z (x>y>z) were both in the basis, we may replace
x+ y with y − z and still obtain the same space. Next, suppose that x tags y, but
d(x) does not contain y. Then the leading term of d(x) must be larger than y. This
follows from how we arrive at the full tag of a target cycle.

Now, at each iteration in the former case mentioned, when we add in full tags to
complete x, complete basis cycles in d(x) are reduced in whole. The leading term
case of the algorithm can be considered a term-by-term version of this algorithm.

First suppose d(x) is a single complete basis cycle with leading term m. Suppose
m is tagged by some element t. If d(t) contains m, then since leading terms of basis
cycles are unique, its leading basis cycle must be the complete basis cycle d(x). In
this case the differential d(x− t) will be driven downwards and the algorithm will
be finite. If d(t) does not contain m, then its leading term will be greater than m.
When the procedure is iterated now with x− t and d(x− t), it will behave just as
if completing t. Thus the whole process is just adding in each term of the full tag
of the basis cycle one at a time. Since the completion is finite, by induction on the
monomials at each source, the process must terminate.

Now for the general case, d(x) is a combination of complete basis cycles. The
algorithm proceeds similarly, adding in terms of full tags. However, in this case,
it is possible that the terms of the full tags will overlap each other. This does not
have any effect on finiteness, as the worst that can happen is that each term of
every full tag in the completion of x is added. So this reduces to the case where
complete cycles and full tags are recorded. Therefore finiteness is proved.

It remains to show that the leading term of the completion of x is still x. This is
straightforward to check. At any step of the iteration, suppose we determine that
m is already tagged by y. Then y must be less than x, or else the procedure would
not have been run on y yet. This completes our proof.

�

An important property the ordering we defined gives rise to is that the initial
term of d(µ)µ1 · · ·µn, where µ denotes any generator and µ1 · · ·µn is in admissible
form, will be less than µ. This is because by the definition of differentials, the
leading monomial of the differential of the generators λi and vn are less than them-
selves. Since all other terms µj will be less than or equal to µ, the property follows.
This property is crucial in the proof of following theorem.

Theorem 3.2. Let µ denote a generator. If the monomial µx tags µy, then x tags
y. Furthermore, if x tags y, then kµx tags µy (provided µx and µy are admissible),
for some coefficient k.
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Proof. First suppose that µx completes to the the tag T that tags µy. This means
that

d(T ) = µy + (terms < µy).

On the other hand, we have

d(T ) = d(µ)x+ µd(x) + (smaller terms).

By our previous discussion, µd(x) is the leading term of this polynomial. This
implies that

d(x) = y + (terms < y).

To prove that x actually tags y, we need to show that no term smaller than x also
satisfies this. In order to prove this, we first prove the second part of the theorem.

Suppose x completes to X, y completes to Y , and that µX is admissible. Then

µY = µy + (terms < µY ).

d(µX) = kµd(X) + (smaller terms),

where k is dependent on the degree of µ.
Since X tags Y , we have as largest term

leading term of kµd(X) = kµd(x) = µy.

Now suppose µS is any smaller full tag such that d(µS) = µy + (smaller terms),
then by our previous weaker proof of the first statement, we would have that some
term less than or equal to S that tags Y . But this contradicts our hypothesis that
X tags Y . Thus the second statement is proved.

Back to the proof of the first statement, suppose that some term q<x tags y.
Then by the above, µq would tag µy, a contradiction again. This proves the first
statment and we are done.

�

Due to the parity of degree, in the case of the periodic lambda algebra, k = −1
if µ is a λ generator and k = 1 if µ is a vn generator.

This theorem allows us to suppress terms whose tails have already been tagged,
and played an important role in our implementation.

3.3. Implementation. We implemented the algorithm using Java. This provided
much flexibility in implementation, as Java is an object oriented and relatively low
level programming language.

Our first approach was to list out all admissible monomials up to a certain total
degree, and run the algorithm on these elements at once. This gave us a Curtis
table up to total degree 60. However, after that the RAM space was not enough
to store all admissible monomials. This was somewhat expected as the size of the
algebra grows exponentially and can be very large.

To circumvent the memory space issue, we re-structured our computer program
to generate admissible monomials inductively after the algorithm had been run for
the previous total degrees. This allowed us to omit admissible terms whose tails
have already been tagged by theorem 3.2. The only resulting issue is that the leading
term of a differential may not be in the list of monomials at target. However, if this
is the case, it would imply that the leading term is already tagged, so we only need
to trace back using theorem 3.2 and find its tag. Under this scheme, the program
did not slow down until total degree 130, after which the program naturally became
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slow due to the length of each completion, with many terms reaching above 100,
000 iterations.

Two days of computing gave us the pretty looking Curtis table for the periodic
lambda algebra with highest total degree 146. The terms coincide with the Curtis
table for the classical lambda algebra as should. We include the Curtis table up to
total degree 50 in the case p = 3, along with the code of the main method (with
certain ommisions to increase readability), in the appendix.

We note that computing the homology up to a certain total degree, say a, does
not give all terms for topological degrees up to a. However, we know there are
vanishing lines in the E2 terms. This is a line of fixed slope, say k, such that all terms
lie below it. Thus, the homology is fully computed at least up to topological degree
a
k+1 . Nonetheless, the terms above a

k+1 are still useful in helping to determine
generators and structure.

Since we are primarily concerned with the vn periodic parts, we also ran a
variation of the above program. Rather than first computing the full Curtis table
then quotienting out the elements v1, · · · , vn−1, it became clear that it would be
more efficient to directly quotient the terms during the algorithm. This saved
time as the number of elements in each degree decreased and some terms whose
completions were very long were omitted. There seemed to be a balance between
the number of admissible monomials we omitted and how high our total degree
needed to get for us to see periodicity in the table.

We used the computer to find periodic parts in these generated tables. We did
so by implementing a method that would take in a confidence factor c, and search
the list for vn towers of each cycle. This meant that an element x would be deemed
vn periodic if and only if vqnx is a cycle for all q such that vqnx is in the table, and
max{q} ≥ c. For lower degree terms, where max{q} are relatively large, we can be
fairly certain that they are indeed periodic. In fact, many can be proved periodic
using theorem 8.1 in §8.

4. v1 periodicity

We computed H∗(Λ/v0) for p = 3 up to total degree 164 and found the v1
periodic parts with confidence 5. This gave us a table with highest total degree
129. We also computed the same object up to total degree 303 for p = 5, which gave
us v1 periodic terms up to degree 247. These gave us enough information to see
what happens in lower degrees and to conjecture its general structure for arbitrary
p.

We compared our results to the following theorem, given in [2] by Miller.

Theorem 4.1. The E2 term for the Adams spectral sequence of V (0) localizes at
v1 to

P [v1, v
−1
1 ]⊗ E[hi : i ≥ 1]⊗ P [bi : i ≥ 1]

for p>2, where the generators are explicit in the cobar complex, with

hi = {[ξ̄i]} , |hi| =
(
1, 2(pi − 1)

)
bi = {

p−1∑
j=1

(
p

j

)
[ξ̄i
j
][ξ̄i

p−j
]} , |bi| =

(
2, 2p(pi − 1)

)
.

For p = 3, λ1 and its Massey product λ2λ1 are expected generators. The topo-
logical degree of h2 corresponds to the term λ4. However, since λ4 is not a cycle,
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we inverted v1to obtain v−11 v2λ1 as a candidate for h2. Going further down the list,
v−31 v32λ2λ1 at bidegree (46, 2) gives an element with correct degree to correspond
to b2. This gave us some clue that the terms hi and bi correspond to the v2 towers
of λ1 and λ2λ1. The same pattern was apparent in the p = 5 case, in which case
b1 corresponds to λ4λ1.

We thus give the following conjecture.

Conjecture 4.2. The generators in theorem 4.1 correspond to the following ele-
ments in H∗(v−11 Λ)

hi ↔ v−r1 vr2λ1

bi ↔ v−s1 vs2b1 , b1 ↔ λp−1λ1

where r = pi−1−1
p−1 and s = pn−p

p−1 . Thus these terms give the polynomial and exterior

generators for the v1 periodic part in Λ.

It is straightforward to verify that the degrees match, and that b1 is the Massey
product for λ1 as expected.

Each element in the v1 periodic part can be given a name using these generators.
The non-trivial relations for lower degree terms in the case p = 3 are

h1h2 ↔ λ2λ3

h1h3 ↔ v−31 v32λ2λ3

h1h3b2 ↔ v−11 v2λ2λ3λ6λ3

h2h3 ↔ v−11 v3λ1λ2λ3.

These relations completely define the structure of H∗(v−11 Λ) up to toplogical degree
116. Similar relations can be given in the case p = 5. A diagram for p = 3 in this
range is given in figure 1. We omitted the lines indicating multiplication by b2 to
simplify the diagram.

r/10

s

b1
h1

h2

b2

h3

1 2 3 4 5 6 7 8 9 10

3

6

9

12

15

0

Figure 1
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As can be seen from the figure, the E2 page consists of b1 and b2 towers of
elements as bi are polynomial generators.

Since it is known that LK(1)V (0) = v−11 V (0), and that E(h1) gives the algebraic
structure for the left hand side, we would expect all generators except h1 to kill each
other by d2 or higher differentials. By an analysis of degrees, we give a conjecture
for these differentials. The claim is that there are d2 differentials that send hi+1 to
v1bi. These are indicated roughly in the diagram 2.

s

r

h2

b1

v1

d2

Figure 2

5. v2 Periodicity

From the tables we generated, we observed that v1 periodicity implies v2 peri-
odicity. However, the structure for higher vn periodic parts become more and more
difficult to identify, as the degrees of vn increase, and there are more possibilities
in choice of terms leading to the same degree.

For v2 periodicity, we mainly compared our results with results giving the al-
gebraic structures of H∗(S(2)) in [6]. H∗(S(2)) gives the E2 term for the Adams
spectral sequence that converges to LK(2)V (1). This sepectral sequence collapses,

so the E2 term gives the E∞ term. On the other hand, we know that H∗(v−12 Λ)
gives the E2 term for the Adams spectral sequence that converges to v−12 V (1).
It is known that there is an injective map v−12 V (1) → LK(2)V (1) that respects
multiplication. We use this map to compare our v2 periodic parts.

It is unknown whether a map in the other direction holds, which would thus
imply that LK(2)V (1) = v−12 V (1). This is the telescope conjecture given by Ravenel,
which claims the affirmative. We discuss this in §6.

5.1. p = 3. We first consider the p = 3 case. In [6], Ravenel gives a result for the
algebraic structure of H∗(S(2)) when p = 3.

Theorem 5.1. For p = 3, H∗(S(2)) ' E[ζ2, ξ] ⊗ (E[h10, h11)⊗ P (b10, b11)/I),
where

I = (h10h11, b
2
10 + b211, h10b10 − h11b11, h11b10 + h10b11),

and
ζ2 = h2,0 + h2,1,

ξ =

〈
(h10, h11),

(
h10 −h11
h11 h10

)
,

(
h11 −h10
h10 h11

)
,

(
h10
h11

)〉
.
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The elements hij have bidegree
(
i, 2pj(pi − 1)

)
, and bij

(
2, 2pj+1(p− 1)

)
.

For this case, we computed Λ/(v0, v1) up to total degree 149, and found the v2
periodic parts with confidence 3. This gave us v2 periodic parts up to topological
degree 60. Using this information, we were able to easily identify E[h10, h11) ⊗
P (b10, b11).

Conjecture 5.2. The generators in theorem 5.1 correspond to the generators in
v−12 H∗(Λ/(v0, v1)) by

h10 ↔ λ1

h11 ↔ λ3

b10 ↔ λ2λ1

b11 ↔ λ6λ3.

Apart from these permanent cycles, we also have the generators λ2λ3, λ4λ3 and
v−12 v3λ3. However, we are uncertain about the relations these generators satisfy.
Although we do know that the relation h10h11 = 0 in theorem 5.1 is apparent in
the E2 term.

We have been unable to determine ξ and ζ2 for degree reasons up to our computed
range. Also, we have not been able to identify any possible element that can kill
λ2λ3 through d2 or higher differentials. This suggests the possibility that λ2λ3
may possibly be a permanent cycle. These two observations shed some light on the
telescope conjecture which we discuss in greater detail in §6.

5.2. p>3. Next we consider the p = 5 case. We computed H∗(Λ/(v0, v1)) up to
total degree 304, and found the v2 periodic part with confidence 3. The element of
largest toplogical degree was at 131.

In [6] Ravenel proves the following theorem.

Theorem 5.3. For p>3, H∗(S(2)) ' Fp[v2, v−2 1]{1, h0, h1, g0, g1, h0g1} ⊗ E[ζ],
where the bidegrees (s, t) of the generators are

|h0| = (1, 2(p− 1))

|h1| = (1,−2(p− 1))

|g0| = (2, 2(p− 1))

|g1| = (2,−2(p− 1))

|ζ| = (1, 0) .

As with the previous discussions, we have conjectured an identification as follows.

Conjecture 5.4. The elements in theorem 5.3 correspond to elements in the peri-
odic lambda algebra by

h0 ↔ λ1

h1 ↔ v−12 λ5

g0 ↔ v−12 λ2λ5

g1 ↔ v−22 λ6λ5
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With this correspondence we have h0g1 ↔ λ1λ6λ5 = λ2λ5λ5, which completes
the “diamond” (see figure 3).

t0

s

2(p− 1)−2(p− 1)

λ1

λ2λ5

λ2λ5λ5

λ5

λ6λ5

Figure 3

In the E2 page, we also have v3λ5 and the Massey product λ4λ1 as generators.
There are more conjectured generators which we describe in generality in §7.

As with the case p = 3, we have also been unable to identify the element ζ existing
in the given algebraic structure. Also, since the terms in our above conjecture
gives the permanent cycles, we would expect all other terms not belonging to the
diamonds to be killed at some point in the spectral sequence. However, we have
been unable to identify these either. We checked the generators λ4λ1 and v3λ5,
both of which we would expect to be killed. This suggests that λ4λ1 and v3λ5 may
possibly be permanent cycles, in which case the telescope conjecture would also be
disproved. We come back to this issue in §6.

6. The Telescope Conjecture

As discussed in §5, the telescope conjecture conjectures the equality of LK(2)V (1)

and v−12 V (1). Ravenel conjectured it in [5], then gave a disproof of if in [7]. However,
the proof was later deemed incorrect. It remains a conjecture, though most people
believe it to be wrong. The main approach in the incorrect proof was to prove the
nonexistence of ζ in v−12 V (1), which would imply that equality cannot hold, as their
E∞ terms would not agree. In this aspect, our computations somewhat supports
this assertion, despite the proof being incorrect.

For p = 3, we have been unable to determine ζ2 up to total degree 149, and for
p = 5 up to 304. Although this gives us evidence of its non-existence up to a certain
range, we know the degree of ζ may be aritrarily large. Thus our computations are
not sufficient to give a disproof.

Apart from determining the ζ terms, we have also run into trouble identifying
suitable differentials to kill the non-permanent cycles. This cut-in point seems more
promising, as it may be possible to prove the non-existence of differentials, which
would also show that the E∞ terms do not match.

We consider the generator λ2λ3 in the case p = 3. First, we know that it is v2
periodic, by theorem 8.1 which we later prove. On the other hand, we conjecture
that differentials should increase the number of λ terms. A verification of differ-
entials that are known shows it is likely that differentials increase λ terms by 1 in
general. If this does happen to be the case, then for any term to hit λ2λ3, it can
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only contain one λ term. This would narrow down our search, and could provide a
possibility of proving the non-existence by degree means. This is still in work.

7. vn Periodicity for Higher n

We first give a general conjecture showing sufficiency in vn periodicity.

Conjecture 7.1. If an element is vn−1 periodic and is non-trivial in v−1n Λ, then
it is also vn+1 periodic.

This holds for v1, v2 and v3 periodicity up to the ranges we have computed.
For higher vn, we also observed a neat pattern in the p = 3 case which we also

believe to hold for general p.
From the tables we obtained, for v1, we have the generators

λ1, v2λ1, v
13
2 λ1, · · ·

λ2λ1, v
3
2λ2λ1, v

12
2 λ2, · · · ;

for v2, there are the extra generators

λ3, v3λ3, · · ·

λ6λ3, · · ·
λ2λ3 = 〈1, 1, 3〉, λ4λ3 = 〈3, 1, 3〉

and for v3, there is the extra generator λ9 and the conjectured Massey product
λ18λ9.

This pattern motivated us to conjecture that in general we have inductive gen-
erators for v−1n Λ.

Conjecture 7.2. The set of generators for v−1n Λ consists of the λ generators for
v−1n−1Λ, in addition to the generators

v−ln vln+1λpn−1

vl−1n vl−1n+1λ2∗pn−1λpn−1

for i ≥ 1, where l = pi−1−1
2 , and the Massey products of the λ terms.

If true, this would be a remarkable result, as it shows much simplicity in the
periodic parts of the E2 term.

8. Proof of Periodicity

In this section, we describe a method to prove that a term is vn periodic. This
method works for low degree terms which we know to be cycles, and even better if
we know that it is vn torsion free up to some power of vn.

Consider a cycle x in H∗(v−1n Λ) with topological degree r.
We first note that vlnx cannot tag any term for any l>0. For if it did, it must

tag a term of the form vlny, as any other term will contain some power of vn−1
which is trivial in v−1n Λ. But then by theorem 3.2, this would imply that x tags y,
a contradiction to x being a cycle.

So if x is not vn periodic, it must be that some element tags an element in the
vn tower of x. Let l be the smallest power such that vlnx is tagged. Then its tag
cannot contain any vn terms, otherwise it would contradict the minimality of l by
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theorem 3.2. So the smallest possible tag is vln+1y to get the leading generators vln.
In this case, for the correct degrees to be possible, we have the following inequality

2l(pn − 1) + r>2l(pn+1 − 1) + 1.

This gives us
r − 1 > 2lpn(p− 1).

Suppose we know that x is vn torsion free up to power l0. Then the above equality
needs to hold for some l>l0. If it is the case that r − 1 ≤ 2(l0 + 1)pn(p− 1), then
we know that no such term may exist. So it must be that x is vn periodic.

This proves the following theorem.

Theorem 8.1. Suppose x is of topological degree r and is such that vlnx is a cycle
for all l ≤ l0. If r − 1 ≤ 2(l0 + 1)pn(p− 1), then x must be vn periodic.

Recall the generator λ2λ3 mentioned in §6. Here l0 = 8 from our Curtis table
for Λ/(v0, v1) and r = 18. So 2(l0 + 1)pn(p − 1) = 324, while r − 1 = 17. This
proves our claim that λ2λ3 is v2 periodic.

9. Further Work

As time was limited in doing this project, and much time was spent on coding
the computer program, there are still many problems that we wish to solve. First
and foremost is finding proofs (or disproofs) for our conjectures. This will likely
require more sophiscated methods, but should be an interesting topic to work on.
Ultimately, it would be nice if we could fully determine the algebraic structures for
the vn periodic parts.

Another promising topic is the telescope conjecture as discussed in §6. If our
proposed method does follow through, we would be able to give a disproof of the
conjecture for the special cases p = 3 and p = 5.

We also believe it is worth continue computing the homology of the periodic
lambda algebra. Our code could be further optimized and run on faster comput-
ers to improve results. This could give us more information to either support or
disprove our claims. Another problem that could be considered is determining a
general condition for which the leading term algorithm can be applied.

Appendix A. Curtis Table, p=3

We include the Curtis table for Λ when p = 3 up to total degree 50. Generators
are represented by numbers, with positive ones λ and negative ones v. A term such
as 2(−5 1) corresponds to 2v5λ1. Tags are listed by the format (monomial)/(tag).
For instance, 1(11)/1(2) indicates that λ1λ1 is tagged by λ2.

3,1 1(1)
3,2 1(0 1)/1(-1)
6,2 1(1 1)/1(2)
7,2 1(-1 1)
7,3 1(0 -1 1)/2(-1 -1)
10,2 1(2 1)
10,3 1(0 2 1)
10,4 1(0 0 2 1)/1(-1 -1 1)
11,1 1(3)
11,2 1(0 3)
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11,3 1(0 0 3)
11,4 1(0 0 0 3)/1(-1 -1 -1)
13,3 1(1 2 1)
13,4 1(0 1 2 1)/1(-1 2 1)
14,2 1(3 1)/2(4)
15,2 1(-1 3)/1(-2)
15,4 1(-1 -1 -1 1)
15,5 1(0 -1 -1 -1 1)/1(-1 -1 -1 -1)
16,4 1(1 1 2 1)/1(2 2 1)
17,4 1(-1 1 2 1)
17,5 1(0 -1 1 2 1)/2(-1 -1 2 1)
18,2 1(4 1)/1(5) 1(2 3)
18,3 1(0 2 3)/2(-2 1)
19,5 1(-1 -1 -1 -1 1)
19,6 1(0 -1 -1 -1 -1 1)/2(-1 -1 -1 -1 -1)
20,4 1(2 1 2 1)
20,5 1(0 2 1 2 1)
20,6 1(0 0 2 1 2 1)/1(-1 -1 1 2 1)
21,3 1(3 2 1)/2(5 1) 1(1 2 3)
21,4 1(0 1 2 3)/1(-1 2 3)
22,2 1(3 3)/1(6)
22,5 1(-1 -1 -1 2 1)
22,6 1(0 -1 -1 -1 2 1)
22,7 1(0 0 -1 -1 -1 2 1)/1(-1 -1 -1 -1 -1 1)
23,3 1(-1 -2 1)
23,4 1(0 -1 -2 1)
23,5 1(0 0 -1 -2 1) 1(1 2 1 2 1)
23,6 1(0 0 0 -1 -2 1) 1(0 1 2 1 2 1)/1(-1 2 1 2 1)
23,7 1(0 0 0 0 -1 -2 1)/2(-1 -1 -1 -1 -1 -1)
24,4 1(3 1 2 1)/2(4 2 1) 1(1 1 2 3)/1(2 2 3)
25,4 1(-1 1 2 3)/1(-2 2 1)
25,6 1(-1 -1 -1 1 2 1)
25,7 1(0 -1 -1 -1 1 2 1)/1(-1 -1 -1 -1 2 1)
26,2 1(6 1)/2(7) 1(4 3)
26,3 1(0 4 3)/1(-2 3)
26,4 1(-1 -1 2 3)
26,5 1(0 -1 -1 2 3)/1(-1 -1 -2 1)
26,6 1(1 1 2 1 2 1)/1(2 2 1 2 1)
27,6 1(-1 1 2 1 2 1)
27,7 1(-1 -1 -1 -1 -1 -1 1) 1(0 -1 1 2 1 2 1)/2(-1 -1 2 1 2 1)
27,8 1(0 -1 -1 -1 -1 -1 -1 1)/1(-1 -1 -1 -1 -1 -1 -1)
28,4 1(4 1 2 1)/1(5 2 1) 1(2 1 2 3)
28,5 1(0 2 1 2 3)/2(-2 1 2 1)
29,3 1(3 2 3)/2(5 3) 1(2 3 3)
29,4 1(0 2 3 3)/2(-1 4 3)
29,7 1(-1 -1 -1 -1 1 2 1)
29,8 1(0 -1 -1 -1 -1 1 2 1)/2(-1 -1 -1 -1 -1 2 1)
30,2 1(7 1)/1(8)
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30,5 1(-1 -1 -1 2 3)
30,6 1(0 -1 -1 -1 2 3)/2(-1 -1 -1 -2 1) 1(2 1 2 1 2 1)
30,7 1(0 2 1 2 1 2 1)
30,8 1(0 0 2 1 2 1 2 1)/1(-1 -1 1 2 1 2 1)
31,3 1(-1 -2 3)/2(-2 -2)
31,5 1(3 2 1 2 1)/2(5 1 2 1) 1(1 2 1 2 3)
31,6 1(0 1 2 1 2 3)/1(-1 2 1 2 3)
31,8 1(-1 -1 -1 -1 -1 -1 -1 1)
31,9 1(0 -1 -1 -1 -1 -1 -1 -1 1)/2(-1 -1 -1 -1 -1 -1 -1 -1)
32,4 1(3 1 2 3)/2(4 2 3) 1(1 2 3 3)/2(2 4 3)
32,7 1(-1 -1 -1 2 1 2 1)
32,8 1(0 -1 -1 -1 2 1 2 1)
32,9 1(0 0 -1 -1 -1 2 1 2 1)/1(-1 -1 -1 -1 -1 1 2 1)
33,3 1(6 2 1)/2(8 1)
33,4 1(-1 2 3 3)/1(-2 2 3)
33,5 1(-1 -2 1 2 1)
33,6 1(0 -1 -2 1 2 1)
33,7 1(0 0 -1 -2 1 2 1)/1(-1 -1 -1 -1 2 3) 1(1 2 1 2 1 2 1)
33,8 1(0 1 2 1 2 1 2 1)/1(-1 2 1 2 1 2 1)
34,2 1(6 3)
34,3 1(0 6 3)
34,4 1(-1 -1 4 3)/2(-2 -2 1) 1(0 0 6 3)
34,5 1(0 0 0 6 3)
34,6 1(0 0 0 0 6 3) 1(3 1 2 1 2 1)/2(4 2 1 2 1) 1(1 1 2 1 2 3)/1(2 2 1 2 3)
34,7 1(0 0 0 0 0 6 3)/1(-1 -1 -1 -1 -2 1)
34,8 1(-1 -1 -1 -1 -1 -1 2 1)
34,9 1(0 -1 -1 -1 -1 -1 -1 2 1)
34,10 1(0 0 -1 -1 -1 -1 -1 -1 2 1)/1(-1 -1 -1 -1 -1 -1 -1 -1 1)
35,1 1(9)
35,2 1(0 9)
35,3 1(0 0 9)
35,4 1(0 0 0 9)
35,5 1(0 0 0 0 9)
35,6 1(-1 1 2 1 2 3)/1(-2 2 1 2 1) 1(0 0 0 0 0 9)
35,7 1(0 0 0 0 0 0 9)
35,8 1(-1 -1 -1 1 2 1 2 1) 1(0 0 0 0 0 0 0 9)
35,9 1(0 -1 -1 -1 1 2 1 2 1)/1(-1 -1 -1 -1 2 1 2 1) 1(0 0 0 0 0 0 0 0 9)
35,10 1(0 0 0 0 0 0 0 0 0 9)/1(-1 -1 -1 -1 -1 -1 -1 -1 -1)
36,4 1(6 1 2 1)/2(7 2 1) 1(4 1 2 3)/1(5 2 3) 1(2 2 3 3)
36,5 1(0 2 2 3 3)/2(-2 1 2 3)
36,6 1(-1 -1 2 1 2 3)
36,7 1(0 -1 -1 2 1 2 3)/1(-1 -1 -2 1 2 1)
36,8 1(1 1 2 1 2 1 2 1)/1(2 2 1 2 1 2 1)
37,3 1(3 4 3)
37,4 1(0 3 4 3)/2(-1 6 3)
37,8 1(-1 1 2 1 2 1 2 1)
37,9 1(-1 -1 -1 -1 -1 -1 1 2 1) 1(0 -1 1 2 1 2 1 2 1)/2(-1 -1 2 1 2 1 2 1)
37,10 1(0 -1 -1 -1 -1 -1 -1 1 2 1)/1(-1 -1 -1 -1 -1 -1 -1 2 1)
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38,2 1(9 1)/2(10) 1(7 3)
38,3 1(0 7 3)/2(-1 9)
38,6 1(4 1 2 1 2 1)/1(5 2 1 2 1) 1(2 1 2 1 2 3)
38,7 1(-1 -1 -1 -1 -1 2 3) 1(0 2 1 2 1 2 3)/2(-2 1 2 1 2 1)
38,8 1(0 -1 -1 -1 -1 -1 2 3)/1(-1 -1 -1 -1 -1 -2 1)
39,5 1(3 2 1 2 3)/2(5 1 2 3) 1(1 2 2 3 3)
39,6 1(0 1 2 2 3 3)/1(-1 2 2 3 3)
39,9 1(-1 -1 -1 -1 1 2 1 2 1)
39,10 1(-1 -1 -1 -1 -1 -1 -1 -1 -1 1) 1(0 -1 -1 -1 -1 1 2 1 2 1)/2(-1 -1 -1 -1 -1 2
1 2 1)
39,11 1(0 -1 -1 -1 -1 -1 -1 -1 -1 -1 1)/1(-1 -1 -1 -1 -1 -1 -1 -1 -1 -1)
40,4 1(7 1 2 1)/1(8 2 1) 1(3 2 3 3)/1(4 4 3)
40,7 1(-1 -1 -1 2 1 2 3)
40,8 1(0 -1 -1 -1 2 1 2 3)/2(-1 -1 -1 -2 1 2 1) 1(2 1 2 1 2 1 2 1)
40,9 1(0 2 1 2 1 2 1 2 1)
40,10 1(0 0 2 1 2 1 2 1 2 1)/1(-1 -1 1 2 1 2 1 2 1)
41,3 1(6 2 3)/2(8 3)
41,4 1(-1 3 4 3)/1(-2 4 3)
41,5 1(-1 -2 1 2 3)/2(-2 -2 2 1)
41,7 1(3 2 1 2 1 2 1)/2(5 1 2 1 2 1) 1(1 2 1 2 1 2 3)
41,8 1(0 1 2 1 2 1 2 3)/1(-1 2 1 2 1 2 3)
42,2 1(10 1)/1(11)
42,3 1(-1 7 3)
42,4 1(-1 -1 6 3)/1(-2 -2 3) 1(0 -1 7 3)/1(-1 -1 9)
42,6 1(3 1 2 1 2 3)/2(4 2 1 2 3) 1(1 1 2 2 3 3)/1(2 2 2 3 3)
42,8 1(-1 -1 -1 -1 -1 -1 2 3)
43,5 1(6 2 1 2 1)/2(8 1 2 1)
43,6 1(-1 1 2 2 3 3)/1(-2 2 1 2 3)
43,7 1(-1 -2 1 2 1 2 1)
44,4 1(6 1 2 3)/2(7 2 3) 1(4 2 3 3)/2(5 4 3) 1(2 3 4 3)
44,5 1(0 2 3 4 3)/1(-2 2 3 3)
44,6 1(-1 -1 2 2 3 3)/1(-2 -2 1 2 1)
45,3 1(9 2 1)/2(11 1) 1(3 6 3)
45,4 1(0 3 6 3)
45,5 1(0 0 3 6 3)/2(-1 -1 7 3)
46,2 1(9 3)/2(12)

Appendix B. Code

The following is the main method of our program to compute the homology of the
periodic lambda algebra. We created classes “Monomial” and “Polynomial” that
simplified manipulations. We hope the code is self-explanatory enough to read.

public static void compute () {

for(int t = 0; t < MAX_ARRAY_SIZE; t++) {

//find admissible monomials

for(int i = 0; t - i > 0; i++) {

int top = i, hom = t - i;
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if(hom == 1) {

if((top + 1) % (2 * (p - 1)) == 0) {

ArrayList <Monomial > temp = new ArrayList <Monomial >(1);

temp.add(new Monomial ((top + 1) / (2 * (p - 1))));

basis[top][hom] = temp;

}

else if((top + 2) % 2 == 0){

double subscript = Math.log((top + 2) / 2) / Math.log(p

);

if(subscript - Math.floor(subscript) == 0.0) {

ArrayList <Monomial > temp = new ArrayList <Monomial >(1)

;

temp.add(new Monomial ((int) - subscript));

basis[top][hom] = temp;

}

}

}

else{

ArrayList <Monomial > temp_box = new ArrayList <Monomial >();

for(int lambda = 1; 2 * lambda * (p - 1) - 1 < i; lambda

++) {

int lambda_dim = 2 * lambda * (p - 1) - 1;

for(int item = 0; item < basis[top - lambda_dim ][hom -

1]. size(); item ++) {

if(! basis[top - lambda_dim ][hom - 1].get(item).

is_tagged ()) {

if(! basis[top - lambda_dim ][hom - 1].get(item).

tags_something ()) {

Monomial temp = basis[top - lambda_dim ][hom - 1].

get(item).clone();

temp.add(1, lambda);

if(temp.is_admissible ())

temp_box.add(temp);

}

else {

Monomial this_tags = basis[top - lambda_dim ][hom

- 1].get(item).this_tags ().clone();

this_tags.add(1, lambda);

Monomial temp = basis[top - lambda_dim ][hom - 1].

get(item).clone();

temp.add(1, lambda);

if(temp.is_admissible () && !this_tags.

is_admissible ()) temp_box.add(temp);

}

}

else {

Monomial tagged_by = basis[top - lambda_dim ][hom -

1]. get(item).tagged_by ().clone ();

tagged_by.add(1, lambda);

Monomial temp = basis[top - lambda_dim ][hom - 1].

get(item).clone();

temp.add(1, lambda);

if(temp.is_admissible () && !tagged_by.is_admissible

()) temp_box.add(temp);
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}

}

}

for(int v = 0; 2 * (Math.pow(p, v) - 1) < top; v++){

int v_dim = (int) (2 * (Math.pow(p, v) - 1));

for(int item = 0; item < basis[top - v_dim ][hom - 1].

size(); item ++) {

if(! basis[top - v_dim][hom - 1].get(item).is_tagged ()

) {

if(! basis[top - v_dim][hom - 1].get(item).

tags_something ()){

Monomial temp = basis[top - v_dim][hom - 1]. get(

item);

temp.add(1, -v);

if(temp.is_admissible ()) temp_box.add(temp);

}

else {

Monomial this_tags = basis[top - v_dim][hom - 1].

get(item).this_tags ();

this_tags.add(1, -v);

Monomial temp = basis[top - v_dim][hom - 1]. get(

item).clone();

temp.add(1, -v);

if(temp.is_admissible () && !this_tags.

is_admissible ()) temp_box.add(temp);

}

}

else {

Monomial tagged_by = basis[top - v_dim][hom - 1].

get(item).tagged_by ();

tagged_by.add(1, -v);

Monomial temp = basis[top - v_dim][hom - 1]. get(

item).clone();

temp.add(1, -v);

if(temp.is_admissible () && !tagged_by.is_admissible

()) temp_box.add(temp);

}

}

}

temp_box = sort(temp_box);

basis[top][hom] = temp_box;

}

}

// curtis

if(t != 4){

for(int i = 4; t - i > 0; i++) {

int top = i, hom = t - i;

for(int item = basis[top][hom].size() - 1; item > -1;

item --) {

Polynomial differential = Calculator.

compute_differential(basis[top][hom].get(item));
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while(true) {

if(differential.is_null ()) {

break;

}

Monomial leading_term = differential.greatest_term ();

int coefficient = leading_term.get_coefficient ();

int index = find_in_list(top - 1, hom + 1,

leading_term);

if(index != -1) {

if(! basis[top - 1][ hom + 1].get(index).is_tagged ())

{

basis[top - 1][hom + 1].get(index).tagged_by(

basis[top][hom].get(item).divide(coefficient)

);

basis[top][hom].get(item).this_tags(basis[top -

1][ hom + 1].get(index));

break;

}

}

Monomial tagged_by = find_tag(leading_term);

differential.sum(Calculator.compute_differential(

tagged_by.product(-coefficient)));

}

}

}

}

}

}
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