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Abstract. In 1969 Quillen discovered a deep connection between complex

cobordism and formal group laws which he announced in [Qui69]. Algebraic
topology has never been the same since. We will describe the content of [Qui69]
and then discuss its impact on the field. This paper is a writeup of a talk on

the same topic given at the Quillen Conference at MIT in October 2012. Slides
for that talk are available on the author’s home page.

1. Quillen’s cryptic and insightful masterpiece: six pages that
changed algebraic topology forever

Table of contents of [Qui69]:

1. Formal group laws.
2. The formal group law of complex cobordism.
3. The universal nature of cobordism group laws.
4. Typical group laws (after Cartier).
5. Decomposition of Ω∗

(p). (The p-local splitting of Ω = MU .)

6. Operations in ΩT ∗. (The structure of BP ∗(BP ).)

1.1. Enter the formal group law. Quillen began by defining formal group laws
just as we define them today.

Definition 1. A formal group law over a ring R is a power series F (X,Y ) ∈
R[[X,Y ]] with

F (X, 0) = F (0, X) = X

F (Y,X) = F (X,Y )

F (X,F (Y, Z)) = F (F (X,Y ), Z).

For a thorough treatment of this topic, see Hazewinkel [Haz78]. For a shorter
treatment written with this application in mind, see [Rav86, Appendix 2].

Examples:
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• X + Y , the additive formal group law.
• X + Y +XY , the multiplicative formal group law.
• Euler’s addition formula for a certain elliptic integral, the power series
expansion of

X
√
1− Y 4 + Y

√
1−X4

1−X2Y 2
∈ Z[1/2][[X,Y ]].

He then defined the formal group law of complex cobordism in terms of the first
Conner-Floyd Chern class (defined in [CF66]) of the tensor product of two complex
line bundles, just as we define it today.

Definition 2. Let L1 and L2 be complex line bundles over a space X with Conner-
Floyd Chern classes

c1(L1), c1(L2) ∈ Ω2(X) = MU2(X)

Then the formal group law over the complex cobordism ring is

FΩ(c1(L1), c1(L2)) = c1(L1 ⊗ L2).

Quillen’s notation for the complex cobordism of a space or spectrumX was Ω∗X;
today it is commonly denoted by MU∗X.

His first theorem was

(This paper contains several snapshots from [Qui69], showing internal theorem,
equation and reference numbers, not to be confused with the ones used in this
paper. His [6] and [7] are [Nov67] and [Tat68].) He never defined the residue.
Fortunately this mysterious statement was only used to recalculate the logarithm
of the formal group law.
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The logarithm `(X) of a formal group law is a power series defining an isomor-
phism (after tensoring with the rationals) with the additive formal group law, so
we have

`(F (X,Y )) = `(X) + `(Y ).

It is related to the formal group law by the formula

`′(X) =
1

F2(X, 0)

where F2(X,Y ) = ∂F (X,Y )/∂Y . The above Corollary identifies the logarithm for
the formal group law associated with complex cobordism theory.

1.2. Show it is universal. Then he showed that the formal group law for complex
cobordism is universal.

His proof used two previously known facts:

• Michel Lazard [Laz55] had determined the ring L over which the universal
formal group law FL is defined. The previous corollary implies that the
map L → Ωev(pt) carrying FL to FΩ is a rational isomorphism. The target
was known to be torsion free, so it suffices to show the map is onto.

• Milnor [Mil60] and Novikov[Nov67] had independently determined the struc-
ture of the ring MU∗. It is torsion free and generated by as a ring by the
cobordism classes of the Milnor hypersurfaces,

Hm,n ⊂ CPm ×CPn.

Hm,n is the zero locus of a bilinear function on CPm ×CPn.

These imply that it suffices to show that the cobordism classes of the Hm,n can
be defined in terms of the formal group law. Denote the latter as usual by

F (X,Y ) =
∑
i,j≥0

ai,jX
iY j where ai,j ∈ MU2(i+j−1)

with P (X) =
∑
n≥0

PnX
n

= `′(X) where `(X) is the logarithm

and H(X,Y ) =
∑

m,n≥0

[Hm,n]XmY n.
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These are related by the formula

H(X,Y ) = P (X)P (Y )F (X,Y ),

so the cobordism class of each Milnor hypersurface is defined in terms of the formal
group law. This was Quillen’s proof of his Theorem 2.

He proved a similar result about unoriented cobordism. Here there is a formal
group law defined in terms of Stiefel-Whitney classes instead of Chern classes. As
in the complex case, the cobordism ring is generated by real analogs of the Milnor
hypersurfaces. Unlike the complex case, the tensor product square of any real line
bundle is trivial. This forces the formal group law to have characteristic 2 and
satisfy the relation

F (X,X) = 0.

1.3. The Brown-Peterson theorem. In 1966 Brown and Peterson [BP66] showed
that after localization at a prime p (although they did not use this language), Ω
(or MU) splits into a wedge of suspensions of a smaller spectrum now known as
BP and denoted by Quillen as ΩT . This splitting is suggested by a corresponding
decomposition of H∗(MU ;Z/(p)) as a module over the mod p Steenrod algebra.
Their methods did not show that BP is a ring spectrum and gave little information
about its internal structure.

By using some algebra developed by Pierre Cartier [Car67], Quillen gave a much
cleaner form of the splitting, thereby showing that BP is a ring spectrum. A formal
group law F over a ring R defines a group structure on the set of curves over R,
meaning power series with trivial constant term. Given a curve f(X) and a positive
integer n, let

(Fnf)(X) =

n∑
i=1

F f(ζiX
1/n),

where the ζi are the nth roots of unity, and the addition on the right is defined by
the formal group law F . Note that if we replace the formal sum by an ordinary one
and

f(X) =
∑
j>0

fjX
j , then (Fnf)(X) = n

∑
j>0

fnjX
j .

The curve f is said to be p-typical (Quillen used the term “typical”) if Fqf = 0
for each prime q 6= p. In the case of ordinary summation this means that f has the
form

f(X) =
∑
k≥0

f(k)X
pk

.

The formal group law itself is said to be p-typical if the curve X is p-typical with
respect to it. Over a torsion free ring, this is equivalent to the logarithm having
the form above. Cartier showed that when R is a Z(p)-algebra, there is a canonical
coordinate change that converts any formal group law into a p-typical one.

Quillen used this to define an idempotent map ξ̂ on Ω(p) = MU(p) whose tele-
scope is ΩT = BP . This construction is much more convenient than that of Brown
and Peterson. This process changes the logarithm from∑

n≥0

[CPn]Xn+1

n+ 1
to

∑
k≥0

[CP pk−1]Xpk

pk
.

This new logarithm is much simpler than the old one.
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Figure 1. 210 dimensions worth of Adams Ext groups, as com-
puted by Christian Nassau [Nas] in 1999.

An analogous construction converts the unoriented cobordism spectrum MO to
the mod 2 Eilenberg-Mac Lane spectrum HZ/2.

1.4. Operations in BP -theory. In order to get the most use out of a cohomology
theory E∗ represented by a spectrum E, one needs to understand the graded algebra
AE of maps from E to itself. In favorable cases one can set up an E-based Adams
spectral sequence and wonder about its E2-term. This is usually some Ext group
defined in terms of the algebra of operations AE . Finding it explicitly is often a
daunting task.

Here are some examples.

• For E = HZ/2 (ordinary mod 2 cohomology), the algebra AE is the mod
2 Steenrod algebra, which has proven to be a fertile source of theorems
in algebraic topology. The corresponding Ext group has been extensively
studied, first by Adams in [Ada58].

• For E = MU , AE was determined in 1967 by Novikov in [Nov67]. He found
a small but extremely rich portion of its Ext group, rich enough to include
the denominator of the value of the Riemann zeta function at each negative
odd integer!

• For E = BP , AE was determined by Quillen. The details are too technical
for this paper. He gave a precise description in less than two pages, with
little indication of proof. The resulting Ext group is the same as Novikov’s
localized at the prime p. The underlying formulas are easier to calculate
with than Novikov’s, once one knows how to use them. It took the rest of
us about 5 years to figure out how to do it.

2. Complex cobordism theory after Quillen

In those days the AMS Bulletin was a vehicle for announcements of new results.
Detailed accounts would typically be published elsewhere at a later date. Quillen’s
article was unusually long. He never wrote a detailed account of it because Frank
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Adams did it for him. In [Ada74, Part II] Adams explained all the proofs with
great care. His book became the definitive reference for Quillen’s results.

He also introduced a very helpful but counterintuitive point of view. Instead
of studying the algebra ABP , one should compute in terms of its suitably defined
linear dual. As he put it,

Quillen’s formal variables ti are crying out to be located inBP∗(BP ).

This proved to be a huge technical simplification.
Quillen’s work was a bridge connecting algebraic topology with algebraic geom-

etry and number theory. Homotopy theorists have been expanding that bridge ever
since.

2.1. Morava’s work. In the early 1970s Jack Morava applied deeper results (due
mostly to Lazard) from the theory of formal group laws to algebraic topology.
While his work [Mor85] was not published until over a decade later, he had several
preprints in circulation. This author learned a great deal about them in private
conversations with him. They were so influential that his name appeared in titles of
several papers published before [Mor85] by other authors, such as [JW75], [MR77],
[Rav82], [Rav77], [Rav76], [RW80], [Wil84] and [Yag80].

The deeper results included

• A classification of formal group laws over the algebraic closure of the field
Fp. There is a complete isomorphism invariant called the height, which can
be any positive integer or infinity.

• The automorphism group of a height n formal group law is a certain p-adic
Lie group. It is now known as the Morava stabilizer group Sn.

• He defined a cohomology theory associated with height n formal group laws
now known as Morava K-theory K(n).

He also studied the affine variety Spec(MU∗) and defined an action on it by
a group of power series substitutions. It is now known as the moduli stack of
formal group laws; see [Goe04] and [Goe10]. After passage to characteristic p, the
orbits under this action are isomorphism classes of formal group laws as classified
by Lazard. The Zariski closures of these orbits form a nested sequence of affine
subspaces of the affine variety. The isotropy group of the height n orbit is the
height n automorphism group Sn, hence the name stabilizer group.

2.2. Chromatic homotopy theory. Morava’s insights led to the formulation of
the chromatic point of view in stable homotopy theory. In the late 1970s Haynes
Miller, Steve Wilson and I showed that Morava’s stratification of Spec(MU∗) leads
to a nice filtration of the Adams-Novikov E2-term ; see [MRW77] and [Rav86,
Chapter 5]. In the early 80s we learned [Rav84] that the stable homotopy category
itself possesses a filtration similar to the one found by Morava in Spec(MU∗). A key
technical tool in defining it is Bousfield localization, defined in [Bou79]. As in the
algebraic case, for each positive integer n, there is a layer of the stable homotopy
category (localized at a prime p) related to height n formal group laws. Roughly
speaking, its structure is controlled by the cohomology of the nth Morava stabilizer
group Sn.

Homotopy groups of objects in the nth layer tend to repeat themselves every
2pk(pn − 1) dimensions for various k. This is known as vn-periodicity. The term
chromatic refers to this separation into varying frequencies.



FORMAL GROUP LAWS 7

The first known example of this phenomenon was the Bott Periodicity Theorem
of [Bot59], describing the homotopy of the stable unitary and orthogonal groups.
It is an example of v1-periodicity.

The motivating problem behind this work was understanding the stable homo-
topy groups of spheres. Research on them in the 1950s and 60s (such as [Tod62])
indicated a very disorganized picture, a zoo of erratic phenomena. It was seen then
to contain one systematic pattern related to Bott periodicity. The known homotopy
groups of the stable orthogonal group mapped to the unknown stable homotopy
groups of spheres by the Hopf-Whitehead J-homomorphism [Whi42]. Its image was
determined by Adams [Ada66]. It contained the rich arithmetic structure detected
by the Novikov calculation referred to earlier.

In the early 1970s some more systematic patterns were found independently by
Larry Smith [Smi77] and Hirosi Toda [Tod71]. The aim of chromatic theory was
find a unified framework for such patterns. It was very successful. A milestone
result in it is the Nilpotence Theorem of Ethan Devinatz, Mike Hopkins and Jeff
Smith [DHS88]. Of this result Adams [Ada92, page 525] said

At one time it seemed that homotopy theory was utterly without
system; now it is almost proved that systematic effects predomi-
nate.

A unified account of these developments can be found in [Rav92].

2.3. Elliptic cohomology and topological modular forms. For over a century
elliptic curves have stood at the center of mathematics. Every elliptic curve over a
ring R has a formal group law attached to it. This means there is a homomorphism
to R from MU∗. It is known that the mod p reduction (for any prime p for which
the curve has good reduction) of this formal group law has height 1 or 2.

This led to the definition of the elliptic genus by Serge Ochanine [Och87] in 1984
and the definition of elliptic cohomology by Peter Landweber, Bob Stong and myself
[LRS95] a few years later. Attempts to interpret the former analytically have been
made by Ed Witten [Wit88] and [Wit87], and by Stephan Stolz and Peter Teichner
[ST04]. The proceedings of two conferences on this topic are [Lan88] and [MR07].
A useful survey with many more references is [Lur09].

A deeper study of the connection between elliptic curves and algebraic topology
led to the theory of topological modular forms in the past decade. The main players
here are Mike Hopkins, Haynes Miller, Paul Goerss and Jacob Lurie. References
include [HM], [Goe10] and [Beh].

Algebraic geometers study objects like elliptic curves by looking at moduli spaces
for them. Roughly speaking, the moduli space (or stack) Mell for elliptic curves
is a topological space with an elliptic curve attached to each point. The theory of
elliptic curves is in a certain sense controlled by the geometry of this space.

To each open subset in the moduli stack Mell one can associate a certain com-
mutative ring of functions related to the corresponding collection of elliptic curves.
This collection is called a sheaf of rings Oell over Mell.

Such a sheaf has a ring of global sections Γ(Oell), which encodes a lot of useful
information. Elements of this ring are closely related to modular forms, which are
complex analytic functions with certain arithmetic properties that have fascinated
number theorists for over a century. They were a key ingredient in Wiles’ proof of
Fermat’s Last Theorem.
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Figure 2. The 2-primary homotopy of tmf illustrated by Andre
Henriques in [Hen]. See also Bauer [Bau08].

Hopkins, Lurie et al. have found a way to enrich this theory by replacing every
ring R in sight with a commutative ring spectrum E with suitable formal properties.
We can think of E as an iceberg whose tip is R. The one associated with Γ(Oell) is
known as tmf , the ring spectrum of topological modular forms. This ring spectrum
is an iceberg whose tip is the classical theory of modular forms.

More recently this work has been generalized to a theory of topological automor-
phic forms by Mark Behrens and Tyler Lawson in [BL10]. Here the elliptic curves
are replaced by more general abelian varieties classified by suitable moduli stacks.
While an elliptic curve has a 1-dimensional formal group law attached to it, an
abelian variety of dimension d has a d-dimensional one. In favorable cases it has a
one dimensional formal summand whose height could be as large as d− 1. In this
way one gets spectra similar to tmf that give information about all layers of the
chromatic tower.

Quillen’s work on formal group laws and complex cobordism opened a new era in
algebraic topology. It led to a chain of discoveries that is unabated to this day.
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pages 289–292, Providence, Rhode Island, 1982. American Mathematical Society.

[Rav84] Douglas C. Ravenel. Localization with respect to certain periodic homology theories.
Amer. J. Math., 106(2):351–414, 1984.



10 DOUGLAS C. RAVENEL

[Rav86] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume
121 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL, 1986. Errata

and second edition available online at author’s home page.
[Rav92] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128

of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992.

Appendix C by Jeff Smith.
[RW80] Douglas C. Ravenel and W. Stephen Wilson. The Morava K-theories of Eilenberg-Mac

Lane spaces and the Conner-Floyd conjecture. Amer. J. Math., 102(4):691–748, 1980.

[Smi77] Larry Smith. On realizing complex bordism modules. IV. Applications to the stable
homotopy groups of spheres. Amer. J. Math., 99(2):418–436, 1977.

[ST04] Stephan Stolz and Peter Teichner. What is an elliptic object? In Topology, geometry
and quantum field theory, volume 308 of London Math. Soc. Lecture Note Ser., pages

247–343. Cambridge Univ. Press, Cambridge, 2004.

[Tat68] John Tate. Residues of differentials on curves. Ann. Sci. École Norm. Sup. (4), 1:149–
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