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Our main result

Our main theorem can be stated in three different but
equivalent ways:

• Manifold formulation: It says that a certain geometrically
defined invariant Φ(M) (the Arf-Kervaire invariant, to be
defined later) on certain manifolds M is always zero.

• Stable homotopy theoretic formulation: It says that certain
long sought hypothetical maps between high dimensional
spheres do not exist.

• Unstable homotopy theoretic formulation: It says
something about the EHP sequence (to be defined below),
which has to do with unstable homotopy groups of
spheres.

The problem solved by our theorem is nearly 50 years old.
There were several unsuccessful attempts to solve it in the
1970s. They were all aimed at proving the opposite of what we
have proved.
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A wildly popular dance craze
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Our main result (continued)

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements θj ∈ π2j+1−2+n(Sn) for large n do not
exist for j ≥ 7.

The θj in the theorem is the name given to a hypothetical map
between spheres for which the Arf-Kervaire invariant is
nontrivial. It has long been known that such things can exist
only in dimensions that are 2 less than a power of 2.
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Our main result (continued)

Some homotopy theorists, most notably
Mark Mahowald, speculated about what
would happen if θj existed for all j .

They de-
rived numerous consequences about homo-
topy groups of spheres. The possible nonex-
istence of the θj for large j was known as the
Doomsday Hypothesis.

After 1980, the problem faded into the background because it
was thought to be too hard. Our proof is two giant steps away
from anything that was attempted in the 70s. We now know
that the world of homotopy theory is very different from what
they had envisioned then.
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Mark Mahowald’s sailboat
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1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H.

It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.8

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.9

On the money: Arf’s definition republished in 2009
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1.10

The Kervaire invariant of a framed (4k + 2)-manifold

Let M be a 2k -connected smooth closed framed manifold of
dimension 4k + 2.

The word framed here means that M has an
embedding in some Euclidean space Rn+4k+2 having trivial
normal bundle with a given trivialization. This framing leads to
a map p(M) : Sn+4k+2 → Sn and hence an element in
πn+4k+2(Sn). This construction is due to Pontryagin.
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Let M be a 2k -connected smooth closed framed manifold of
dimension 4k + 2. The word framed here means that M has an
embedding in some Euclidean space Rn+4k+2 having trivial
normal bundle with a given trivialization. This framing leads to
a map p(M) : Sn+4k+2 → Sn and hence an element in
πn+4k+2(Sn). This construction is due to Pontryagin.
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1.11

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

Let H = H2k+1(M; Z), the homology group in the middle
dimension.

Each x ∈ H is represented by an immersion
ix : S2k+1 # M with a stably trivialized normal bundle. H has
an antisymmetric bilinear form λ defined in terms of
intersection numbers. Kervaire defined a quadratic refinement
q on its mod 2 reduction in terms of the trivialization of each
sphere’s normal bundle.

The Kervaire invari-
ant Φ(M) is defined
to be the Arf invari-
ant of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.11

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

Let H = H2k+1(M; Z), the homology group in the middle
dimension. Each x ∈ H is represented by an immersion
ix : S2k+1 # M with a stably trivialized normal bundle.

H has
an antisymmetric bilinear form λ defined in terms of
intersection numbers. Kervaire defined a quadratic refinement
q on its mod 2 reduction in terms of the trivialization of each
sphere’s normal bundle.

The Kervaire invari-
ant Φ(M) is defined
to be the Arf invari-
ant of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.11

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

Let H = H2k+1(M; Z), the homology group in the middle
dimension. Each x ∈ H is represented by an immersion
ix : S2k+1 # M with a stably trivialized normal bundle. H has
an antisymmetric bilinear form λ defined in terms of
intersection numbers.

Kervaire defined a quadratic refinement
q on its mod 2 reduction in terms of the trivialization of each
sphere’s normal bundle.

The Kervaire invari-
ant Φ(M) is defined
to be the Arf invari-
ant of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.11

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

Let H = H2k+1(M; Z), the homology group in the middle
dimension. Each x ∈ H is represented by an immersion
ix : S2k+1 # M with a stably trivialized normal bundle. H has
an antisymmetric bilinear form λ defined in terms of
intersection numbers. Kervaire defined a quadratic refinement
q on its mod 2 reduction in terms of the trivialization of each
sphere’s normal bundle.

The Kervaire invari-
ant Φ(M) is defined
to be the Arf invari-
ant of q.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.11

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

Let H = H2k+1(M; Z), the homology group in the middle
dimension. Each x ∈ H is represented by an immersion
ix : S2k+1 # M with a stably trivialized normal bundle. H has
an antisymmetric bilinear form λ defined in terms of
intersection numbers. Kervaire defined a quadratic refinement
q on its mod 2 reduction in terms of the trivialization of each
sphere’s normal bundle.

The Kervaire invari-
ant Φ(M) is defined
to be the Arf invari-
ant of q.
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1.12

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

What can we say about Φ(M)?

• Kervaire (1960) showed it must vanish when k = 2. This
enabled him to construct the first example of a topological
manifold (of dimension 10) without a smooth structure.

• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4

with nontrivial Kervaire invariant. Pontryagin used it in
1950 (after some false starts in the 30s) to show
πn+2(Sn) = Z/2 for all n ≥ 2.

•
Brown-Peterson (1966)
showed that it vanishes
for all positive even k .
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The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

What can we say about Φ(M)?
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enabled him to construct the first example of a topological
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• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4

with nontrivial Kervaire invariant. Pontryagin used it in
1950 (after some false starts in the 30s) to show
πn+2(Sn) = Z/2 for all n ≥ 2.

•
Brown-Peterson (1966)
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The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

What can we say about Φ(M)?

• Kervaire (1960) showed it must vanish when k = 2. This
enabled him to construct the first example of a topological
manifold (of dimension 10) without a smooth structure.

• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4

with nontrivial Kervaire invariant. Pontryagin used it in
1950 (after some false starts in the 30s) to show
πn+2(Sn) = Z/2 for all n ≥ 2.

•
Brown-Peterson (1966)
showed that it vanishes
for all positive even k .
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1.13

The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

More of what we can say about Φ(M).

• Browder (1969) showed that it can be
nontrivial only if k = 2j−1 − 1 for some
positive integer j . This happens iff the
element h2

j is a permanent cycle in the
Adams spectral sequence. The corre-
sponding element in πn+2j+1−2(Sn) for
large n is θj , the subject of our theo-
rem. This is the stable homotopy the-
oretic formulation of the problem.

• θj is known to exist for 1 ≤ j ≤ 5, i.e., in dimensions 2, 6,
14, 30 and 62.

• Our theorem says θj does not exist for j ≥ 7. The case
j = 6 is still open.
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(continued)
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The Kervaire invariant of a framed (4k + 2)-manifold
(continued)

More of what we can say about Φ(M).

• Browder (1969) showed that it can be
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positive integer j . This happens iff the
element h2

j is a permanent cycle in the
Adams spectral sequence. The corre-
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oretic formulation of the problem.

• θj is known to exist for 1 ≤ j ≤ 5, i.e., in dimensions 2, 6,
14, 30 and 62.

• Our theorem says θj does not exist for j ≥ 7. The case
j = 6 is still open.
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1.14

The EHP sequence

Assume all spaces in sight are localized
and the prime 2. For each n > 0 there
is a fiber sequence due to James,

Sn E // ΩSn+1 H // ΩS2n+1.

This leads to a long exact sequence of homotopy groups

. . . // πm(Sn)
E // πm+1(Sn+1)

H // πm+1(S2n+1)
P // πm−1(Sn) // . . .
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1.15

The EHP sequence (continued)

. . . // πm(Sn)
E // πm+1(Sn+1)

H // πm+1(S2n+1)
P // πm−1(Sn) // . . .

Here
E stands for Einhängung, the
German word for suspension.

H stands for Hopf invariant.

P stands for Whitehead product.
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The EHP sequence (continued)

. . . // πm(Sn)
E // πm+1(Sn+1)

H // πm+1(S2n+1)
P // πm−1(Sn) // . . .

Here
E stands for Einhängung, the
German word for suspension.

H stands for Hopf invariant.
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The EHP sequence (continued)

For m = 2n the sequence is

. . . // π2n(Sn)
E // π2n+1(Sn+1)

H // π2n+1(S2n+1)
P // π2n−1(Sn) // . . .

Z

and we can ask about the image under P of the generator of
π2n+1(S2n+1). We denote it by wn ∈ π2n−1(Sn), the Whitehead
square. The following facts are known about it.
• When n is even, wn it has infinite order and Hopf invariant

two.
• wn is trivial for n = 1, 3 and 7. In these cases

wn+1 ∈ π2n+1(Sn+1) is divisible by 2, the quotient having
Hopf invariant one.

• For other odd values of n, H(wn+1) = 2 and wn+1 is not
divisible by 2, so wn has order 2.

• For such n, wn is divisible by 2 iff n = 2j+1 − 1 with j > 2
and θj exists, in which case wn = 2θj .
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The EHP sequence (continued)

For m = 2n the sequence is
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The EHP sequence (continued)

For m = 2n the sequence is

. . . // π2n(Sn)
E // π2n+1(Sn+1)

H // π2n+1(S2n+1)
P // π2n−1(Sn) // . . .

Z

and we can ask about the image under P of the generator of
π2n+1(S2n+1). We denote it by wn ∈ π2n−1(Sn), the Whitehead
square. The following facts are known about it.
• When n is even, wn it has infinite order and Hopf invariant

two.

• wn is trivial for n = 1, 3 and 7. In these cases
wn+1 ∈ π2n+1(Sn+1) is divisible by 2, the quotient having
Hopf invariant one.

• For other odd values of n, H(wn+1) = 2 and wn+1 is not
divisible by 2, so wn has order 2.

• For such n, wn is divisible by 2 iff n = 2j+1 − 1 with j > 2
and θj exists, in which case wn = 2θj .
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1.17

The Hopf-Whitehead J homomorphism

Let SO(n) denote the special orthogonal group acting on Rn.

Using the one point compactification, each element g ∈ SO(n)
induces a base point preserving map Sn → Sn. Thus we get a
map J : SO(n)→ ΩnSn and for each k > 0 a homomorphism

πk (SO(n))
J // πk (ΩnSn) πn+k (Sn).

Both source and target known to be independent of n for
n > k + 1.
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The Hopf-Whitehead J homomorphism (continued)

In this case its value for each k was determined by Bott in his
periodicity theorem.

He showed

πk (SO) =

 Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.18

The Hopf-Whitehead J homomorphism (continued)

In this case its value for each k was determined by Bott in his
periodicity theorem. He showed

πk (SO) =

 Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.18

The Hopf-Whitehead J homomorphism (continued)

In this case its value for each k was determined by Bott in his
periodicity theorem. He showed

πk (SO) =

 Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.19

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is
known to have nontrivial image (and to generate a direct
summand) under J. In the j th case we denote this image by βj
and its dimension by φ(j), which is roughly 2j . The first three of
these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7. After that
we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on. Here πk is short
for πk+n(Sn) for n > k + 1, which is known to be independent of
n.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.19

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is
known to have nontrivial image (and to generate a direct
summand) under J.

In the j th case we denote this image by βj
and its dimension by φ(j), which is roughly 2j . The first three of
these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7. After that
we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on. Here πk is short
for πk+n(Sn) for n > k + 1, which is known to be independent of
n.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.19

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is
known to have nontrivial image (and to generate a direct
summand) under J. In the j th case we denote this image by βj
and its dimension by φ(j), which is roughly 2j .

The first three of
these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7. After that
we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on. Here πk is short
for πk+n(Sn) for n > k + 1, which is known to be independent of
n.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.19

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is
known to have nontrivial image (and to generate a direct
summand) under J. In the j th case we denote this image by βj
and its dimension by φ(j), which is roughly 2j . The first three of
these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7.

After that
we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on. Here πk is short
for πk+n(Sn) for n > k + 1, which is known to be independent of
n.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.19

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is
known to have nontrivial image (and to generate a direct
summand) under J. In the j th case we denote this image by βj
and its dimension by φ(j), which is roughly 2j . The first three of
these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7. After that
we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on.

Here πk is short
for πk+n(Sn) for n > k + 1, which is known to be independent of
n.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

1.19

The Hopf-Whitehead J homomorphism (continued)

k 1 2 3 4 5 6 7 8 9 10
πk (SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0

In each case where the group is nontrivial, its generator is
known to have nontrivial image (and to generate a direct
summand) under J. In the j th case we denote this image by βj
and its dimension by φ(j), which is roughly 2j . The first three of
these are the Hopf maps η ∈ π1, ν ∈ π3 and σ ∈ π7. After that
we have β4 ∈ π8, β5 ∈ π9, β6 ∈ π11 and so on. Here πk is short
for πk+n(Sn) for n > k + 1, which is known to be independent of
n.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Background and
history
Our main result

The Arf-Kervaire
formulation

The unstable formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω
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The Hopf-Whitehead J homomorphism (continued)

Each Whitehead square w2n+1 ∈ π4n+1(S2n+1) (except the
cases n = 0, 1 and 3) desuspends to a lower sphere until we
get an element with a nontrivial Hopf invariant, which is always
some βj .

More precisely we have

H(w(2s+1)2j−1) = βj

for each j > 0 and s ≥ 0. This result is essentially Adams’
1961 solution to the vector field problem.
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1.21

Back to the EHP sequence

Recall the EHP sequence

. . . // πm(Sn)
E // πm+1(Sn+1)

H // πm+1(S2n+1)
P // πm−1(Sn) // . . .

Given some βj ∈ π2n+1+φ(j)(S2n+1) for φ(j) < 2n, one can ask
about the Hopf invariant of its image under P, which vanishes
when βj is in the image of H. In most cases the answer is
known and is due to Mahowald. The remaining cases have to
do with θj . The answer that he had hoped for is the following.

World Without End Hypothesis (Mahowald 1967)

• The Arf-Kervaire element θj ∈ π2j+1−2 exists for all j > 0.

• It desuspends to S2j+1−1−φ(j) and its Hopf invariant is βj .
• Let j , s > 0 and suppose that m = 2j+2(s + 1)− 4− φ(j)

and n = 2j+1(s + 1)− 2− φ(j). Then P(βj ) has Hopf
invariant θj .
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Back to the EHP sequence

Recall the EHP sequence

. . . // πm(Sn)
E // πm+1(Sn+1)

H // πm+1(S2n+1)
P // πm−1(Sn) // . . .

Given some βj ∈ π2n+1+φ(j)(S2n+1) for φ(j) < 2n, one can ask
about the Hopf invariant of its image under P, which vanishes
when βj is in the image of H. In most cases the answer is
known and is due to Mahowald. The remaining cases have to
do with θj . The answer that he had hoped for is the following.

World Without End Hypothesis (Mahowald 1967)

• The Arf-Kervaire element θj ∈ π2j+1−2 exists for all j > 0.

• It desuspends to S2j+1−1−φ(j) and its Hopf invariant is βj .
• Let j , s > 0 and suppose that m = 2j+2(s + 1)− 4− φ(j)

and n = 2j+1(s + 1)− 2− φ(j). Then P(βj ) has Hopf
invariant θj .
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Questions raised by our theorem

EHP sequence formulation. The World Without End
Hypothesis was the nicest possible statement of its kind given
all that was known prior to our theorem. Now we know it
cannot be true since θj does not exist for j ≥ 7. This means the
behavior of the indicated elements P(βj ) for j ≥ 7 is a mystery.

Adams spectral sequence formulation. We now know that the
h2

j for j ≥ 7 are not permanent cycles, so they have to support
nontrivial differentials. We have no idea what their targets are.

Our method of proof offers a new tool for studying the stable
homotopy groups of spheres. We look forward to learning more
with it in the future.
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1.23

Ingredients of the proof

Our proof has several ingredients.

• It uses methods of stable homotopy theory, which means it
uses spectra instead of topological spaces. The definition
of these would take us too far afield, so instead we offer a
slogan:
Spectra are to spaces as integers are to natural numbers.

In particular, recall that a space X has a homotopy group
πk (X ) for each positive integer k . A spectrum X has an
abelian homotopy group πk (X ) defined for every integer k .

For the sphere spectrum S0, πk (S0) is the usual homotopy
group πn+k (Sn) for n > k + 1. The hypothetical θj is an
element of this group for k = 2j+1 − 2.
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1.24

Ingredients of the proof (continued)

More ingredients of our proof:

• It uses complex cobordism theory. This is a branch of
algebraic topology having deep connections with algebraic
geometry and number theory. It includes some highly
developed computational techniques that began with work
by Novikov and Quillen in the 60s. A pivotal tool in the
subject is the theory of formal group laws.

• It also makes use of newer less familiar methods from
equivariant stable homotopy theory. This means there is a
finite group G (a cyclic 2-group) acting on all spaces in
sight, and all maps are required to commute with these
actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G),
the real representation ring of G. Our calculations make
use of this richer structure.
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developed computational techniques that began with work
by Novikov and Quillen in the 60s. A pivotal tool in the
subject is the theory of formal group laws.

• It also makes use of newer less familiar methods from
equivariant stable homotopy theory. This means there is a
finite group G (a cyclic 2-group) acting on all spaces in
sight, and all maps are required to commute with these
actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G),
the real representation ring of G. Our calculations make
use of this richer structure.
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The spectrum Ω

We will produce a map S0 → Ω, where Ω is a nonconnective
spectrum (meaning that it has nontrivial homotopy groups in
arbitrarily large negative dimensions) with the following
properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.
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The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for θj for larger j is
similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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The spectrum Ω (continued)
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup.

Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by right multiplication, and the
resulting object has an action of G by left multiplication. As a
set, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
left invariant by the subgroup H.

In particular we get a C8-spectrum

MU(4) = MapC2
(C8,MU).

This spectrum is not periodic, but it has a close relative Ω̃
which is.
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