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1.1

1 Review of our strategy

Review of our strategy
Our goal is to prove

Main Theorem. The Arf-Kervaire elements θ j ∈ π2 j+1−2(S
0) do not exist for j ≥ 7.

Our strategy is to find a map S0→Ω to a nonconnective spectrum Ω with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the image of each θ j is nontrivial. This
is the Detection Theorem discussed by Hopkins yesterday.

(ii) π−2(Ω) = 0. This is the Gap Theorem discussed by Hill earlier today.
(iii) It is 256-periodic, meaning Σ256Ω∼= Ω. This is the Periodicity Theorem.

1.2

Our strategy (continued)
(ii) and (iii) imply that π254(Ω) = 0.

If θ7 exists, (i) implies it has a nontrivial image in this group, so it cannot exist.

The argument for θ j for larger j is similar, since |θ j|= 2 j+1−2≡−2 mod 256 for j ≥ 7. 1.3

2 The spectrum Ω

The spectrum Ω

As explained previously, there is an action of the cyclic group C8 on the 4-fold smash product
MU (4). It is derived using a norm induction from the action of C2 on MU by complex conjugation.

We will construct a C8-spectrum Ω̃ by inverting a certain element D ∈ π?(MU (4)), the RO(C8)-
graded homotopy of MU (4). We have a theorem (not to be treated in this talk) equating its homotopy
fixed point Ω̃hC8 with its actual fixed point set Ω̃C8 , which we denote by Ω. We will see that Ω̃C8 has
the gap property while Ω̃hC8 has the periodicity and detection properties. 1.4
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The spectrum Ω (continued)
The homotopy of (MU (4))hC8 can be computed using the homotopy fixed point spectral sequence,

for which
E2 = H∗(C8;π∗(MU (4))).

In this case it coincides with the Adams-Novikov spectral sequence for π∗((MU (4))hC8). Algebraic
methods available since the 1990s can be used to show that it detects the θ js. D has to be chosen so
that this is still true after we invert it.

The homotopy of (MU (4))C8 and Ω = D−1(MU (4))C8 can be also computed using the slice spec-
tral sequence described by Hill. It has the convenient property that π−2 vanishes in the E2-term. In
fact πk vanishes for −4 < k < 0.

This is our main motivation for developing the slice spectral sequence. We do not know how to
show this vanishing using the other spectral sequence.

In order to identify D we need to study the slice spectral sequence in more detail. 1.5

3 The slice spectral sequence

The slice spectral sequence
Recall that for G =C8 we have a slice tower

. . . // Pn+1
G MU (4) // Pn

GMU (4) // Pn−1
G MU (4) // . . .

GPn+1
n+1 MU (4)

OO

GPn
n MU (4)

OO

GPn−1
n−1 MU (4)

OO

in which

• the inverse limit is MU (4),
• the direct limit is contractible and
• GPn

n MU (4) is the fiber of the map Pn
GMU (4)→ Pn−1

G MU (4).

GPn
n MU (4) is the nth slice and the decreasing sequence of subgroups of π∗(MU (4)) is the slice

filtration. We also get slice filtrations of the RO(G)-graded homotopy π?(MU (4)) and the homotopy
groups of fixed point sets π∗((MU (4))H) for each subgroup H. 1.6

The slice spectral sequence (continued)
This means the slice filtration leads to a slice spectral sequence converging to π∗(MU (4)) and its

variants.

One variant has the form

Es,t
2 = π

G
t−s(

GPt
t MU (4)) =⇒ π

G
t−s(MU (4)).

Recall that πG
∗ (MU (4)) is by definition π∗((MU (4))G), the homotopy of the fixed point set. 1.7

The slice spectral sequence (continued)

Slice Theorem . In the slice tower for MU (4), every odd slice is contractible and P2n
2n = Ŵn∧HZ,

where HZ is the integer Eilenberg-Mac Lane spectrum and Ŵn is a certain wedge of the following
three types of finite G-spectra:

• S(n/4)ρ8 (when n is divisible by 4), where ρg denotes the regular real representation of Cg,
• C8∧C4 S(n/2)ρ4 (when n is divisible by 2) and
• C8∧C2 Snρ2 .

The same holds after we invert D, in which case negative values of n can occur.
1.8
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3.1 Slices of the form Smρ8 ∧HZ
Slices of the form Smρ8 ∧HZ

Here is a picture of some slices Smρ8 ∧HZ.
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1.9

Slices of the form Smρ8 ∧HZ (continued)

• Note that all elements are in the first and third quadrants between certain black lines with slopes
0 and orchid lines with slope 7, and are concentrated on diagonals where t is divisible by 8.

• Bullets, circles and diamonds indicate cyclic groups of order 2, 4 and 8, and boxes indicate
copies of the integers.

• A similar picture for Smρ4 ∧HZ would be confined to the regions between the black lines and
blue lines with slope 3 and concentrated on diagonals where t is divisible by 4.

• A similar picture for Smρ2 ∧HZ would be confined to the regions between the black lines and
green lines with slope 1 and concentrated on diagonals where t is divisible by 2.

1.10

3.2 Implications for the slice spectral sequence

Implications for the slice spectral sequence
These calculations imply the following.

• The slice spectral sequence for MU (4) is concentrated in the first quadrant and confined by the
same vanishing lines.

• Later we will invert elements in πmρ8(MU (4)). The fact that

S−ρ8 ∧ (C8∧H Smρh) =C8∧H S(m−8/h)ρh

means that the resulting slice spectral sequence is confined to the regions of the first and third
quadrants shown in the picture.

1.11

4 Geometric fixed points

Geometric fixed points
In order to proceed further, we need another concept from equivariant stable homotopy theory.

Unstably a G-space X has a fixed point set,

XG = {x ∈ X : γ(x) = x ∀γ ∈ G} .
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This is the same as F(S0,X+)
G, the space of based equivariant maps S0→ X+, which is the same

as the space of unbased equivariant maps ∗→ X .

The homotopy fixed point set XhG is the space of based equivariant maps EG+→ X+, where EG
is a contractible free G-space. The equivariant homotopy type of XhG is independent of the choice of
EG. 1.12

Geometric fixed points (continued)
Both of these definitions have stable analogs, but the fixed point functor is awkward for two

reasons:

• it fails to commute with smash products and
• it fails to commute with infinite suspensions.

The geometric fixed set ΦGX is a convenient substitute that avoids these difficulties. In order to
define it we need the isotropy separation sequence, which in the case of a finite cyclic 2-group G is
the cofiber sequence

EC2+→ S0→ ẼC2.

Here EC2 is a G-space via the projection G→C2 and S0 has the trivial action, so ẼC2 is also a
G-space. 1.13

Geometric fixed points (continued)

EC2+→ S0→ ẼC2.

Under this action ECG
2 is empty while for any proper subgroup H of G, ECH

2 = EC2, which is
contractible. For an arbitrary finite group G it is possible to construct a G-space with the similar
properties.

Definition. For a finite cyclic 2-group G and G-spectrum X, the geometric fixed point spectrum is

Φ
GX = (X ∧ ẼC2)

G.

1.14

Geometric fixed points (continued)

Φ
GX = (X ∧ ẼC2)

G.

This functor has the following properties:

• For G-spectra X and Y , ΦG(X ∧Y ) = ΦGX ∧ΦGY .
• For a G-space X , ΦGΣ∞X = Σ∞(XG).
• A map f : X → Y is a G-equivalence iff ΦH f is an ordinary equivalence for each subgroup

H ⊂ G.

From the suspension property we can deduce that

Φ
C8MU (4) = MO,

the unoriented cobordism spectrum.

Geometric Fixed Point Theorem. Let σ denote the sign representation. Then for any G-spectrum
X, π?(ẼC2∧X) = a−1

σ π?(X), where aσ : S0→ Sσ is the inclusion of the fixed point set.
1.15
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Geometric fixed points (continued)
Recall that π∗(MO) = Z/2[yi : i > 0, i 6= 2k−1] where |yi|= i. It is not hard to show that

π∗(MU (4)) = Z[ri,γ(ri),γ
2(ri),γ

3(ri) : i > 0]

where |ri|= 2i, γ is a generator of G and γ4(ri) = (−1)iri. In πiρ8(MU (4)) we have the element

Nri = riγ(ri)γ
2(ri)γ

3(ri).

Applying the functor ΦG to the map Nri : Siρ8 →MU (4) gives a map Si→MO.

Lemma. The generators ri and yi can be chosen so that

Φ
GNri =

{
0 for i = 2k−1
yi otherwise.

1.16

5 Some slice differentials

Some slice differentials
We know that the slice spectral sequence for MU (4) has a vanishing line of slope 7. We will

describe the subring of elements lying on it.

Let fi ∈ πi(MU (4)) be the composite

Si
aiρ8 // Siρ8

Nri // MU (4),

where aiρ8 is the inclusion of the fixed point set. The following facts about fi are easy to prove.

• It appears in the slice spectral sequence in E7i,8i
2 , which is on the vanishing line.

• The subring of elements on the vanishing line is the polynomial algebra on the fi.
1.17

Some slice differentials (continued)

• Under the map
π∗(MU (4))→ π∗(Φ

GMU (4)) = π∗(MO)

we have

fi 7→
{

0 for i = 2k−1
yi otherwise

• Any differential landing on the vanishing line must have a target in the ideal ( f1, f3, f7, . . .). A
similar statement can be made after smashing with S2kσ .

1.18

Some slice differentials (continued)
Recall that for an oriented representation V there is a map uV : S|V | → ΣV HZ, which lies in

πV−|V |(HZ). It satisfies u2V = u2
V , so u2kσ

= u2k−1

2σ
.

Slice Differentials Theorem. In the slice spectral sequence for Σ2kσ MU (4) for k > 0, we have
dr(u2kσ

) = 0 for r < 1+8(2k−1), and

d1+8(2k−1)(u2kσ
) = a2k

σ f2k−1.

A similar statement holds for the G-spectrum MU (g/2) for a cyclic 2-group G of order g.

Sketch of proof: Inverting aσ in the slice spectral sequence will make it converge to π∗(MO).
This means each power of u2σ has to support a nontrivial differential. The only way this can happen
is as indicated in the theorem. 1.19
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6 Some RO(G)-graded calculations

Some RO(G)-graded calculations
For a cyclic 2-group G let

∆
(g)
k = Ng

2 r2k−1 = r2k−1γ(r2k−1) . . .γ
g/2−1(r2k−1)

∈ π(2k−1)ρg
(MU (g/2))

We want to invert this element and study the resulting slice spectral sequence. As explained
previously, for G =C8 it is confined to the first and third quadrants with vanishing lines of slopes 0
and 7.

The differential dr on u2k

2σ
described in the theorem is the last one possible since its target,

a2k+1
σ f2k+1−1, lies on the vanishing line. If we can show that this target is killed by an earlier dif-

ferential after inverting ∆
(g)
k , then u2k

2σ
will be a permanent cycle. 1.20

Some RO(G)-graded calculations (continued)
We have

f2k+1−1∆
(g)
k = (a2k+1−1

ρg Nr2k+1−1)(Nr2k−1)

= a2k

ρgNr2k+1−1(a
2k−1
ρg Nr2k−1)

= a2k

ρg∆
(g)
k+1 f2k−1

= a2k

V ∆
(g)
k+1a2k

σ f2k−1 where V = ρg−σ

= a2k

V p∆
(g)
k+1d1+8(2k−1)(u2kσ

).

Corollary. In the RO(G)-graded slice spectral sequence for
(

∆
(g)
k

)−1
MU (g/2), the class u2k+1σ

= u2k

2σ

is a permanent cycle.
1.21

7 An even trickier RO(G)-graded calculation

An even trickier RO(G)-graded calculation
The corollary shows that inverting a certain element makes a power of u2σ a permanent cycle.

We need to invert something to make a power of u2ρ8 a permanent cycle.

We will get this by using the norm property of u. It says that if V is an oriented representation
of a subgroup H ⊂ G with V H = 0 and V ′ is the induced representation of V , then the norm functor
Ng

h from H-spectra to G-spectra satisfies Ng
h (uV )uV ′′ = uV ′ , where V ′′ is the induced representation

of the trivial representation of degree |V |.

From this we can deduce that u2ρ8 = u8σ8N8
4 (u4σ4)N

8
2 (u2σ2), where σg denotes the sign represen-

tation on Cg. 1.22

An even trickier RO(G)-graded calculation (continued)
We have u2ρ8 = u8σ8N8

4 (u4σ4)N
8
2 (u2σ2).

By the Corollary we can make a power of each factor a permanent cycle by inverting some ∆
(2m)
km

for 1 ≤ m ≤ 3. If we make km too small we will lose the detection property, that is we will get a
spectrum that does not detect the θ j. It turns out that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)
4 makes u32σ2 a permanent cycle.
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• Inverting ∆
(4)
2 makes u8σ4 a permanent cycle.

• Inverting ∆
(8)
1 makes u4σ8 a permanent cycle.

• Inverting the product D of the norms of all three makes u32ρ8 = u16
2ρ8

a permanent cycle.
1.23

An even trickier RO(G)-graded calculation (continued)
Let

D = ∆
(8)
1 N8

4 (∆
(4)
2 )N8

2 (∆
(2)
4 ) ∈ π19ρ8(MU (4)).

The we define Ω̃ = D−1MU (4) and Ω = Ω̃C8 .

Since the inverted element is represented by a map from Smρ8 , the slice spectral sequence for
π∗(Ω) = π

C8
∗ (Ω̃) has the usual properties:

• It is concentrated in the first and third quadrants and confined by vanishing lines of slopes 0
and 7.
• It has the gap property, i.e., no homotopy between dimensions −4 and 0.

1.24

8 The proof of the Periodicity Theorem

The proof of the Periodicity Theorem

Preperiodicity Theorem. Let ∆
(8)
1 = u2ρ8

(
∆
(8)
1

)2
∈ E16,0

2 (D−1MU (4)) = E16,0
2 (Ω̃). Then

(
∆
(8)
1

)16

is a permanent cycle.

To prove this, note that
(

∆
(8)
1

)16
= u32ρ8

(
∆
(8)
1

)32
. Both u32ρ8 and ∆

(8)
1 are permanent cycles, so(

∆
(8)
1

)16
is also one.

Hence we have an equivariant map Π : Σ256Ω̃→ Ω̃ where

• u32ρ8 : S256−32ρ8 → Ω̃ induces to the unit map from S0 on the underlying ring spectrum and

• ∆
(8)
1 is invertible because it is a factor of D.

1.25

The proof of the Periodicity Theorem (continued)
The above imply that the underlying map i0Π of ordinary spectra is a homotopy equivalence. It

is known that any such map induces an equivalence of homotopy fixed point sets, so

Σ256Ω̃hC8 '
Π

hC8 //
Ω̃hC8

Unfortunately the slice spectral sequence tells us nothing about this homotopy fixed point set. We
know it detects all of the θ j, but there is no direct way of showing that it has the gap property.

Fortunately we have a theorem stating that in this case the homotopy fixed set is equivalent to the
actual fixed point set Ω. The slice spectral sequence tells us that the latter has the gap property. Thus
we have proved

Periodicity Theorem. Let Ω = (D−1MU (4))C8 . Then Σ256Ω is equivalent to Ω.
1.26
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9 Recap

Recap of the proof

• Ω̃ is obtained from the C8-spectrum MU (4) by inverting a certain element

D = ∆
(8)
1 N8

4

(
∆
(4)
2

)
N8

2

(
∆
(2)
4

)
∈ π19ρ8(MU (4)).

• Since we are inverting an element in πmρ8 , the resulting slice spectral sequence has the gap
property.
• Inverting D makes (

u2ρ8

(
∆
(8)
1

)2
)16

∈ E256,0
2 (Ω̃)

a permanent cycle. We used geometric fixed points and RO(G)-graded homotopy to prove this.
1.27

Recap of the proof (continued)

• The resulting equivariant map
Π : Σ

256
Ω̃→ Ω̃

is an equivalence of the underlying spectra.
• This means that we have an equivalence of homotopy fixed point spectra

Π
hC8 : Σ

256
Ω̃

hC8 → Ω̃
hC8 .

• π∗(Ω̃
hC8) is accessible via the Adams-Novikov spectral sequence, and we know that it detects

each θ j, in addition to being 256-periodic.
• Our Homotopy Fixed Point Theorem (not covered in this talk) equates Ω̃hC8 with Ω = Ω̃C8 ,

which is known to have the gap property.
1.28
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