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j>7.

Our strategy is to find a map S° — Q to a nonconnective
spectrum Q with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the
image of each 6 is nontrivial. This is the Detection
Theorem discussed by Hopkins yesterday.

(i) m—2(Q2) = 0. This is the Gap Theorem discussed by Hill
earlier today.

(iii) It is 256-periodic, meaning ¥2°6Q =~ Q. This is the
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The spectrum (2 (continued)

The homotopy of (MU™*)"% can be computed using the
homotopy fixed point spectral sequence, for which
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The homotopy of (MU™*)"% can be computed using the
homotopy fixed point spectral sequence, for which

E> = H*(Cg; m.(MUW)).

In this case it coincides with the Adams-Novikov spectral
sequence for ., ((MU®)C). Algebraic methods available
since the 1990s can be used to show that it detects the ;s. D
has to be chosen so that this is still true after we invert it.

The homotopy of (MU™))% and Q = D~"(MU™))% can be also
computed using the slice spectral sequence described by Hill.
It has the convenient property that =, vanishes in the E>-term.
In fact 7, vanishes for —4 < k < 0.

This is our main motivation for developing the slice spectral
sequence. We do not know how to show this vanishing using
the other spectral sequence.

In order to identify D we need to study the slice spectral
sequence in more detail.
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o the direct limit is contractible and
o GPIMU®™ is the fiber of the map PAMU®) — PZTMU®.

GPTMUM is the nth slice and the decreasing sequence of
subgroups of 7. (MU®)) is the slice filtration. We also get slice
filtrations of the RO(G)-graded homotopy 7. (MU®) and the
homotopy groups of fixed point sets .. ((MU®*)H) for each
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The slice spectral sequence (continued)

This means the slice filtration leads to a slice spectral
sequence converging to m,(MU®) and its variants.
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The slice spectral sequence (continued)

This means the slice filtration leads to a slice spectral
sequence converging to m,(MU®) and its variants.

One variant has the form
ESt =l {(CPIMUY) — =l (MUW).

Recall that 78(MU®) is by definition =, (MU®)8), the
homotopy of the fixed point set.
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The slice spectral sequence (continued)

Slice Theorem

In the slice tower for MU, every odd slice is contractible and
P21 = W, A HZ, where HZ is the integer Eilenberg-Mac Lane
spectrum and W, is a certain wedge of the following three
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The slice spectral sequence (continued)

Slice Theorem

In the s[ice tower for MU™), every odd slice is contractible and
P31 = W, A HZ, where HZ is the integer Eilenberg-Mac Lane

spectrum and W, is a certain wedge of the following three
types of finite G-spectra:

o S("/4rs (when n is divisible by 4), where pqy denotes the

regular real representation of Cg,

e Cs Ac, S("/2)r« (when n is divisible by 2) and

e Cg ANe, Shez,
The same holds after we invert D, in which case negative
values of n can occur.
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Note that all elements are in the first and third quadrants
between certain black lines with slopes 0 and orchid lines
with slope 7, and are concentrated on diagonals where t is
divisible by 8.

Bullets, circles and diamonds indicate cyclic groups of
order 2, 4 and 8, and boxes indicate copies of the integers.

A similar picture for S™*+ A HZ would be confined to the
regions between the black lines and blue lines with slope 3
and concentrated on diagonals where t is divisible by 4.
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These calculations imply the following.

e The slice spectral sequence for MU™) is concentrated in
the first quadrant and confined by the same vanishing
lines.

e Later we will invert elements in 7p,,,(MU™). The fact that
S A (Cg Ay Smpn) = Cs Ay S(m—8/h)pn

means that the resulting slice spectral sequence is
confined to the regions of the first and third quadrants
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In order to proceed further, we need another concept from
equivariant stable homotopy theory.

Unstably a G-space X has a fixed point set,
XC={xeX:y(x)=xVyeG}.

This is the same as F(S°, X, )%, the space of based
equivariant maps S° — X, , which is the same as the space of
unbased equivariant maps * — X.

The homotopy fixed point set X" is the space of based
equivariant maps EG, — X., where EG is a contractible free
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Unstably a G-space X has a fixed point set, 4 %
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Both of these definitions have stable analogs, but the fixed
point functor is awkward for two reasons:

e it fails to commute with smash products and
o it fails to commute with infinite suspensions.

The geometric fixed set ®%X is a convenient substitute that
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Both of these definitions have stable analogs, but the fixed
point functor is awkward for two reasons:
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o it fails to commute with infinite suspensions.

The geometric fixed set ®%X is a convenient substitute that
avoids these difficulties. In order to define it we need the
isotropy separation sequence, which in the case of a finite
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Geometric fixed points (continued)

Both of these definitions have stable analogs, but the fixed
point functor is awkward for two reasons:

e it fails to commute with smash products and
o it fails to commute with infinite suspensions.

The geometric fixed set ®%X is a convenient substitute that
avoids these difficulties. In order to define it we need the
isotropy separation sequence, which in the case of a finite
cyclic 2-group G is the cofiber sequence

EC,, — S° — EC..

Here EC; is a G-space via the projection G — C, and SO has
the trivial action, so EC is also a G-space.
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EC,, — S° — EC>.

Under this action ECS is empty while for any proper subgroup
H of G, ECH = EC,, which is contractible.
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Geometric fixed points (continued)

EC,, — S® — EC>.

Under this action ECS is empty while for any proper subgroup
H of G, EC!' = EC,, which is contractible. For an arbitrary
finite group G it is possible to construct a G-space with the
similar properties.

Definition
For a finite cyclic 2-group G and G-spectrum X, the geometric
fixed point spectrum is

®8X = (X AEC,)C.
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®8X = (X AEG,)C.
This functor has the following properties:
e For G-spectra X and Y, #G(X A Y) = dCX A 0CY.
e Fora G-space X, dPy =X = ¥>(XC).
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®8X = (X AEG,)C.
This functor has the following properties:
e For G-spectra X and Y, #G(X A Y) = dCX A 0CY.
e Fora G-space X, dPy =X = ¥>(XC).

e Amap f: X — Y is a G-equivalence iff ®"f is an ordinary
equivalence for each subgroup H C G.

From the suspension property we can deduce that
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®8X = (X AEG,)C.
This functor has the following properties:

e For G-spectra X and Y, #G(X A Y) = dCX A 0CY. %

e Fora G-space X, dPy =X = ¥>(XC). {

e Amap f: X — Y is a G-equivalence iff ®"f is an ordinary oo stateay
equivalence for each subgroup H C G. The spectrum 0
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inclusion of the fixed point set.
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Recall that 7, (MO) = Z/2[y; : i > 0, # 2k — 1] where |y;| = i. Doug Aaven

It is not hard to show that
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Recall that 7, (MO) = Z/2[y; : i > 0, # 2k — 1] where |y;| = i. Doug Aaven

It is not hard to show that

where |r;| = 2i, v is a generator of G and v*(r;) = (—1)'r. In
Tips (MU®) we have the element

m.(MU®) = 2[5, (r), (). 7*(n) : i > O]
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We know that the slice spectral sequence for MU® has a
vanishing line of slope 7. We will describe the subring of
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Some slice differentials

We know that the slice spectral sequence for MU® has a
vanishing line of slope 7. We will describe the subring of
elements lying on it.

Let f; € m;(MU™) be the composite

a,ps

s Sire

NI‘,‘ MU(4))

where aj, is the inclusion of the fixed point set. The following
facts about f; are easy to prove.

« It appears in the slice spectral sequence in £}, which is
on the vanishing line.
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e Under the map %
T(MU®) = 7, (CMUP)) = 7, (MO) {
we have f:'s"a‘etgy .
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in y_|y(HZ). It satisfies
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in y_|y(HZ). It satisfies

5 ok—1
Uay = Uy, SO Uok, = U3,
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in y_|y(HZ). It satisfies

5 ok—1
Uay = Uy, SO Uok, = U3,

Slice Differentials Theorem 4 %
In the slice spectral sequence for Y2 T MU@ for k > 0, we have o crateqy
dr(ngo.) = 0 forr < 1 + 8(2k - 1), and The spectrum Q
B The slice spectral
sequence
0y g(ox—1)(Uzks) = ai for_1. A2
A similar statement holds for the G-spectrum MU9/?) for a “
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calculations
Trickier calculations
The proof

Recap



Some slice differentials (continued) DL
Mike Hill

Mike Hopkins
Doug Ravenel

Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in y_|y(HZ). It satisfies
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in y_|y(HZ). It satisfies

5 ok—1
Uay = Uy, SO Uok, = U3,

Slice Differentials Theorem

In the slice spectral sequence for $2“MU@ for k > 0, we have
0r(Uok,) =0 forr < 14 8(2 — 1), and

K
Ay gox—1)(Upky ) = &5 oy

A similar statement holds for the G-spectrum MU9/?) for a
cyclic 2-group G of order g.

Sketch of proof: Inverting a,, in the slice spectral sequence will
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in y_|y(HZ). It satisfies

k—1

Uoy = U2, SO Upk, = U3

Slice Differentials Theorem

In the slice spectral sequence for $2“MU@ for k > 0, we have
0r(Uok,) =0 forr < 14 8(2 — 1), and

K
Ay gox—1)(Upky ) = &5 oy

A similar statement holds for the G-spectrum MU9/?) for a
cyclic 2-group G of order g.

Sketch of proof: Inverting a,, in the slice spectral sequence will
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has to support a nontrivial differential. The only way this can
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7() —_
Akg =NJry_y = Pk 1Y (Fae_q) .. 792 (rae_y)
7T(2,(_1)1)9(/\/,U(g/2))

m

We want to invert this element and study the resulting slice
spectral sequence.

The periodicity
theorem

Mike Hill

Mike Hopkins
Doug Ravenel

s

Our strategy
The spectrum Q

The slice spectral
sequence
§"Ps A Hz
Implications

Geometric fixed points

Some slice differentials

Trickier calculations
The proof

Recap



Some RO(G)-graded calculations R
Mike Hill

Mike Hopkins
Doug Ravenel

For a cyclic 2-group G let

~(9) -
Ak =Nir_q = e qy(raq) . R (T
S 7T(2k_1)pg(MU(g/2)) 4
We want to invert this element and study the resulting slice T
spectral sequence. As explained previously, for G= Cg itis The spectrum 2
confined to the first and third quadrants with vanishing lines of The slice spectral
slopes 0 and 7. peraom

Implications
Geometric fixed points

Some slice differentials

Trickier calculations
The proof

Recap



Some RO(G)-graded calculations ™ eorom
Mike Hill

Mike Hopkins
Doug Ravenel

For a cyclic 2-group G let

~(9) -
Ak =Nir_q = e qy(raq) . R (T
S 7T(2k_1)pg(MU(g/2)) 4
We want to invert this element and study the resulting slice T
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The corollary shows that inverting a certain element makes a
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power of u,, a permanent cycle. We need to invert something
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The corollary shows that inverting a certain element makes a
power of u,, a permanent cycle. We need to invert something
to make a power of u,, a permanent cycle. 4

We will get this by using the norm property of u. It says that if
V is an oriented representation of a subgroup H C G with
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The corollary shows that inverting a certain element makes a
power of u,, a permanent cycle. We need to invert something
to make a power of u,, a permanent cycle. 4

We will get this by using the norm property of u. It says that if
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vVH = 0and V' is the induced representation of V, then the TN
norm functor Ny from H-spectra to G-spectra satisfies N
NZ(uv)uy» = uy,, where V" is the induced representation of Impicaons

the trivial representation of degree | V/|. Ceepsueiedoe

Some slice differentials

. RO(G)-graded
From this we can deduce that ts,, = Ugyy NE(Uss, )NS (U2, ), it

where o4 denotes the sign representation on Cy. [ Trickier calculations

The proof

Recap



The periodicity

An even trickier RO(G)-graded calculation (continued) theorem

Mike Hill
Mike Hopkins
Doug Ravenel

s

Our strategy

We have U, = Ugsy NS (Uso, )N (Uao, ).

The spectrum Q

The slice spectral
sequence
§"Ps A Hz
Implications

Geometric fixed points
Some slice differentials

RO(G)-graded
calculations

The proof
Recap



The periodicity

An even trickier RO(G)-graded calculation (continued) theorem

Mike Hill
Mike Hopkins
Doug Ravenel
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We have U, = Ugsy NS (Uso, )N (Uao, ).

By the Corollary we can make a power of each factor a
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We have U, = Ugsy NS (Uso, )N (Uao, ).
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We have U, = Ugsy NS (Uso, )N (Uao, ).

By the Corollary we can make a power of each factor a
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Let
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The we define @ = D-"MU® and Q = QCs. 4
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The proof of the Periodicity Theorem (continued)

The above imply that the underlying map /1 of ordinary
spectra is a homotopy equivalence. It is known that any such
map induces an equivalence of homotopy fixed point sets, so
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Unfortunately the slice spectral sequence tells us nothing
about this homotopy fixed point set. We know it detects all of
the 6;, but there is no direct way of showing that it has the gap

property.

Fortunately we have a theorem stating that in this case the

homotopy fixed set is equivalent to the actual fixed point set .

The slice spectral sequence tells us that the latter has the gap
property. Thus we have proved
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e Q) is obtained from the Cs-spectrum MU® by inverting a
certain element

D = Al s)Ns (A(4)) N8 (A(Z)) c 7719p8(MU(4)).

e Since we are inverting an element in 7y, the resulting
slice spectral sequence has the gap property.

e Inverting D makes
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a permanent cycle. We used geometric fixed points and
RO(G)-graded homotopy to prove this.

The periodicity
theorem

Mike Hill

Mike Hopkins
Doug Ravenel

s

Our strategy
The spectrum Q

The slice spectral
sequence
S"Pe A Hz
Implications

Geometric fixed points
Some slice differentials

RO(G)-graded
calculations

Trickier calculations

The proof



Recap of the proof (continued) o
Mike Hill

Mike Hopkins
Doug Ravenel

e The resulting equivariant map

n:x2%0 - Q
is an equivalence of the underlying spectra. 4%

Our strategy
The spectrum Q

The slice spectral
sequence
§"Ps A Hz
Implications

Geometric fixed points
Some slice differentials

RO(G)-graded
calculations

Trickier calculations

The proof



Recap of the proof (continued)
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e The resulting equivariant map

Mn:¥%»eq - Q
is an equivalence of the underlying spectra. 4%
e This means that we have an equivalence of homotopy
fixed point spectra
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