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Abstract

We show that E∗(P (n) ∗), the E-homology of the Ω-spectrum for
P (n), is an E∗ free Hopf ring for E a complex oriented theory with
In sent to 0. This covers the cases P (q)∗(P (n) ∗) and K(q)∗(P (n) ∗),
q ≥ n. The generators of the Hopf ring are those necessary for the
stable result. The motivation for this paper is to show that P (n)
satisfies all of the conditions for the machinery of unstable cohomology
operations set up in [BJW95]. This can then be used to produce
splittings analogous to those for BP done in [Wil75].

Mathematics Subject Classification Number: Primary: 55N22,
Secondary 55N20.

1 Introduction

The spectrum P (n) for n > 0 is the BP -module spectrum obtained by killing

the ideal

In = (p, v1, v2, · · · vn−1) ⊂ π∗(BP )

via the Sullivan-Baas construction, [Baa73], [BM71], and [JW75]. For odd

primes it is a nice multiplicative spectrum by [Mor79], [SY76], and [Wür77].

∗Partially supported by the National Science Foundation
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It comes equipped with a stable cofibration

Σ2(pn−1)P (n) −→ P (n) −→ P (n + 1) (1.1)

which gives the following short exact sequence in homotopy

0 −→ P (n)∗
vn−→ P (n)∗ −→ P (n + 1)∗ −→ 0.

The ith space in the Ω-spectrum for P (n) will be denoted by P (n)
i
.

Because P (n) is a ring spectrum there are maps

P (n)
i
× P (n)

j
−→ P (n)

i+j

corresponding to cup product, in addition to the loop space product

P (n)
i
× P (n)

i
−→ P (n)

i
.

These induce pairings

◦ : E∗(P (n)
i
)⊗ E∗(P (n)

j
) → E∗(P (n)

i+j
)

and

∗ : E∗(P (n)
i
)⊗ E∗(P (n)

i
) → E∗(P (n)

i
).

for a generalized homology theory E∗. If E∗ has a Künneth isomorphism

for these spaces, e.g. if they are E∗ free, then these pairings satisfy certain

identities, making E∗(P (n) ∗) into a Hopf ring [RW77], i.e., a ring object

in the category of coalgebras. The object of this paper is to describe this

structure explicitly for suitable theories E∗(−), namely, when E is a complex

orientable spectrum with In = 0.

In the next section we will define some special elements

e ∈ P (n)1(P (n)
1
),

a(i) ∈ P (n)2pi(P (n)
1
) for 0 ≤ i < n,

[vi] ∈ P (n)0(P (n)−2(pi−1)
) for i ≥ n, and

b(i) ∈ P (n)2pi(P (n)
2
) for i ≥ 0,
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which have already been defined in previous papers.

Let

eεaI [vK ]bJ = eε ◦ a◦i0(0) ◦ · · · ◦ a
◦in−1

(n−1) ◦ [vkn
n v

kn+1

n+1 · · ·] ◦ b◦j0(0) ◦ b◦j1(1) · · ·

where ε = 0 or 1, iq = 0 or 1, kq ≥ 0, and jq ≥ 0 (K and J finite).

Definition 1.2 We say eεaI [vK ]bJ is n-allowable if

J = pn∆dn + pn+1∆dn+1 + · · ·+ pm∆dm + J ′

where ∆d has a 1 in the dth place and zeros elsewhere, dn ≤ dn+1 ≤ · · · ≤ dm

and J ′ is non-negative implies km = 0. In other words,

[vm] ◦ bpn∆dn+pn+1∆dn+1
+···+pm∆dm

does not divide eεaI [vK ]bJ when dn ≤ dn+1 ≤ · · · ≤ dm. We will denote the

set of such (K, J) by An.

We say eεaI [vK ]bJ is n-plus allowable if eεaI [vK ]bJ+∆0 is n-allowable.

We will denote the set of such (K, J) by A+
n . Note that A+

n ⊂ An.

Note that when restricted to elements where k0 equals 0, 0-plus allowable

as defined above coincides with allowable as defined in [RW77], (and is the

same as 1-allowable with i0 = 0). For n = ∞, the allowability condition is

vacuous.

Let TPk(x) = P (x)/(xpk
); we say that such an x has height pk. Let E be

a BP -module spectrum. Then we have a map BP
µ→ E. For p an odd prime,

P (n) is the universal multiplicative BP -module spectrum with µ∗(In) = 0.

This fact follows from the work of Würgler in [Wür77, p. 477, 6.8]. Thus if

E has µ∗(In) = 0, then the map µ factors through P (n).
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Theorem 1.3 Let E be a multiplicative BP -module spectrum with µ∗(In) =

0, n > 0. Let p be an odd prime. As E∗-algebras:

E∗(P (n) ∗) '





⊗

(K,J)∈A+
n

E(eaI [vK ]bJ)

⊗
⊗
i0=0

(K,J)∈An

TPρ(I)(a
I [vK ]bJ)

⊗
⊗

I 6=M,i0=1

(K,J)∈A+
n

TPρ(I)(a
I [vK ]bJ)

⊗
⊗

(K,J)∈A+
n

P (aM [vK ]bJ)

where ρ(I) is the smallest t with in−t = 0, and M is the exponent sequence

consisting entirely of ones, i.e., aM = a(0) ◦ a(1) ◦ · · · a(n−1).

This calculation includes the calculation of K(q)∗(P (n) ∗) for q ≥ n. For

q < n, this calculation was carried out in [HRW, Theorem 1.5]. The results

have very little in common.

If we restrict to elements with k0 = 0 then the theorem is also true as

stated for n = 0, P (0) being BP by definition. In that case there are no

a(i)s, so we always have I = M = 0, which means the truncated polynomials

factors are trivial. As remarked above, 0-plus allowability (for elements with

k0 = 0) is the same as allowability as defined in [RW77], so Theorem 1.3

coincides with the main theorem of [RW77]. Note that P (1) is just BP mod

p.

For n = ∞ the theorem gives the usual Hopf ring description of the

homology of mod p Eilenberg–Mac Lane spaces. As remarked above, the

allowability condition is vacuous in this case. There is no polynomial factor

since M is infinite, K = 0, and ρ(I) = 1 for all I, so the truncated polynomial

algebras all have height p. See [Wil82, §8] for more details.

4



The theorem will be proved by studying the bar spectral sequence (see

§3) for mod p homology going from H∗(P (n)
i
) to H∗(P (n)

i+1
). We then

show that the Atiyah-Hirzebruch spectral sequence collapses for appropriate

E∗(−). For n = 0 and n = ∞ the bar spectral sequence always collapses,

but not for 0 < n < ∞. There are no multiplicative extensions for n = ∞.

The extensions differ significantly between the n = 0 case, studied in [RW77]

and the n > 0 cases studied here which more resemble those in [Wil84]. We

will give examples to illustrate in the next section.

The main theorem above contains a description of the generators. No de-

scription of Hopf algebras is complete without understanding the primitives.

Although Theorem 1.3 contains all the information about the coproduct in

principle, we can be more explicit. Furthermore, we need a more explicit

description during our proof. Both Theorem 1.3 and our results about prim-

itives will be proven inductively simultaneously by degree.

Theorem 1.4 Let E be as in Theorem 1.3. The primitives in E∗(P (n) ∗)

have the following description:

(a) A basis for the primitive elements is given by all eεaI [vK ]bJ such that

(i) if ε = 1 then (K, J) ∈ A+
n ,

(ii) if ε = 0 then i0 + j0 > 0 and (K, J) ∈ An.

(b) A basis for the primitive elements of height p is given by all of the above

primitives aI [vK ]bJ such that in−1 = 0.

(c) In the mod p homology, H∗(P (n) ∗), the iterated p-th powers of the

generators in Theorem 1.3 are all primitives. They are those primitives

with ε = 0 and i0 = 1 with (K, J) ∈ An −A+
n modulo the vector space

generated by aI [vK ]bJ with i0 = 1 and (K, J) ∈ A+
n (which are primitive

generators).

Part (a) of the theorem still holds for the n = 0 case. Part (c) is about
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the nontrivial pth powers. Some generators are not primitive and so it is

interesting to note that all of their pth powers are primitive.

From now on we assume that n > 0.

Our proof of 1.3 will follow the lines of several previous papers; in partic-

ular, [RW77], [RW80], and [Wil84]. As in [Wil84], it is enough to prove the

result for ordinary mod p homology and then show the Atiyah-Hirzebruch

spectral sequence collapses for E. Consequently, we will focus most of our

attention on ordinary homology. In fact, our theorem and proof lies some-

where between the work in [Wil84] and [RW77]. In turn, the work of [Wil84]

lies somewhere between [RW77] and [RW80].

Our proof follows the philosophy of the second author that one can com-

pute the homology of spaces in an Ω-spectrum if one knows the stable ho-

motopy and the stable homology. The homotopy gives the zero dimensional

homology of all the spaces and if one computes by induction on degree using

the bar spectral sequence any false computation of a differential or extension

should lead to a contradiction with the stable homology. This works in many

cases, including this one. Getting a nice Hopf ring description is an entirely

different matter. It seems to depend on having the stable elements appear

at the earliest possible stage unstably.

There are a number of Hopf rings like this that have been computed.

Some are “good” and some are “bad”. Examples of good ones are E∗(BP ∗),

E a complex orientable theory, [RW77]; E∗(K(n) ∗), E a complex ori-

entable theory with In = 0, [Wil84]; H∗(K(Z/(p), ∗)), [Wil82, §8]; K(n)∗(−)

for Eilenberg–Mac Lane spaces, [RW80]; K(n)∗(k(n) ∗), [Kra90]; H∗(KO),

[Str92]; and more recently the breakthrough description of H∗(QS0,Z/(2))

in [Tur], and its sequel for H∗(QS∗,Z/(2)) in [ETW]. All of these examples

can have their Hopf rings described with just a few generators and relations.

There are other similar calculations where the Hopf rings are not so nice,

for example for bo, bu, BP 〈n〉, and k(n). The standard mod p homology of

these does not work out so well as a Hopf ring. Despite that obstacle, the

results for bu and k(n) have been given very nice descriptions in [Har91].
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By [Wür77] and [Yag77] we know that P (n)∗(P (n)) is free over P (n)∗.

This result is all that is necessary to show that P (n) satisfies all of the

machinery for stable operations as in [Boa95]. Our results show:

Corollary 1.5 Both P (n)∗(P (n) ∗) and the module of indecomposables,

QP (n)∗(P (n) ∗), are free over P (n)∗.

These two new conditions are enough to make all of the machinery of

unstable operations in [BJW95] work, which was the motivation for this

paper. In [BJW95], this machinery is used to reprove the second author’s

splitting theorem for the spaces in the Ω-spectrum for BP , [Wil75]. The

second author had conjectured a similar splitting for P (n) and this paper

together with [BJW95] allows that splitting to be carried through; see [BW].

The lowest cases involve Morava K-theories; e.g. P (n)
2pn

' k(n)
2pn
× Y .

We would like to thank the referee for his or her careful reading, par-

ticularly for pointing our a serious error in our notation. The referee also

suggested we do a global version of Theorem 1.3 but this has already been

written into [BW].

The p = 2 case deserves some discussion. As the theorem is stated it is

true for p = 2 as well. In particular it is true for mod 2 homology. The

problem is that all the spectra E that we care about, such as K(n) or P (n),

are not commutative ring spectra. Even in those cases the result is true as

modules if not as algebras because we get the general E from the collapsing

of the Atiyah-Hirzebruch spectral sequence. As in [Wil84], no problems are

caused because of the lack of commutativity of P (n) in P (n) ∗. We make

other comments about p = 2 in the next section.

2 Basic properties

We have a long proposition analogous to [Wil84, Proposition 1.1].
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Proposition 2.1 Let E be as in Theorem 1.3. Let p be an odd prime. We

have elements

e ∈ E1(P (n)
1
),

ai ∈ E2i(P (n)
1
) for 0 ≤ i < pn,

[vi] ∈ E0(P (n)−2(pi−1)
) for i ≥ n, and

bi ∈ E2i(P (n)
2
) for i ≥ 0

such that (letting b(i) = bpi and a(i) = api):

(a) They are natural with respect to E.

(b) The homomorphism x 7→ e ◦ x is the homology suspension map.

(c) The coproduct is given by ai → ∑
ai−j ⊗ aj and bi → ∑

bi−j ⊗ bj.

(d) They are all permanent cycles in the Atiyah-Hirzebruch spectral se-

quence for P (n)∗(P (n) ∗).

(e) e ◦ e = −b1.

(f) a(i) ◦ a(j) = −a(j) ◦ a(i).

(g) b∗p(i) = 0.

(h) a∗p(i) = 0 for i < n− 1.

(i) a∗p(n−1) = µ∗(vn)a(0) − a(0) ◦ [vn] ◦ b◦p
n−1

(0) .

(j) µ∗(vn)e = e ◦ [vn] ◦ b◦p
n−1

(0) .

Proof. The proof of this proposition is identical to that of [Wil84, Proposition

1.1]. In fact, that paper uses P (n) in the proof. For some of the results one

only needs to notice that P (n) and k(n) are the same up to degree 2(pn+1−1)

and that the proposition takes place in low degrees. A sign has crept into

(e) because of a correction from [BJW95].2

We will recall briefly the construction of these elements.
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• Let L denote the (2pn − 2)-skeleton of K(Z/(p), 1). Then there is a

unique lifting

P (n)
1

L K(Z/(p), 1)
?

-
p p p

p p p
p p p

p p p
p

µ

and hence a map E∗(L) → E∗(P (n)
1
). The elements e and ai are the

images of the standard elements in E∗(L).

• [vk] is the Hurewicz image of

vk ∈ π2pk−2(P (n)) = π0(P (0)−2pk+2
).

• There is a canonical generator of P (n)2(CP∞), which corresponds to

a map CP∞ → P (n)
2
. The elements bi are the images under this map

of the standard classes in E∗(CP∞).

The case p = 2. The comments of [Wil84] are relevant here. e should be

incorporated into the a’s for coproduct purposes and a(i) ◦ a(i) is not zero.

One must fiddle with the proof a little, but not much.

The proof of our theorem will rely on being able to identify elements

in the bar spectral sequence, compute differentials and solve multiplicative

extension problems, all using Hopf ring techniques. The n = 0 case of [RW77]

has no differentials but does have extension problems. For the bar spectral

sequence going from H∗(P (0)
i
) to H∗(P (0)

i+1
) there are extensions when i

is odd. We will illustrate this phenomenon with an example for i = 1. For

k ≥ 0 let

gk = e ◦ [v1]
k ◦ b◦p−1

(0) ◦ · · · ◦ b◦p−1
(k−1) ∈ H∗(P (0)

1
).

Then H∗(P (0)
1
) has the exterior algebra

E(g0, g1, · · ·)
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as a factor, and the corresponding Tor group contains the divided power

algebra

Γ(σg0, σg1, · · ·)
as a factor; see 3.2. Now for k > 0 we have (in ordinary mod p homology)

σgk = e ◦ e ◦ [vk
1 ] ◦ b◦p−1

(0) ◦ · · · ◦ b◦p−1
(k−1) by 2.1(b)

= −b(0) ◦ [vk
1 ] ◦ b◦p−1

(0) ◦ · · · ◦ b◦p−1
(k−1) by 2.1(e)

= −([v1] ◦ b◦p(0)) ◦ [vk−1
1 ] ◦ b◦p−1

(1) ◦ · · · ◦ b◦p−1
(k−1)

= b∗p(0) ◦ [vk−1
1 ] ◦ b◦p−1

(1) ◦ · · · ◦ b◦p−1
(k−1) using 2.6

= ([v1] ◦ b◦p(0))
∗p ◦ [vk−2

1 ] ◦ b◦p−1
(2) ◦ · · · ◦ b◦p−1

(k−1)

by the Hopf ring distributive law [RW77, 1.12(c)(vi)]

= −b∗p
2

(0) ◦ [vk−2
1 ] ◦ b◦p−1

(2) ◦ · · · ◦ b◦p−1
(k−1) using 2.6

...

= ±b∗p
k

(0) .

It follows that the divided power factor above in the E∞-term corresponds

to a polynomial factor

P (b(0), b(1), · · ·)
in H∗(P (0)

2
) and also in E∗(P (0)

2
).

For P (n) with n > 0 this type of extension never occurs because of 2.1(g).

The type of extension we have is more interesting because they frequently

lead to truncated polynomial algebras and are implied by the relations 2.1(h)

and (i). Since we work in ordinary mod p homology µ(vn) = 0. For n = 1,

2.1(i) says

a∗p(0) = −a(0) ◦ [v1] ◦ b◦p−1
(0)

so a∗p
2

(0) = (−a(0) ◦ [v1] ◦ b◦p−1
(0) )∗p

= −(a(0))
∗p ◦ [v1] ◦ b◦p−1

(1)

by the Hopf ring distributive law
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= a(0) ◦ [v2
1] ◦ b◦p−1

(0) ◦ b◦p−1
(1)

a∗p
3

(0) = −a(0) ◦ [v3
1] ◦ b◦p−1

(0) ◦ b◦p−1
(1) ◦ b◦p−1

(2)

...

so a(0) ◦ x for suitable x could be a polynomial generator.

For n = 2 we have

a∗p(0) = 0

a∗p(1) = −a(0) ◦ [v2] ◦ b◦p
2−1

(0)

so a∗p
2

(1) = (−a(0) ◦ [v2] ◦ b◦p
2−1

(0) )∗p

= −(a(0))
∗p ◦ [v2] ◦ b◦p

2−1
(1)

= 0

and (a(0) ◦ a(1))
∗p = a(1) ◦ (a(1))

∗p

= −a(1) ◦ a(0) ◦ [v2] ◦ b◦p
2−1

(0)

= a(0) ◦ a(1) ◦ [v2] ◦ b◦p
2−1

(0)

so (a(0) ◦ a(1))
∗p2

= a(0) ◦ a(1) ◦ [v2
2] ◦ b◦p

2−1
(0) ◦ b◦p

2−1
(1)

...

and for larger n the same thing happens with powers of aM = a(0) ◦ a(1) ◦
· · · a(n−1). This accounts for the polynomial factor in Theorem 1.3.

Also observe that for n = 3, 2.1(i) gives

(a(0) ◦ a(1))
∗p = a(1) ◦ (a∗p(1))

= 0,

(a(0) ◦ a(2))
∗p = a(1) ◦ (a(2))

∗p

= −a(1) ◦ (a(0) ◦ [v3] ◦ b◦p
3−1

(0) )

= a(0) ◦ a(1) ◦ [v3] ◦ b◦p
3−1

(0)

so (a(0) ◦ a(2))
∗p2

= 0,

and (a(1) ◦ a(2))
∗p = a(2) ◦ (a(2))

∗p

= −a(2) ◦ (a(0) ◦ [v3] ◦ b◦p
3−1

(0) )
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= a(0) ◦ a(2) ◦ [v3] ◦ b◦p
3−1

(0)

so (a(1) ◦ a(2))
∗p3

= 0.

This (and similar computations for larger n) accounts for the truncations in

Theorem 1.3.

For the spectral sequence computations of the next section, we will need

the following results about pth powers.

Define shift operators s on I (if in−1 = 0) and J by

as(I) = a◦i0(1) ◦ a◦i1(2) ◦ · · · a◦in−2

(n−1) and

bs(J) = b◦j0(1) ◦ b◦j1(2) ◦ · · · .
(2.2)

Lemma 2.3 In the mod p homology of P (n) ∗, let (K, J) be in An,

(a) then

(aI [vK ]bJ)∗p = 0 if in−1 = 0,

(b) if in−1 = 1 let I = I ′′ + ∆n−1. We have

(aI [vK ]bJ)∗p = ±a∆0+s(I′′)[v∆n+K ]b(pn−1)∆0+s(J),

and

(c) If I = M as in 1.3,

(aM [vK ]bJ)∗p = ±aM [v∆n+K ]b(pn−1)∆0+s(J).

This is not much information right now because the potentially nonzero

pth powers are not usually in allowable form. The introduction of the [vn]

together with the possibility that some jk ≥ pn messes this up. However,

this does give us some useful information. If I is not M (as in 1.3) then the

iterated pth power must eventually be zero but in the case (c) we could have

a polynomial generator. Even though we do not know, at this stage, if these

pth powers are really nonzero, we know something about their properties if

they are.
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Corollary 2.4 Each nonzero pth power in Lemma 2.3 is divisible by a(0) and

is primitive.

Proof of Lemma 2.3. Assume first that I is empty and J = ∆m + J ′ where

jm is the first non-zero index in J . Then using the Hopf ring distributive law

and 2.1(g) we have

([vK ]bJ)∗p = (b∗p(m)) ◦ [vK ]bs(J ′)

= 0.

Similarly if I = ∆m+I ′ (where m is the first nonzero index in I) and in−1 = 0,

we have, using 2.1(h)

(aI [vK ]bJ)∗p = (a∗p(m)) ◦ as(I′)[vK ]bs(J)

= 0.

However, when in−1 = 1, as(I′) is not defined, so we must proceed differ-

ently. We write aI = aI′′ ◦ a(n−1) and use 2.1(i) and get

(aI [vK ]bJ)∗p = ±(a∗p(n−1)) ◦ as(I′′)[vK ]bs(J)

= ±(a(0) ◦ [vn] ◦ b◦p
n−1

(0) ) ◦ as(I′′)[vK ]bs(J)

= ±a∆0+s(I′′)[v∆n+K ]b(pn−1)∆0+s(J).

Part (c) follows from part (b). 2

Proof of Corollary. Observation tells us that our elements are divisible

by a(0). Since a(0) is a primitive and we know that circle product with a

primitive is a primitive, all of our elements are primitive. 2

We now have to vary a little from [Wil84]. When we do so, we need only

go back to [RW77] to find what we need. Let us work, as always when we use

standard homology, in mod p homology. Let Q stand for the indecomposables

and [I∞] = ([vn], [vn+1], . . .). Then we have:
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Theorem 2.5 In QH∗(P (n)
2
)/[I∞]◦2 ◦QH∗(P (n) ∗) we have:

k∑

i=n

[vi] ◦ b◦p
i

(k−i) = 0.

Proof. The proof is the same as the proof of [RW77, Theorem 3.14, page

259]. 2

This follows from the main relation, [RW77, Theorem 3.8], which covers

our case and can be rewritten as:

Theorem 2.6 Let b(t) =
∑

bit
i. Then, in P (n)∗P (n) ∗[[s]],

b


∑

j≥n

F vjs
pj


 = ∗[F ]

j≥n[vj] ◦ b(s)◦p
j

.

We need another piece of [RW77] which was not needed in [Wil84].

Namely, we need a theorem that allows us to reduce non-basis elements to

basis elements. The relation we use to do this is Theorem 2.5, but it is not

an easy one to apply.

Theorem 2.7 In QH∗(P (n) ∗), any eεaI [vK ]bJ can be written in terms of

n-allowable elements.

Proof. The construction and proof of an algorithm for the reduction of non-

allowable elements is done on pages 273–275 of [RW77]. The proof applies

with only notational modification to the case of n-allowable when I = 0. We

can then circle multiply by aI to get our result. 2

Theorems 1.3 and 1.4 are stated for rather general E as described in

Theorem 1.3. We do all of our calculations in mod p homology and so we

must lift our results to E.

Proof of Theorems 1.3 and 1.4 for general E from the theorems for mod p

homology. It is enough, for Theorem 1.3, to show that the Atiyah-Hirzebruch
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spectral sequence collapses. The Atiyah-Hirzebruch spectral sequence re-

spects the two products, ◦ and *, and all elements in P (n)∗(P (n) ∗) are

constructed using these two products from the basic elements of Proposition

2.1. Since the basic elements are all permanent cycles by Proposition 2.1 (d),

every element is a permanent cycle and the spectral sequence collapses. The

elements of Theorem 1.4 (a) are all primitive and no more can be created.

Part (b) also still holds. The only concern is the possibility that for P (n) the

truncated polynomial generators do not truncate at the same place because

of a shift in filtrations. However, Proposition 2.1 (h) and (i) tells us that

the height of an element is determined strictly by the pattern of its a’s. The

results for general E follow by naturality from those for P (n). 2

3 The spectral sequence

All that remains is to prove Theorems 1.3 and 1.4 for mod p homology. We

prove our two theorems simultaneously by induction on degree in the bar

spectral sequence. Recall that for a loop space X with classifying space BX

the bar spectral sequence converges to H∗(BX), and its E2-term is

TorH∗(X)
∗,∗ (Z/(p),Z/(p));

we will abbreviate this group by TorH∗(X)
∗,∗ or H∗,∗(H∗(X)). When BX is

also a loop space, we have a spectral sequence of Hopf algebras. (See the

discussion in [HRW, §2].)

In this section we collect all of the facts that describe the complete behav-

ior of this spectral sequence in the case X = P (n)
i
, including its differentials

and solutions to the algebra extension problems. Our proof is similar to that

of [Wil84] throughout except that we need a little more information from

time to time. We could have mimiced the proof completely but instead we

make some improvements.

We will prove Theorems 1.3 and 1.4 by induction on degree using the
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bar spectral sequence with Hopf rings, [TW80]. We let P (n)′
j

be the zero

component of P (n)
j
. Then P (n)

j
' P (n)j×P (n)′

j
, where P (n)j denotes the

group π−j(P (n)). We assume the calculations in Theorems 1.3, 1.4 and the

results stated below (specifically Lemma 3.6 and Theorem 3.7) are correct

for Hi(P (n) ∗) with i < k. (The value of H0(P (n) ∗) is obvious, given our

knowledge of π∗(P (n)).) The bar spectral sequence determines Hi(P (n)′∗+1
)

for i ≤ k and so we get Hi(P (n) ∗) for i ≤ k. This induction is always with

us, although frequently only implicitly. Let σ denote the suspension in the

spectral sequence and φ the transpotent. Most of our notation goes back to

[RW80].

For future use let

m(J) = min{k: jk 6= 0}, (3.1)

and define m(I) similarly.

When we are working in H0(P (n) ∗) we really need [vi]− [0−2(pi−1)] to get

it into the augmentation ideal. See [RW77] for further details. In positive

degrees this does not affect anything.

The following standard result enables us to compute all of the relevant

Tor groups.

Proposition 3.2 The group TorK(Z/(p),Z/(p)) ≡ TorK for a graded Z/(p)-

algebra K has the following properties:

(i) It commutes with tensor products, i.e.,

TorK1⊗K2 = TorK1 ⊗ TorK2 .

(ii) For K = E(x) (an exterior algebra on an odd dimensional generator

x),

TorE(x) = Γ(σx),

a divided power algebra on the suspension of x, with γi(σx) ∈ Tor
E(x)
i,i|x|

represented in the algebraic bar construction by ⊗ix. As an algebra,

Γ(σx) = TP1(σx, γp(σx), γp2(σx), · · ·)
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where γ0(σx) = σx.

(iii) For K = P (x) (a polynomial algebra on an even dimensional generator

x),

TorP (x) = E(σx),

an exterior algebra on the suspension of x, σx ∈ Tor
P (x)
1,|x| .

(iv) For K = TPk(x) (a truncated polynomial algebra of height pk on an

even dimensional generator x),

TorK = E(σx)⊗ Γ(φ(xpk−1

)),

where φ(y) is the transpotent of y, with γi(φ(y)) ∈ TorK
2i,pi|y|. A repre-

sentative cycle for φ(y) is yp−1 ⊗ y and for γi(φ(y)),
⊗i(yp−1 ⊗ y).

The Tor groups corresponding to the homology given in Theorem 1.3 are

given below in Lemma 3.6.

In our proof we will need to be able to identify elements in the spectral

sequence. We usually cannot do this precisely but must introduce some

filtrations. In particular, we need to introduce an entirely new filtration. To

do that we need to review, following [TW80], how the Hopf ring pairing fits

into the bar spectral sequence. We recall how this pairing is constructed.

The bar spectral sequence converging to H∗(P (n)
q+1

) is based on the bar

filtration of the space

P (n)
q+1

= BP (n)
q

=
⋃

i

BiP (n)
q

where the B in the middle here is for the classifying space. In [TW80] it was

shown that the circle product respects this filtration, i.e., the map

P (n)
q+1

∧ P (n)
r

◦−→ P (n)
q+1+r

induces maps

BiP (n)
q
∧ P (n)

r

◦−→ BiP (n)
q+r
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for each i. In the bar filtration we have cofibre sequences

Bi−1P (n)
q
−→ BiP (n)

q
−→ ΣiP (n)(i)

q

where this last space is the ith suspension of the i-fold smash product of

P (n)
q
. It follows that the pairing induces maps

ΣiP (n)(i)

q
∧ P (n)

r
−→ ΣiP (n)(i)

q+r
. (3.3)

This map is the usual circle product on each of the i factors.

Now recall the Verschiebung map V , defined on any cocommutative coal-

gebra as the dual of the pth power map. Since our bar spectral sequence is

one of bicommutative Hopf algebras, it has a Verschiebung map

Er
ps,pt

V−→ Er
s,t (3.4)

which, if one ignores the grading, is a Hopf algebra map. In addition, it

respects the circle product pairing, i.e.,

V (x ◦ y) = (V x) ◦ (V y).

The Verschiebung is a standard tool; we will also need the following

variant of it. There is an internal Verschiebung

Hs,pt(H∗(X))
Vint−→ Hs,t(H∗(X))

defined on the algebraic bar construction, i.e. E1
∗,∗, by

Vint(x1 ⊗ x2 ⊗ · · · ⊗ xs) = V x1 ⊗ V x2 ⊗ · · · ⊗ V xs.

Because V (x ∗ y) = V (x) ∗ V (y) we see that Vint commutes with d1 and is

defined on E2
∗,∗, our Tor for the spectral sequence. Reviewing the definition of
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the Hopf algebra structure on Tor we see that Vint is, ignoring the gradings, a

Hopf algebra map. From (3.3) we can deduce that Vint satisfies the identity

Vint((x1 ⊗ x2 ⊗ · · · ⊗ xs) ◦ y) = (Vint(x1 ⊗ x2 ⊗ · · · ⊗ xs)) ◦ V y. (3.5)

Now we are ready to identify the Tor group for the algebra of Theorem

1.3.

Lemma 3.6 Let p be any prime. In the bar spectral sequence,

Er
∗,∗(H∗(P (n) ∗)) ⇒ H∗(P (n)′∗+1

),

The Tor group for the algebra of Theorem 1.3 is as follows.

E2
∗,∗(H∗(P (n) ∗)) ' Tor

H∗(P (n) ∗)∗,∗ (Z/(p),Z/(p)) ≡ H∗,∗(H∗(P (n) ∗)) '
⊗

(K,J)∈A+
n

Γ(σe ◦ aI [vK ]bJ)

⊗⊗
i0=0

(K,J)∈An

E(σaI [vK ]bJ)

⊗⊗
i0=1

(K,J)∈A+
n

E(σaI [vK ]bJ)

⊗⊗
(K,J)∈An

in−1=0

Γ(φ(aI [vK ]bJ)).

Proof. The Tor group for each factor in 1.3 can be computed using Proposi-

tion 3.2. The result is shown in the following table.
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Factor Tor group

⊗

(K,J)∈A+
n

E(eaI [vK ]bJ)
⊗

(K,J)∈A+
n

Γ(σeaI [vK ]bJ)

⊗
i0=0

(K,J)∈An

TPρ(I)(a
I [vK ]bJ)

⊗⊗
I 6=M,i0=1

(K,J)∈A+
n

TPρ(I)(a
I [vK ]bJ)

⊗
i0=0

(K,J)∈An

E(σaI [vK ]bJ)

⊗⊗
I 6=M,i0=1

(K,J)∈A+
n

E(σaI [vK ]bJ)

⊗⊗
(K,J)∈An

in−1=0

Γ(φ(aI [vK ]bJ))

⊗

(K,J)∈A+
n

P (aM [vK ]bJ)
⊗

(K,J)∈A+
n

E(σaM [vK ]bJ)

The only difficulty here is identifying the transpotent elements. From

Lemma 2.3 we get the in−1 condition. From Theorem 1.4 we can find all of

the elements of height p in the truncated polynomial factors of Theorem 1.3

except the non-primitive generators which can then be read off directly from

Theorem 1.3.

We can consolidate the third and fifth factors on the right. 2

We will need to identify the generators, γpi , in our Tor using the Hopf

ring pairing. We can only do this modulo filtrations which is adequate for

our needs. The first filtration is given by the Verschiebung where we have

that V i(γpi(σx)) = γ0(σx) and we see that V i kills all other elements in this

filtration except those of this form. In this case, V i kills all decomposables so

when we work modulo the kernel of V i we are just working modulo decom-

posables. However, when we work with γpi(φ(y)), V i does not kill elements

of the form γpi(σx1) ∗ γpi(σx2) but these terms will not show up and we can
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still work modulo decomposables.

Our second filtration comes from Vint and it is important for us to see

how it acts on our Tor groups. V kills any primitive and anything with an e,

a(0) or b(0) is a primitive so for starters, Vint kills the first and third factors of

Lemma 3.6. When using this filtration the exterior elements from the second

factor will never enter in. All we need to be concerned with then is what

happens with the fourth factor. If i0 or j0 is greater than zero then our factor

goes to zero. If both are zero then we can define the inverse shift operator,

s−1 on I and J . Since V (a(i+1)) = a(i) and V (b(i+1)) = b(i), we have that Vint

induces an isomorphism:

Γ(φ(aI [vK ]bJ)) −→ Γ(φ(as−1(I)[vK ]bs−1(J))).

We will be able to identify elements modulo the kernel of the V i
int which we

now understand.

We can now describe the behavior of the entire bar spectral sequence.

Theorem 3.7 Let p be any prime.

(a) In the Hopf ring pairing of the bar spectral sequence we have:

For J 6= 0 and k = m(J), consider

◦ : H∗,∗(H∗(P (n) ∗−2
))

⊗
H∗(P (n)

2
) → H∗,∗(H∗(P (n) ∗)).

(i) γpi(σeaI [vK ]bJ−∆k) ◦ b(k+i) = γpi(σeaI [vK ]bJ) modulo decompos-

ables for (K, J) ∈ A+
n .

(ii) γpi(φ(aI [vK ]bJ−∆k)) ◦ b(k+i+1) = γpi(φ(aI [vK ]bJ)) modulo decom-

posables and the kernel of V q
int where q = min(m(I),m(J)), for

(K, J) ∈ An and in−1 = 0.

(b) For J = 0, I 6= 0, and k = m(I), consider

◦ : H∗,∗(H∗(P (n) ∗−1
))

⊗
H∗(P (n)

1
) → H∗,∗(H∗(P (n) ∗)).
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(i) γpi(σeaI−∆k [vK ])◦a(k+i) = (−1)l(I)−1γpi(σeaI [vK ]) modulo decom-

posables, k + i < n.

(ii) γpi(φ(aI−∆k [vK ])) ◦ a(k+i+1) = (−1)l(I)γpi(φ(aI [vK ])) modulo de-

composables and the kernel of V k
int, for k + i+1 < n and in−1 = 0.

(c) Let q = min {j|in−j = 1} if I 6= 0, and n + 1 if I = 0. The following

differentials are nonzero:

(i) dpq−1 on γpq(σeaI [vK ]bJ), I 6= 0 and (K, J) ∈ A+
n .

(ii) d2pq−1−1 on γpq−1(φ(aI [vK ]bJ)), (K, J) ∈ An and in−1 = 0.

(d) The differential targets of (c) are all linearly independent and, modulo

the vector space generated by the σaI [vK ]bJ with i0 = 0 and (K, J) ∈
A+

n , a basis for the vector space they generate is given by all σaI [vK ]bJ

with i0 = 0 such that (K, J) ∈ An −A+
n .

(e) Let q = min {j|in−j = 1}, up to sign in E∞
∗,∗

(i) γpi(σeaI [vK ]bJ), (K, J) ∈ A+
n , represents asi(I)[vK ]bsi(J+∆0) mod-

ulo decomposables where if I 6= 0 then i < q.

(ii) γpi(φ(aI [vK ]bJ)), for (K, J) ∈ An, in−1 = 0, represents the ele-

ment asi+1(I)+∆i [vK ]bsi+1(J) modulo decomposables and the kernel

of V
min(m(I),m(J))
int , where i < q − 1. (If I = 0 then q = n + 1.)

(iii) σaI [vK ]bJ represents eaI [vK ]bJ when (K, J) ∈ A+
n .

(f) As an algebra, E∞
∗,∗ is

⊗

(K,J)∈A+
n

E(eaI [vK ]bJ)⊗ ⊗

(K,J)∈An

TP1(a
I [vK ]bJ)

Proof. (a). First we must note that both the γpi elements exist in the

spectral sequence and they do.

(a)(i). Next we work modulo decomposables so we can apply V i to both

sides and we need only show the i = 0 case, or,

σeaI [vK ]bJ−∆k ◦ b(k) = σeaI [vK ]bJ
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for (K, J) ∈ A+
n which is obvious.

(a)(ii). First we apply V i to see we need only show

φ(aI [vK ]bJ−∆k) ◦ b(k+1) = φ(aI [vK ]bJ).

Next we want to apply V q
int. If k = m(J) = q then we have

φ(V q(aI [vK ]bJ−∆k)) ◦ b(1)

=
(
V q(aI [vK ]bJ−∆k)∗p−1 ⊗ V q(aI [vK ]bJ−∆k)

)
◦ b(1)

= φ(V q(aI [vK ]bJ)).

Since there are only p nontrivial terms in the iterated coproduct of b(1) this

is trivial. If k = m(J) > m(I) = q then we want to show

φ(V q(aI [vK ]bJ−∆k)) ◦ b(1+k−q)

=
(
V q(aI [vK ]bJ−∆k)∗p−1 ⊗ V q(aI [vK ]bJ−∆k)

)
◦ b(1+k−q)

= φ(V q(aI [vK ]bJ)).

The argument is now different. The p terms in φ are all primitive. All bj

except for j a power of p are decomposable so the circle product of a primitive

times any of them is trivial. Thus the only nontrivial term is the one we want.

(b). Again we must confirm that all of our elements are defined in the

spectral sequence or space. They are.

(b)(i). We apply V i and all we need to do is prove:

σeaI−∆k [vK ] ◦ a(k) = (−1)l(I)−1σeaI [vK ]

which follows immediately.

(b)(ii). Again we apply V i to get down to:

φ(aI−∆k [vK ]) ◦ a(k+1) = (−1)l(I)φ(aI [vK ]).

We now apply V k
int where k = m(I) to get

φ(V k
int(a

I−∆k [vK ])) ◦ a(1) = (−1)l(I)φ(V k
int(a

I [vK ])).
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The result now follows like the b(1) case above.

(e)(i). For J 6= 0 this follows by our induction from (a)(i). If I = 0

we ground our induction by using the definition of the b(i) which clearly

corresponds (up to sign) to γpi(σe). When J = 0 we use (b)(i) and induction

while I 6= 0. The induction starts with σe = e ◦ e = −b1 = −b(0) (the [vK ]

doesn’t matter here).

(e)(ii). For J 6= 0 this follows by our induction from (a)(ii). When J = 0

we use (b)(ii) and induction while I 6= 0. The induction starts with the

recognition that φ([1] − [0]) is a(0) and so γpi(φ([1] − [0])) is a(i) (the [vK ]

doesn’t matter here either). These are low degree elements and our space is

just BZ/(p) in this range so these are easy to see.

(e)(iii). Follows by induction on degree and the definition of the suspen-

sion.

(f)(truncated polynomial factor). We show that the even dimensional

generators in (f) are all there in E∞
∗,∗. Later, when we are done with the

differentials, we finish the proof. All of the elements in (e) must be infinite

cycles by the same induction we used to identify them. The elements in (e)(i)

correspond to to first term in Lemma 3.6. Because (K, J) ∈ A+
n in (e)(i),

we get (K, J) ∈ An in (f). The terms in (e)(i) give us all the terms in (the

even part of) (f) with m(J) ≤ m(I). (e)(ii) corresponds to the fourth part of

Lemma 3.6 and gives us the m(I) < m(J) terms in (f). (e)(iii) corresponds

to the elements in the odd part of (f) (which are not hit by differentials).

(c) and (d). The guiding principle for the differentials is that any γpi with

an a(n) in it has a differential on it. Of course a(n) doesn’t exist and this is

why. We must note that in (c), the elements we assert have differentials are

the lowest γpi possible because for (c)(i), (e)(i) showed the lower ones were

infinite cycles and likewise for (c)(ii) and (e)(ii).

Differentials in our Hopf algebra must start with a generator and go to

a primitive, so the only generators which can have differentials are the γpi

and if they support a nontrivial differential then the target must be an odd
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degree primitive. All of our odd degree primitives are located in filtration

one and are our exterior algebra generators. Note that if dr(γpm(x)) = y

where y is an exterior generator, then it follows formally that (up to nonzero

scalar multiplication)

dr(γspm(x)) = yγ(s−1)pm(x)

for all s > 0. Thus the factor E(y)⊗ Γ(x) in the E2-term gets replaced by

TP1(x, γp(x), · · · γpm−1(x))

in Er+1. Each of our differentials takes this form.

Recall that in Lemma 3.6 we have two exterior factors. We want the odd

elements in (f) to survive. The remainder are the elements in (d) which we

want to be hit by differentials. To show that differentials are what we want

them to be we show that the proposed targets must indeed die. We then

show, strictly by counting, that the targets are in one-to-one correspondence

with our proposed sources. Since our proposed sources are the lowest possible

degree elements which could support differentials and our targets are known

to be hit, we infer that our proposed sources are in fact our sources.

So, we have two parts left to finish our differentials. (1) We must show

the proposed targets are hit by differentials and (2) we must do the counting

argument. We defer the counting argument until later.

We want to show that all of the proposed targets, σaI [vK ]bJ with i0 = 0

such that (K, J) ∈ An−A+
n , must be zero modulo the same type of elements

in A+
n . If they are not zero then they must be represented by eaI [vK ]bJ

and this, in turn, gives rise to an element σeaI [vK ]bJ in the next spectral

sequence for the next space. This element is even degree so must represent

aI [vK ]bJ+∆0 . Because (K, J) 6∈ A+
n we have (K, J + ∆0) 6∈ An. This means

that it can be rewritten in terms of n-allowable elements. The algorithm

does not affect the i0 = 0 condition or the fact that there must be a b(0).

Thus it can be rewritten in terms of elements that we are working modulo.
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Thus we know that there is a relation somewhere. There are only two ways

for a relation to come up: (1) this last element could be a pth power or (2)

our differential is as claimed. We are done if we show this last element is not

a pth power. This follows immediately from Corollary 2.4 which says that a

pth power must have i0 = 1.

We must now do our counting. When that is complete, we’ll see that

the elements in (f) are all that remain, both odd and even. So, showing

our sources are in one-to-one correspondence with our targets will finish the

proof of Theorem 3.7. We have to do a similar counting argument in order to

solve all the extension problems to get Theorems 1.3 and 1.4 so we separate

out the common part.

Lemma 3.8 There is a one-to-one correspondence between the set

{[vK+∆n ]bJ+(pn−1)∆0 : (K, J) ∈ An, j0 = 0}

and the set

{[vK′
]bJ ′ : (K ′, J ′) ∈ An −A+

n }.

Proof. To see this, write

J = pn∆dn + pn+1∆dn+1 + · · ·+ pm∆dm + J ′′

where m is maximal (this can be vacuous, i.e. J = J ′′, in which case we set

m = n− 1) and dn ≤ dn+1 ≤ · · · ≤ dm and J ′′ is non-negative. Now let

J ′ = J ′′ + (pn − 1)∆0 + pn+1∆dn−1 + pn+2∆dn+1−1 + · · ·+ pm+1∆dm−1

and K ′ = K + ∆m+1. 2

We will now do the counting argument for the differentials. We recall that

we have to show that the sources listed in Theorem 3.7 (c) are in one-to-one

correspondence with the eaI [vK ]bJ which have i0 = 0 and have (K, J) ∈
An −A+

n . Strictly for the purposes of counting we introduce a non-element,
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a(n), and incorporate it into our notation, eεaI [vK ]bJ . We can, for counting

purposes only, identify the set of differential source elements in Theorem 3.7

(c) with the set,

{aI [vK ]bJ : (K, J) ∈ An, in = 1, i0 = 0, j0 = 0}.

Theorem 3.7 (c)(i) gives those with m(I) ≥ m(J) by looking at Theorem 3.7

(e)(i) and Theorem 3.7 (c)(ii) gives those with m(I) < m(J) by looking at

Theorem 3.7 (e)(ii). That is a one-to-one correspondence. We now want to

pair these up with the targets of the differentials. To do that we just replace

the a(n) with e[vn]bpn−1
(0) . This gives us a one-to-one correspondence between

the sources of the differentials listed in Theorem 3.7 (c) and the set

{eaI [vK+∆n ]bJ+(pn−1)∆0 : (K, J) ∈ An, in = 0, i0 = 0, j0 = 0}.

Then Lemma 3.8 finishes our counting argument. 2

Proof of Theorems 1.3 and 1.4 for mod p homology. To finish Theorem

1.3 we must solve the extension problems remaining in Theorem 3.7 (f).

Theorem 1.4 (a) can just be read off the spectral sequence. The first part of

(c), that all pth powers are primitive, follows from Corollary 2.4 which says

that a pth power is divisible by a(0). In order to complete the proof we must

show that all generators and iterated pth powers with an a(n−1) in them must

have nontrivial pth powers. (b) will follow and so will the solution to the

extensions that we need.

First we’ll do a counting argument to show that things can work out the

way we suggest. The elements we want to be pth powers are the aI [vK ]bJ

with i0 = 1 and (K, J) ∈ An − A+
n . We need our correspondence to be

with generators and pth powers with in−1 = 1 in this degree divided by p.

That combination consists of all aI′ [vK′
]bJ ′ with in−1 = 1 with (K ′, J ′) ∈ An

(by induction!). First we show that we have a one-to-one correspondence

and then we show that our suggested pth powers must indeed be pth powers.

Since we show our elements to be in one-to-one correspondence with the only
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elements that can possibly have nontrivial pth powers, the pth powers must

be as claimed.

To do our counting we just take the pth power of aI′ [vK′
]bJ ′ . By Lemma

2.3 we have

(aI′ [vK′
]bJ ′)∗p = ±a∆0+s(I′−∆n−1)[vK′+∆n ]b(pn−1)∆0+s(J ′).

Lemma 3.8 now gives us the one-to-one correspondence we seek.

We now have to finish the proof of Theorem 1.4 (c) that the iterated

pth powers of the generators in Theorem 1.3 are those primitives aI [vK ]bJ

with i0 = 1 and (K, J) ∈ An − A+
n modulo the vector space generated by

aI [vK ]bJ with i0 = 1 and (K, J) ∈ A+
n . Having done our counting argument,

it is enough to show that these elements must indeed be pth powers. We

observe that all of our differentials start in total degrees divisible by 2p so

the targets must be in degrees equal to −1 mod 2p. If our elements are not

pth powers, then they will suspend to exterior generators in the next bar

spectral sequence. Here they cannot be targets of differentials because they

have degree +1 mod 2p. Thus, such an element would suspend once more

and be represented by aI [vK ]bJ+∆0 and (K, J +∆0) would cease to be in An.

It is now in degree 2 mod 2p so it cannot be a pth power here which is the

only way to create a relation. Thus it must be a pth power where we said it

would be. 2
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