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THE ADAMS-NOVIKOV E2-TERM FOR A COMPLEX WITH 
p CELLS 

By DOUGLAS C. RAVENEL* 

We will describe the calculation of the p-component of the stable ho- 
motopy, in dimensions < p3q where q = 2p- 2, of a certain finite com- 
plex X closely related to the sphere. X has p cells and 

X = So U eq U ... U e(P- I)q 

where each attaching map between adjacent cells is a,1 E rqt (S0). X is 
also the skeleton of a certain Thom spectrum T(1) of a bundle over QSq+I 

to be described below. The details of extracting -x* (SO) from -x* (X) will be 
described elsewhere. Our description of the latter is simple enough to be 
intelligible and to convince the casual reader of its probable accuracy. 

For p - 5 our range of dimensions is new. Nakamura-Oka [4] has 
computed irk(S?) for k s (2p2 + 4p + l)q - 6 and Aubry [2] has com- 
puted it for k ? (3p2 + 4p)q - 1. 

We will compute the E2-term of the Adams-Novikov spectral se- 
quence (ANSS) for i-* (X). It will follow for trivial reasons that there are no 
nontrivial differentials or group extensions in our range. We can describe 
our result briefly. E"t for s = 0, 1 for X are closely related to the corre- 
sponding groups for So which are well known (see [3]). E2t is known for 
the sphere and is generated by the elements fi3j,' sE2,q(P+l)i-qj where i > 0 
and j = 1 unless p I i in which case 1 c j c p. With the exception of (31 
these elements all have nontrivial images in E 2t for X. 

To describe the rest of E2 we need some notation. Let P(1) be the Hopf 
algebra Z/(p)[t1, t2]/(t Pj, t'P) with dim ti = 2(pi - 1), t1 is primitive and 

t2 = t2 t8 1 + tI (g t'pi + 1 (g t2. P(t) is dual to the subalgebra of the 
mod(p) Steenrod algebra generated by Pl and PP. 

P(O) = Z/(p)[t1]/(t P) = H*(X; Z/(p)) 

Manuscript received May 2, 1983; manuscript revised November 15, 1983. 
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934 DOUGLAS C. RAVENEL 

is a P(1)-comodule. We compute Ext4pl)(Z/(p), P(O)) and denote it by 
RSt. R is a free module on 2p- 1 generators in degrees (2i, p2qi) for 0 c 
i c p - 1 and(2i + 1, (p + ip + ip2)q)forO c i c p - 2overE(h20)? 
Z/(p)[b P] where h20 E cRt,(p+)q and b'P0 ER 2p,(p3+p2)q. Then our main 
result is 

THEOREM. The ANSS E2-term Es't for X for s 2 2, t < p3q is 
A E B ?@ C where A is the vector space spanned by { ,Bpi, opi+I i 2 1 }, 
B = R (0 {-Yk:k 2 2} where 'Yk E E3kq(p2+p+l)-(p+2)q and Cs,t = 

&,OR Rs+2i,t+i(p2-1)q CU 

This result is a reformulation of 4.13. For p = 5 it is illustrated in 
Table 5.1. 

In section 1 we will describe our method of calculation. In section 2 we 
compute the E2-term for T(1). In section 3 we construct a certain cochain 
complex and use it in section 4 to compute the E2-term for X. 

The work here was motivated in part by Aubry's calculation [2]. We 
commend him for his daring in breaking ground in this difficult area. 

1. The method of infinite descent and some homological algebra. 
The dual Steenrod algebra A* is a commutative, noncocommutative Hopf 
algebra over Z/(p). The usual definition of such an object is equivalent to 
the statement that it is a cogroup object in the category of commutative 
graded Z/(p)-algebras, i.e. given any such algebra R the set Hom(A*, R) 
has a natural group structure induced by the coproduct on A*. 

Now BP*(BP) in a graded commutative Z(p)-algebra but it is not a 
cogroup object in the corresponding category because the coproduct 

A: BP*(BP) -+ BP*(BP) ($BP* BP*(BP) 

is a map to the tensor product with respect to the BP*-bimodule structure 
given by the right and left units 21R, 21L:BP* 

-+ BP*(BP). Consequently 
Hom(BP*(BP), R) is not a group but a groupoid, and BP*(BP) is not a 
Hopf algebra but a Hopf algebroid. Many of the notions of Hopf algebra 
theory, e.g. extensions and the Cartan-Eilenberg spectral sequence 
(CESS) carry over to Hopf algebroids, although the generalization is not 
always straightforward. 

Let r(n) = BP*(BP)/(tl, t2 ... tn-1); this is a quotient Hopf alge- 
broid of BP*(BP) = r(1). Let A(n) = Z(p)[V1, V2 ... Vn] and G(n) = 

A(n)[tn]. Then G(n) is a sub-Hopf algebroid of r(n) and 
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(1.1) G(n) -- r(n) -- r(n + 1) 

is an extension of Hopf algebroids. 

1.2. PROPOSITION 

(a) Extr(t)(BP*, BP*[t1, t2, . . tn- 1]) = Extr(n)(BP*, BPO) 
(b) Exto(n)(BP*, BP) = A (n - 1) and Extsr4,)(BP*, BP*) = Ofor 

s > Owhent < 2(pn -1). El 

(a) is a standard change-of-rings isomorphism (see 1.20) and (b) fol- 
lows from the fact that A (n - 1) and r(n) are both isomorphic to BP* (i.e. 
r(n) is trivial as a Hopf algebroid) in this range. Alternatively, using (a), 
BP* [tI .. . tn-I] is isomorphic to BP* (BP) is this range, so the corre- 
sponding Ext group is simply BP*. 

Our method of infinite descent is to compute the Ext groups of (a) by 
downward induction on n, using (b) to start the process. There is a Cartan- 
Eilenberg spectral sequence (CESS) for the extension 1. 1, but we prefer to 
use another spectral sequence which we will construct below. We do so by 
producing a double complex whose cohomology is Extr(n)(BP*, M) for a 
left r(n)-comodule M. In the usual fashion this double complex yields two 
spectral sequences (both nontrivial) converging to the same thing; one is 
the CESS and the other is the one we prefer. 

Before doing this we observe that each step in the induction has a 
topological interpretation in view of the following result. 

1.3. Theorem. For each n 2 0 there is a homotopy commutative 
ring spectrum T(n) with BP* T(n) BP* [t 1, t2 ... tn I as a comodule over 
BP*(BP), so Extr(n+l)(BP*, BP*) is the E2-term of the ANSS for 
r* (T(n)). 

Outline of proof. By Bott periodicity BU = QSU, so the inclusion 
SU(m) -+ SU gives a vector bundle over QSU(m). An easy calculation 
shows H* (QSU(m)) = Z[b l, b2 ... bm_- I where bi e H2i(BU) is the stan- 
dard generator. Let X(m) be the corresponding Thom spectrum. It is pos- 
sible to obtain T(n) as a retract of the p-localization of X(pn ) by means of 
an idempotent map similar to Quillen's idempotent on MU. Quillen's 
method, as explained by Adams [1] depends on the existence of an orienta- 
tion class x E MU2(CP,) having certain properties. A similar class can be 
found inX(m)2(CPm). Quillen's calculations can be mimicked through an 
appropriate range of dimensions to give the desired splitting. X(pn) and 



936 DOUGLAS C. RAVENEL 

hence T(n) are homotopy commutative ring spectra since QSU(m) is a dou- 
ble loop space. El 

This result is not really relevant to the problem at hand since our cal- 
culation is purely algebraic and depends only on the (self-evident) exis- 
tence of the comodule algebras BP*[tl, .. . tnI. T(1) can be constructed 
directly as a ring spectrum (not obviously commutative) as follows. Let 
Sq -- BU correspond to a generator of 7rq(BU) and extend the map to 
QSq+'. The corresponding Thom spectrum is T(1). 

In our calculations we will use the following tool. 

1.4. PROPOSITION. Let 0 -O M -C Co -+ C' * C * * be a long 
exact sequence (LES) of comodules over r(n). Then there is a spectral se- 
quence converging to Ext +(j)(BP*, M) with E 'j = Ext (")(BP* Cj) and 
d : Er',j- Ei-r+l,j+r 

- 

We now construct the CESS and our substitute for it. Recall the stan- 
dard method of defining Ext over a Hopf algebroid such as r(n). A r(n)- 
comodule is extended if it has the form r(n) (?BP* M for some BP*-module 
M. There is an acyclic complex Dr(n)M of extended comodules with 
Ds (n)M= r(n)&+' (? M (with all tensor products over BP*) with 
d(-yo -3***( ys (3 m) = EOsijss (- 1)'yo t8 **/(-yi) (D.. rs @ m + 

( 1)S+1 0yo ? * * * E (m) for ei E r(n) and m E M. Using the inclusion 
M -- D OM and the map D OM -- M induced by the augmentation 
e: r(n) -- BP* one sees that Dr(n)M is chain homotopy equivalent (CHE) 
to M (regarded trivially as a complex) as a complex of BP*-modules. One 
also has EXtrr(n)(BP*, Dsr(n)M) = 0 for r > 0 and H0(Dr(n)M) = M so 1.4 
implies Extr(n)(BP*, M) is the cohomology of the complex Homr(n)(BP*, 
Dr(n)M) which we denote by Qr(n)M. This is the cobar complex for M. 
Explicitly we have Qsr()M = r(n) (g?M with d(y 1 C * y ($y m) = si= 

( i-l)Ie (D .. * * /\i) (S) * y * *e )m + (- l)S+,-Yl (g * ** s S) +(m) 
Now Dr(n)M is also an acyclic complex of extended r(n + 1)-com- 

odules (since r(n) = r(n + 1) (0 BP*[tn]) so H(Homr(n+l)(BP*, 
Dr(n)M)) = Extr(n+l)(BP*, M). Moreover Homr(n+l)(BP*, r(n)) = 
G(n) so Homr(n+,)(BP*, Dr(n)M) is a complex of G(n)-comodules. Fur- 
thermore an easy direct calculation shows 

BP* = HomG(n)(A(n), Homr(n+l)(BP*, r(n))) 

= Homr(n)(BP*, r(n)), 
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so Qr(n)M = HomG(n)(A(n), Homr(nl+l)(BP*, Dr(n)M)). The G(n)-com- 
plex Homr(n+l)(BP*, Dr(n)M) is CHE to the double complex 

DG(n)Homr(n+l)(BP*, Dr(n)M), sO Qr(n)M is CHE to the double complex 

(1.5) HomG(n)(A(n), DG(n)Homr(n+l)(BP*, Dr(n)M)). 

The resulting double complex yields two spectral sequences. If we take the 
cohomology of the inner complex first we get 

El = HomG(n)(A(n), DG(n)(Extr(n+l)(BP*, M))) 

and 

E2 = EXtG(n)(A(n), Extr(n+l)(BP*, M)); 

this is the CESS. 

1.6. THEOREM. Let M be a left r(n)-comodule with the notation as 
in 1.1. There is a Cartan-Eilenberg spectral sequence (CESS) converging 
to Extr(fl)(BP*, M) with 

= Ext G(n)(A(n), Ext r(n+l)(BP*, M)) and dr:E -+ E'+r,ir+l. 

Proof. Filtering by degree of the outer complex of (1.5) yields a spec- 
tral sequence with El = ExtG(n)(A(n), Homr(nl+l)(BP*, Dr(n)M)). Now 
Homr(n +l)(BP*, r(n) ?BP* M) = G(n) ?A(n) M so Homr(n+l)(BP*, 
Dr(n)M) is a complex of extended G(n)-comodules. Hence the higher Ext 
groups vanish, El = HomG(n)(A(n), Homr(nl+l)(BP*, Dr(n)M)), and the 
spectral sequence collapses from this El. Moreover for any r(n)-comodule 
N we have HomG(n)(A(n), Homr(nl+l)(BP*, N)) = Homr(n)(BP*, N), so 
our El -term is 

El = Homr(n)(BP*, Dr(n)M) 

= Extr(n)(BP*, M). El 

Now suppose we have another complex Cn of G(n)-comodules and a 
map Cn -+ Homr(n+l)(BP*, Dr(n)M) inducing an isomorphism in coho- 
mology. Then we get a map from QG(n)Cn to the double complex of (1.5) 
inducing an isomorphism of El -terms in the first SS (i.e. an isomorphism 
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to the CESS E1 -term). It follows that we have an isomorphism of E,o-terms 
and that (using induction and the 5-lemma) the two total complexes have 
the same cohomology, namely Extr(n)(BP*, M). The second SS associated 
with QG(n)Cn converges to this Ext with 

(1.7) Ei'1 = ExtG(n)(A(n), Cj) and d,: Er" E 

This is our substitute for the CESS. However the C,, we have in mind 
does not map to Homr(,,+l)(BP*, Dr(,,)M) but to another CHE complex 
which we now describe. First we need the chromatic resolution 

(1.8) 0 BP* MO Ml *M* 

constructed inductively as follows. 
Let No = BP* and define a short exact sequence (SES) 

(1.9) 0 -k Nil -- Ml' -' Nl+l 0 

by M'l = v,7 'BP* ?BP* N'7 where vo = p. 
Hence we have MO = BP* (0 Q and N1 = BP* 0 Q/Z(p). This LES 

leads via 1.4 to the chromatic spectral sequence (CSS) which is studied in 
[3], but we are interested in it here for other reasons. Any r(n)-comodule 
M which is free as a BP*-module can evidently be tensored with (1.8) and 
(1.9). Let CM denote the corresponding acyclic complex with 
H?(CM) = M. 

1.10. Definition. For a BP*-free comodule M the total complexes 
associated with the double complexes Dr(n)CM and Qr(n)CM are denoted 
by CDr(n)M and CQr(n)M. The latter is the chromatic cobar complex 
of M. 

1.11. LEMMA. CDr(,,)M and Cgr(,,)M are CHE to Dr(,,)M and 

Qr(n)M, so H*(CQr(n)M) = Extr(n)(BP*, M) for a BP*-free comodule M. 

Proof. CDr(n)M is a resolution of M by extended r(n)-comodules in 
which all the maps are split as BP*-module homomorphisms. Therefore 
standard arguments show it is CHE to Dr(n)M as a complex of r(n)-com- 
odules, and the equivalence Qr(n)M -_ CQr(n)M follows. O 

1.12. THEOREM. Let M be a BP*-free r(n)-comodule and Cn a 
complex of G(n)-comodules admitting a map to Homr(nl+l)(BP*, 
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CDr(,)M) inducing an isomorphism in cohomology. Then there is a spec- 
tral sequence converging to Extr(,)(BP*, M) with 

El = Ext G() (A (n), CJ) and dr:E'" -- E-r+lJ+r. 

Proof. In (1.7) we set up such a SS from a map Cn 
Homr(n+l)(BP*, Dr(n)M) and by 1.11 Dr(n)M is CHE to CDr(n)M. El 

1.13. Remark. In our examples Cn will be a subcomplex of the 
chromatic resolution CM, and the obvious map to Homr(n+l)(BP*, 
CDr(n)M) will not be mentioned. 

CQr(n)BP* is of course bigger than Qr(n)BP*, but it is more conven- 
ient because many elements in Extr(n)(BP*, BP*) can be more easily rep- 
resented as cocycles in CQr(n)BP* than in Qr(n)BP*. 

Nn is generated as a Z(p) module by fractions with whose numerators 
are monomials in BP* and whose denominators are monomials in 
A(n - 1) with relations given by the condition that such an element (re- 
duced to lowest terms) vanishes if its denominator is not divisible by the 
product pvI ... *Vn1. The CSS leads to a homomorphism 

71 : Ext0o(k) (BP*, Nn ) -+Ext n( (B* BP* 

known as the Greek letter construction. Alternatively, primitives in N n 

give cocycles in CQr(k)BP* representing their images under 7q. 

1.14. Definition. Let t(n) be the nth letter of the Greek alphabet. 
For t > 0 Ot(n) E Extn is (up to sign) the image of 

vn cE Ext0(Mn) 

PVI ... vn-I 

under the map 71 above. (The sign is discussed in [3].) 
These elements have been of interest for some time in view of the fol- 

lowing result (see [3] for references). 

1.15. THEOREM. For all t > 0 

(a) for p > 2 a, is a nontrivial permanent cycle in the ANSS corre- 
sponding to an element of order p in lrqt I (SO) which is in the image of the 
J-homomorphism; 
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(b) for p > 3 St is a nontrivial permanent cycle corresponding to an 
element of order p in _X(p+1)qt-q-2(S?); 

(c) for p > 5 et is a nontrivial permanent cycle corresponding to an 
element of order p in lrqt(p2+p+I)-(p+2)q-3(S). Fl 

Algebraically these elements are constructed using the SES's 

v 
lv,,BP*/Iin )BP* /In oBP* /In + l0 

where In = (p , v1 , ... Vn -1) C BP* (this SES can be embedded in that of 
(1.9)), and the following result of Morava and Landweber. 

1.16. THEOREM. Exto(BP*/In) = Z/(p)[vn] for each n > 0. For 
n = 0, Ext(BP*) = Z(P). LiE 

Our strategy will be to use certain subcomplexes of the chromatic co- 
bar complex to compute Extr(k)(BP*, BP*). We will need the following 
generalization of 1.16. 

1.17. PROPOSITION. Extor(k)(BP*, BP*) =A(k - 1)andfor n > 0 

Extr (k)(BP*, BP* /I) = Z/(P)[Vn Vn+, + * ... Vn+k-11 CI 

1.18. Definition. Let r be a Hopf algebroid over A (in the sense that 
BP*(BP) is a Hopf algebroid over BP*). A r-comodule M is a weak injec- 
tive if Ext'r(n)(A, M) = 0 for s > 0. O 

1.19. Definition. Let M and N be right and left r-comodules re- 
spectively. Then their cotensor product MillrN is the kernel of the map 
M (A N -- M ?A r ?A N sending m 0 n to m' 0 i" m n - 

m n 'n "ln. LI 

The following change of rings isomorphism (of which 1.2(a) is a spe- 
cial case) will be useful in section 4. 

1.20. TIVEOREM. Let r and E be Hopf algebroids over A and let 
f: r - E be a Hopf algebroid homomorphism such that r is weak injective 
as a E-comodule and let N be a left E-comodule free over A. Then 

ExtJ(A, N) = Extr(A, rPD1 N). 

Proof. We will use the cotensor product instead of Hom, e.g. writing 
HomJ(A, D,N) as ALlDFN. It suffices to show that the complexes 
whose cohomologies are the two Ext groups, i.e. A LIIDrN and A LI_rDr 
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(r Lii ,N), are equivalent. The former is A U r r Fl rD N so it suffices to 
show r FLIlD N and D (FLIN) are CHE as complexes of r-comodules. 
The latter is an A-split resolution of r c N by extended r-comodules, so it 
suffices to show the same is true of the former. Since rF EI = r, 
rFllD N is an A-split complex of extended r-comodules so it remains 
only to show it is acyclic. But the weak E-injectivity of r implies that coten- 
soring it with an A-split exact sequence of E-comodules (such as D,N) free 
over A preserves exactness. LII 

2. The calculation of Ext(BP* [t1]). We assume throughout the rest 
of the paper that the prime p is odd and that we are in the range t < p3q. 

From 1.2 we have 

2.1. PROPOSITION. 

(A(3) for s = 0 
Ext )(BP*, BP*) = 

(0 for s > O. LI 

Note that A (3) - BP* in our range. Consider the SES 

0-O A(3) -CO - C- 0 

where CO = A(3)[p'1v3] and C3 is the quotient. We claim that 
Extsr(3)(BP*, C3) = 0 for s > 0 for both i = 0 and 1, so we can find 
Extr(3)(BP*, BP) by studying the associated LES. To verify the claim 
and find Exto(3), we find 

C3? (p) 
- A (2)/(p)[t3 ] 

as a r(3)-comodule, giving 

MA(2)/(p) for s = 0 
ExtsG(3) (A (3), C?/(p)) = 

for s > 0 

which gives 

(A(2) for s = 0 
(2.2) ExtsG(3)(A (3), CO) = 

QO for s > O. 
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as an A (2)-module is generated by 3 :1 c i c p -1 

since v 3 /p P is out of our range. The G(3)-coaction is given by 

Pi pl-j 

and these binomial coefficients are all nonzero mod(p). It follows that 
each subquotient in the p-adic filtration of C' is isomorphic to a suspen- 
sion of A (2)/(p)[t3] and that 

(2.3) 

(A(2)/ (p) ( 3t :1 'i' p-1} for sO0 

ExtG(3)(A (3), C') = 

(O for s > 0 

Combining 2.2 and 2.3 and using 1.12 we get 

2.4 LEMMA. 

(A(2) for s = 0 

Extr(3)(BP*, BP*) = A(2)/(p) X { A :1 i ' p-1} for s = 1 

O for s 2 2 

where we are identifying v3/p E ExtoC(3)(BP, C3) with its image under 71 
in Extr(3)(BP*, BP*). FII 

To compute Extr(2)(BP*, BP*) we use the spectral sequence of 1.12. 
We will construct a suitable complex C2 of G(2)-comodules of the form 
CO ?-+ Cl -+ C2 satisfying 

2.5. (a) HS(C2) = Extsr(3)(BP* BP*), 
(b) C' in a weak G(2)-injective (1.18) for i = 0 or 1 and 
(c) the induced maps 

ExtsG(2) (A(2)z C) i 
0Exts(2) (A(2), 

C' l 

are zero for i = O and 1. 
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Then by (1.12) ExtG(2)(A(2), C2) is theEl-term of a SS converging to 
Extr(2)(BP*, BP*) = Ext(BP*[t I]). Moreover 2.5(b) and (c) imply that 
this SS collapses from El giving 

(Ext2G(2)(A(2), Cs) for s s 2 
(2.6) Extr(2)(BP*, BP*) = 

QExt G-(2) (A(2), C2) for s 2 2. 

The obvious choice for Co is A (2)[p-lV2]; it satisfies 2.5(b) by an ar- 
gument similar to that given for 2.2. 2.5(a) requires that the map Co? C- 

factor through the quotient B! = Co /A(2). However B! does not satisfy 
2.5(b); C! will be a submodule of Ml containing B . B! as anA(1)-module 
is generated by 

. 1 i p - p 

and the G(2)-coaction is given by 

(V ') J (i) vV' 

From this one can see that Ext 2(2)(A(2), B!), i.e. the primitives in B! un- 
der this coaction, is generated by { v2 /ip } 

A C- satisfying 2.5(b) with Exto (2)(A (2), B!) must contain elements 

xi,j such that the last term in the expansion of i(xi,j) is a unit multiple of 
vl/ip ? ti , for all i, j satisfying i > 0, j 2 0 and i + j S p2 - p. The first 
instance where this fails inD i i the last term of t((VP)/pP) is V2/p 

?3 t2'2 rather than V2/p 9t2P1. If we divide by p we get k((v2P)/p 1+P) = 

* + v2 /P (gt + l/p (g t P and this last term is unacceptable because 
1/p is outside our Exto. However, by subtracting vj IV3 /p (which is per- 
mitted since we are looking for a submodule of Ml, in which nega- 
tive powers of v1 are allowed) we can eliminate the unwanted term in 

6(xl 1), so we define 

p 
-1IV 

V2P V1 lV3 
,p-l = pl+P P 
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More generally we define 

v I+j- I vi-I l(v -IV3)jlp 

,j 1 (i+J i) . 
j i J 

where the second term is nontrivial iff j 0 mod(p). (A formula which 
appears to be valid in all dimensions is 

vi2+j ~~~(- I)kpk- I (k 1)2k(VL V3(j+k)lP 

x id= 
- + S- ( )iPj+I jj+k 

J 

Compare this situation with that of 3.8 below.) 
We let C' C Ml be the sub-A(2)-module generated by all the xij. 

Then we have 

A(2) 
2 

:i > o for s = 0 
(2.7) Exts(2)(A(2), C) = ip 

0 for s > 0 

and the C2 which will satisfy 2.5(a) is the A(2)-module generated by 
{(V3/pv1):i > 0}, i.e., we have 

2.8 LEMMA. A complex C2 of G(2)-comodules satisfying conditions 
2.5 and 1.12 is the subcomplex of the chromatic resolution (1.4) given by 

Co = A (2)[p - V2 ] 

vi+i _v2 I(vl IV3)(.i+l)lP i 0j 0 
:i> 0,] j?- 

2 ~ ~ ipjj++0 
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Where the second term vanishes unless j---1 mod(p), and 

C2 = A (2) L |. El 

In order to complete the data necessary for (2.6) we need to compute 
ExtG(2)(A(2), C2). We do this by filtering C2 by powers of vI, and we find 
that each subquotient is a suspension of M = A(2)/(p, v1 )[t j]. A routine 
calculation shows 

ExtG(2)(A(2), M) = Z/(p)[v2] ?E(h20) ?P(b20) 

where 

h20 = [t2] and b20 = O<<p( i 2t2] 

These elements can be identified up to sign with a' = v2I/p and Al = 

v3 /pvl respectively. Hence we get 

2.9. THEOREM. For p > 2 and t < p 3q 

(A(1) for s = 0 

Extr(2)sBP*LtlJ) = A(1)? . :i > 03 for s = 1 

Exts {2(A(2), C2) for s 2 2 

where 

EXtG(2)(A(2) c2 =E(U- ) 9P(01 )X 
pvl 

i > 3,j~-0 F 

By 1.2 and 1.3 this Ext is the ANSSE2-term connverging to ir*(T(1)). 
The spectral sequence collapses because there is nothing in filtration 

- 2p-1, so we have 

2.10. COROLLARY. For p > 2 and k < p3q - 3, irk(T(1)) = (s 
Exts(k+s (BP*, BP*) as described in 2.9. El 
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A parallel calculation gives ExtBP (BP)(BP*, BP*) = Exts t for 
t < p2q. 

2.11. THEOREM. For p > 2 and t < p 2q 

(Z(p) in dimension 0 for s = O 

EXtBP*(BP)(BP*, BP*) = Z(P) ?p :i > 03 for s = 1 

tZI(p)[0 I I9E(oe 1) (D {0O: i > O for s 2 2 

andfor k < p2q - 3, iik(S?) = (?s Exts's+k. 

3. The complex Dl. The restrictions of section 2, i.e. p > 2 and 
t < p3q are still in effect. We depart slightly from the methods of section 1; 
instead of analyzing the extension G(1) - rF(1) - rF(2) we look at H(2) -- 

r(1) - F(3) where H(2) = A(2)[t1, t2] with the evident Hopf algebroid 
structure. Untilfurther notice we will abbreviate ExtH(2)(A(2), M) by 
Ext(M) for an H(2)-comodule M. By the methods of 1.12 we have 

3. 1. THEOREM. Let M be a BP*-free r(1)-comodule (recall r(1) = 

BP*(BP)) and let D1 be a complex of H(2)-comodules admitting an H(2)- 
map to Homr(3)(BP*, CDr(l)M) inducing an isomorphism in cohomology. 
Then there is a spectral sequence converging to Extr(l)(BP*, M) with 

ElJ = Ext (Di) and d,.:E,W- EVr-E +l i+r. EZ 

For the case M = BP* we will construct a D 1 satisfying the hypotheses 
above in addition to 

3.2. (a) D1 is a subcomplex of the chromatic resolution CBP*(1.8); 
(b) for i = 0, 1 D| is a weak H(2)-injective (1.18) with Exto(D') = 

Ext i(l)(BP*, BP*); 
(c) D = 0 for i > 2. 

The Ext groups of 3.2(b) are known, i.e. 

3.3. THEOREM. (a) For p > 2 

Ot Z(p) for t = 0 
Extr(l)(BP*, BP*) =0 for t>0 
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andfor all i > 0, Extri, (BP*, BP*) is the cyclic group generated by the 
cocycle v /ip E CQr(l)BP*, i.e. the order of this group is the largest power 
of p dividing pi. 

(b) Forp > 2andt > 0, 

EExt l,t)(BP*, BP*) for s = 0 
Exts l)(BP*, M1 ) - 

t0 for s > O 

where M1 is as in (1.8). El 

References and a proof can be found in [3]. 
In constructing D I, the obvious choice for D 0 is A (2)[p -v I, p 

filtering it by powers of p gives subquotients isomorphic to H(2) - 

H(2) (gA(2)Z/(p) and we have Exto(DO) = Z(p) as required by 3.2(b). 
D 1 is harder to get at and we will approach it rather indirectly. First 

we introduce a useful technical tool, which will be used in our proof that 
DI exists (3.6). 

3.4. Definitionz. Let G be a graded abelian p-group with G finite for 
all i and trivial except when q I i. Then the Poincare' series for G is Egjx1 
where the order of G i is pgi. 

The following characterization of weak injective comodules in terms 
of Poincare series is useful. 

3.5. LEMMA. Let M be a connective torsion H(2)-comodule offinite 
type conzcenitrated in dimensions divisible by q. Then the Poincare' series of 
M is dominated by that of H(2) 0 Ext0(M) with equality holding iff M is a 
weak injective. (H(2) could be replaced by any other Hopf algebroid con- 
sidered in this paper.) 

Proof. We will construct a decreasing filtration {FI } on M such that 
the associated bigraded comodule EoM is annihilated by I = (p, vl, 
v2) C A(2) and Exto(EOM) = Eo Ext?M, so Exto(EOM) has the same 
Poincare series as Exto(M). Then we will prove the theorem by showing it 
for EoM. 

For any comodule M as above we will construct a subcomodule M' C 
M containing IM such that Exto(IM) = Exto(M') and the SES 

0 - M'- M M" 0 
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induces a SES in Ext0. Then the desired filtration can be defined by 
Fk+lM = (FkM)/. 

Define SES's 

0 Ml! - M - Ml- 0 

inductively as follows. Let Mo' = IM and let Ki = Exto(Mi")/im Ext?M. 
Since Ml" is annihilated by I we can choose a splitting Ki -- Ext0Mi". Ki is 
then a sub-A(2)-module and therefore a subcomodule of Mi" and we can 
define Ml!+ 1 = Mi" /Ki. Then we have SES's 

O > Mil > M4 Il > Ki ' 

o 1 -- -- K1 -1 

O > Mi - M > Mi ' ?; 

Ki was chosen so that Ki = ExtO(K ) maps monomorphically to Ext l (Mi'), 
so Exto(Mi') = Exto(Mi'+ l ). It follows that Exto(IM) = Exto(M') where 
M' = lim Mi'. 

Now we need to show that Exto(M) maps onto Exto(M") where M" = 

lim MW". This will follow from the fact that the connectivity of Ki increases 
with i. To see this suppose the first nontrivial element of Ki is in di- 
mension n. Then M'" has primitives there which do not pull back to primi- 
tives in M. But these elements are set equal to zero in M" 1, so Kj+I is 
n-connected. 

Defining Fk+ 1M = (FkM)' gives a decreasing filtration of M subor- 
dinate to the I-adic filtration (in the sense that EoM is annihilated by I) 
with Exto(EOM) = EoExto(M). Hence it suffices to prove the lemma for 
EOM, in other words for comodules N annihilated by L 

Assume this N is (- 1)-connected and let No be its 0-skeleton. We will 
argue by induction on dimension by constructing a SES of comodules 

0 -N-- 9 N -N-* - 0 

such that the statement holds for N by direct calculation, and N has higher 
connectivity than N and hence has the desired property through a higher 
range of dimensions by induction. The statement for N will follow since 
Poincare series are additive with respect to extensions. 



ADAMS-NOVIKOV E2-TERM 949 

To get this SES, note that the A (2)-module splitting N -- No induces a 
comodule splitting N?0 H(2) - No 0H(2). Let N and N be the kernel and 
image of the composite of this splitting with the comodule structure map 

: N - N?(H(2). Now No C N C No (?H(2) so Ext?(N) = No, which is a 
quotient of Exto(N), so the statement clearly holds for N. On the other 
hand N is 0-connected, so the result follows. EZ 

3.6. LEMMA. For p > 2 there exists an H(2)-comodule D| satisfy- 
ing 3.2. 

Proof. Let M1 = BP* E r(3)M. From 1.6 and 3.3(b) we deduce that 
this H(2)-comodule has the same Ext groups in positive dimensions over 
H(2) as M1 has over BP*(BP). We will construct DI as the direct limit of 
subcomodules Ki C M1. Consider the following commutative diagrams in 
which rows and columns are SES's. 

Li+1 Li+, 

A A 

Ki 
RI 
M Li 

--A1 A~ 

Ki ' Ki+I L!i 

We define these comodules inductively by setting Ko = Do/A(2) and let- 
ting L,' be the sub-A (2)-module of Li = M 1/Ki generated by the positive 
dimensional part of Exto(Li). It is a subcomodule of Li, Ki+1 is the in- 
duced extension, and Li+ 1 = Li /L!'. Hence Ki, Ki+1, and L/ are connec- 
tive while Li and Li+I are not. From the LES for the right hand SES we 
deduce that the positive dimensional part of Exto(Li+1) is a subgroup of 
Ext1(L!'), whose connectivity is necessarily greater than that of Li'. It fol- 
lows that the connectivity of L' increases with i so the limit K0o = lim Ki 
has finite type. The connectivity of the positive dimensional part of 
Exto(Li) also increases with i. ConsequentlyL0. = limLi has trivial Ext0 in 
positive dimensions. From the SES 

0 -O Ko -R -- LX -- 0 
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we deduce Ext1(Koo) = 0. Now we will use 3.5 to conclude the higher Ext 
groups vanish as well and that Ko. is therefore D . Consider the SES 

0 -O K. -- Koo? 0A(2) H(2) -- P -O 0 

where P is the quotient. These comodules all satisfy the hypotheses of 3.5. 
This SES induces a SES of Ext? groups by the above vanishing of Ext1. 
The Poincare series of the middle term above clearly satisfies the equality 
of 3.5, so the same is true of the two end terms and all three comodules are 
weak injective. El 

We have constructed Do and D }. Since H2(D1) = Ext2(3)(BPe, BPe) 
= 0 in our range, we can take DI to be the cokernel of the map D- D 1. 
First we compute its Poincare series. The series for H (2) and Extl(l),(BP*, 
BP*) are respectively (1/(1 - x)(1 - x1+P)) and Ei20 (xP'/(1 - xP')) (in 
our range only the first three terms of this sum are relevant). By 3.2 and 3.5 
the series for D } is the product of these two. To find those for the image we 
must subtract those for im Do = DO/A(2) and for 

H1(D1) = Ext'(3)(BP*, BP ) (see 2.4). 

The latter group is a Z/(p)-vector space with basis {(v3+iviv V/p):i, 

j, k 2 O} so its Poincare series is (xl+P+P2 /(1 - x)(1 - x1+P)(1 - 

x 1+P+P2)) 

The group DI/A (2) is generated by { (v vi/pm): i + j 1 m > O }. In 
the subgroup generated by these elements with i 2 m, each generator can 
be written uniquely as (v1 /p)i+1vi vk with i, j, k 2 0, so the series for this 
subgroup is (x/(1 - x)2(1 - xl+P).). Each of the remaining generators 
can be uniquely written as (v1 /p)ivj2(v2/p)l+k with i, j, k 2 0 so the series 
for the quotient is (x1+P/(1 - x)(1 - x1+p)2. Combining these results 
gives 

3.7. PROPOSITION. If D1 is a complex as in 3.2, then the Poincare' 

series for the image of DI in D 2 is 

1 Ix' + x (1 - xp) 

( XI+P) L(1 - x P)(1- xP++ (1 -_x)(1l_2-1xP _(1-Xp +P) 

Xp2+p_ 

(1-_X p2+p)(1 _X p2+p+ 1) CG 
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Our reason for writing the series in this form will become apparent 
presently. Note that the third term is the series for C2 (2.8). 

Next observe that 3.2 implies that D1 satisfies 2.5(a) and (b) (but not 
(c)). Hence there is a spectral sequence converging to Extr(2)(BP*, BP*) 
collapsing from E2 (rather than E1, since 2.5(c) is not satisfied) with 
Elj= ExtG(2)(A(2), D ) and d1 :Elj" E-,j+ . 

From 2.9 we know this E2-term and we can use it to learn more about 
D1. One sees easily that 

Exto (2)(A(2), DO) = A(1)[p-'v I 

SinceE?'0 = A(1) we find that im d1 C E?'1 is theA(1)-module generated 
by {(vl/p1): i > 0}. This is not a weak injective over G(1) as we can see by 
applying the G(1) analogue of 3.5; the Poincare series here is x/(1 - x)2. 
On the other E0 1 = Exto(2)(A(2), D1) must be one, since 

ExtH(2)(A(2), Dl) = ExtG(l)(A(1), Eq'1) by 1.6. 

3.8. LEMMA. Let Cl C M1 (1.8) be the A (1)-submodule generated 
by Vpi and v I/pPi+l - vv'/ipfori > O. Then C1isaweakinjective 

over G(1) with 

ExtG(l)(A(1), Cl) = Ext'(l)(BP*, BP*, BP*). 

Proof. We have to show that Cl is indeed a G(1)-comodule with the 
appropriate Ext0. Then the result will follow from 3.5 once we have com- 
puted its Poincare series. Consider the G(1)-comodule M 1 
BP* EF r(2)MI where M1 is the chromatic comodule of (1.8). Each element 
of C1 is primitive over F(2) so C1 is an A(1)-submodule of M1. 

To see that it is a subcomodule let Cl im d1 C C 1 be the A(1)- 
submodule generated by v l/p for i > 0, and let C l = Cl/Cl. Then C1 is 
clearly a comodule and 

i( v' _vv )p -_ I v. VI I -VI VI V2] 
ip+l ~~~~~jpP+l jp 

modulo C1 so Cl is a subcomodule of M1. Now 

Ext? (1)(A(1), Cl) C Ext? (1)(A(1), M1) = Ext 0(1)(BP*, M1). 
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This group is known by 3.3 to be isomorphic to Ext(l)(BP*, BP) in posi- 

tive dimensions. Since every element of this group is in Cl (3.3) we have the 
desired isomorphism. 

The Poincare series for Cl is x/(I - x)2 while that of Cl is readily seen 

to be 

XP XP2 

(1 -x)(1 -xP) (1 -x)(1 _xP2) 

so C' has the series required by 3.5. EZ 

Now the SS we are studying, i.e., that converging to Extr(2)(BP*, 

BP*) withEl = ExtG(2)(A(2), DI) must haveE?2 1 = Ext (2)(BP , BP*), 
the A (1)-module generated by v /ip for i > 0. We can conclude 

3.9. PROPOSITION. If DI is as above then the image of ExtG(2) 
(A(2), DI,) in Ext?G(2)(A(2), D ) is the A(1)-module generated by v2/ 

ipvlfor i > 0. Moreover, there is an exact sequence ExtG(2) (A (2) D l) 

ExtG(2)(A(2), D ) Ext? (2)(A(2), C2) 0 and an isomorphism 

ExtG(2)(A(2)9 D ) Exts (2)(A(2) C2) for all s > 0, where C2 

is as in 2.8. EZ 

We wish to compare this result with 3.7 by computing the Poincare 

series for this group. The subgroup of exponent p is generated by 

{(v2+1+'/pvD):i, j > O} so its series is (xP/(1 - xP)(1 - x1+P)). The 

elements of order p2 (there are no elements of order p 3in our range) are 

generated by 

( p(i+I+j)v k 

22 pi :i,j,k 2 0,k < p( 
p V1 

so the corresponding series is (X(p2(1_ X p)/(l 
X 
p2)(1 - xP2+P)(1 - x)). 

Multiplying these two series by (1/(1 -xl+P)) gives the first two 

terms in 3.7. 

4. The calculation of Ext(BP*(X)). In the last section we con- 

structed a complex D I of H(2)-comodules suitable for the SS of 3.1. More- 

over 3.2(b) implies that Ext' (2)(A(2) D1) = Extr2(BP BP) in our 

range. (We are still abbreviating ExtH(2)(A (2), M) by Ext(M)). To get at 

this group we could use the CESS (1.6) for the extension G(1) -> H(2) 
G(2), i.e. 
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4.1. PROPOSITION. There is a CESS (1.6) converging to Ex- 
tH(2)(A (2), D2) with Es't = Exts(1)(A(1), Extt(2)(A (2), D2)). Li 

The group ExtG(2)(A(2), D2), which we denote by E is described in 
3.9, which says there is a SES of bigraded G(1)-comodules 

(4.2) 0 B E F 0, 

where B = im ExtG(2)(A (2), D 1) is the A (1)-module generated by { v/ 
ipv ': i > 0 } concentrated in degree 0 (note that for i 2 p2 these elements 
are out of our range) andF = ExtG(2)(A(2), C2) as given by 2.9, which says 
F? = Ext? (2)(A (2), C2) is the Z/(p)-vector space generated by { v v /pvj: i 
2, j > 0} and 

4.3. F = F? (g E(h20) (g P(b200?) 

4.4. Definition. For a right BP*(BP)-comodule M let ri: M -> E'M 
be the group homomorphism defined by b(m) = E ri(m) 0 t ..., where 
the other terms involve tk for k > 1. These operations are similarly defined 
for G(1)- and H(2)-comodules. Let X" C G(1), Y" C H(2) and T" C 
BP*(BP) denote the submodule generated by {t':0 c i < n}. A G(1)- 
comodule M is k-free if the comodule tensor product M (g)X Pk - is a weak 
G(1) injective. 

Our ultimate goal in this paper is to compute EXtBp*(BP)(BP*, TP1) 

for which we can use the SS associated with the complex D1 (0 YP-l. The 
main difficulty here is computing ExtH(2)(A(2), D2 (g YP- 1), which we do 
in two stages. First we compute ExtH(2)(A(2), D 2 0 yp2-1) using a CESS 
with E2-term ExtG(I)(A(1), E ( XP2-1), then we use another SS (to be 
described below) to get the Ext group for D 2 0 yp-l from that for 
D 2 yp2-I 

To compute ExtG(l)(A(M), XP2-1 (E) we will construct a SES of bi- 
graded G(1)-comodules 

(4.5) 0 E E E 0 

with E and E2-free (4.4). Hence the above Ext group will vanish in all 
degrees 1 and the CESS will collapse. 

4.6. LEMMA. Let M be a G(1)-comodule and let L C M be the sub- 
comodule n ip2 ker ri. Then Ext? (1)(A(1), M (g XP2- 1) is isomorphic to 
L as a group. 
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Proof. Let m e L. Then one easily sees that Eo<i<p2 ri(m) (g t e 

M?XP2-1 is primitive. Now we show that any primitivex eM(gXP2-1 
must have this form. Write x = 2oci<pkXi ? t' and assume inductively 
thatxi = (-1)'ri(xo) for i < m. Then we have 

O = r,,1 (X) = E Or(xi)(r,,-i(t) 

E ( i ) ~i-j+M = i 2r(Xi)?( m .t I+ 

Collecting terms where the exponent of t I is zero gives 

O = 0 rj(x,,?-j) = Xm + E rj(Xmj) 
J >0 

- Xm + r (j1)'r*(rm_j(Xo)) 
j>0 

=XIIl + ( ) )r,,, (XO ) 
Jz>0 

which givesxm = (-1)'rm(xo). El 

Now we will construct the SES (4.5). We obtain E from E by adjoining 
{vY-ivj/pvi: 0 < i < j } (g E(h 20) ( P(b2) sowe have 

E = {vj3/pvIv2:0 < i < j}(?E(h2o)?P(b2o). 

Now we have a commutative diagram with exact rows and columns 

o o 

O - B - E - F O0 

11 
B t P > O -o-B -*-E -*-F -*- 

E E 

0 0 
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where F is the evident extension of F byE. We will show B, F, E and hence 
E are 2-free using 4.6 and the G(1) form of 3.5 

For B we have 

2 r - (v2 + V1tl - vftl)i 
j20 > ipv / ipv I 

so by 4.6 Ext20(,)(A(1), B ?XP21) is isomorphic to the kernel of multipli- 
cation by v P. To compute the Poincare series for this group, note that the 
subgroup of exponent p is generated by ({v +'/pvl ): 1 < j < p, i 2 0} 
which has series (xPI/(1 _ Xpl))((1 _ P2)/(1 - x P)); the elements of 
order p2 are spanned by { (v 2/p2v D) :1 < j < p, i 2 1 } so the correspond- 
ing series is (xP2(1 - xp)/(1- x)(1 -X p+p2)). Hence, B (DXP2-1 will be a 
weak injective by 3.5 if we can show that its series is (1 - x)-l times the 
sum of the two above. But from 3.7 we know the series for B is 

XP_ _ xP 2(1 - Xp) 

(1 - xP)( - x1 +P) (1 - x)(1 - XP2)(1 - XP+p) 

while that for XP21 is (1 -xP2/1 - x) so the result follows. 
Next we deal with F = F? X E(h 20) (0 P(b 20) where FO is the vector 

space spanned by ({Q v+lvY-i+i/pvI): i, j 2 0}. Its series is 

xI)?+)/(2 - +/,)(I -X 

Now we claim 

Ext?0(l)(A(1), F? (gXP2) - Ext2G(l)(A(1), F?). 

The latter is spanned by {(V3V'/pv1 ) :j > 0} so its series is 

x1+?)2 /(1 -IxI+I) 

and the G(1)-form of 3.5 implies thatFOO&XP2_l is a weak injective soF? 
is 2-free. 

To verify the claim, filter F? by powers of (V2, V3). Then 
EOF0 0XP2_1 is an extended G(l)-comodule with the appropriate Exto. 
This filtered Ext0 gives an upper bound on Ext 2(1)(A(1), f?O 0XPp2), 
while Ext0G(1)(A(l), F?) is a lower bound, so the claim follows. 
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In E one has 

V3 V'2 V'2+ V2+lP 

rp2( ~ __ a1irp2 K + 
rp2 J pvl aiPVpvl+ 

where 

tj+ 1 + pa 
aj1 = ( P ) 

which is always nonzero in our range. Hence the element 

I i+ll+-p 
V32 V2- 

V2 -aa pV2? -Et is in ker r 2. 

A similar argument works for E, the group ExtG ()(A(1), E? OXP2-1) 

is spanned by {Iyi:i 2 2} where yi = vi/pvIv2. Hence we have proved 

4.7. THEOREM. The SES 0 -O E E E - 0 as above is a resolu- 

tion of E by 2-free G(l)-comodules (4.4). Hence 

Ext(D YP1) - B 0(({Qyi: i 2 }{ ( Iuj: j 2 O}O (E(h20) (O P(b20) 

where B is the A (1)-module generated 

i+j 
(_ ~v2 2+ 

i ).0 
{13i+i/i= -(i + j)pvi 

V2V3 V2 

U- pv1 j 
p +p+ 

and 

3 c EExt1 E 

Now we construct a SS to get from the Ext group above to Ex- 
tH(2)(A(2), D 2 ( yp-1). We have an exact sequence 
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0 YP-1 2P 2-1 P yp2qyp-1o 

which defines b1I = e ExtH(12)Y(PyP-l YP 1). By splicing this with itself 
repeatedly we get a LES 

o yP 1 yp2-2 
I' 

pq yp2 I 'p2f, E p2q yp2_ 

4P s(p+p2)qyp2 .. 

tensoring this with D 2 gives a 2-free resolution of D 2 0g 
yP' I and a SS as in 

1.4, i.e. 

4.8. THEOREM. There is a SS converging to Ext(D 2 (8 YP 1) with 
ETl" = E(hII ) 0gP(bII ) 0D Ext"(D 2 f Yp2-1), h I IE E E?, b1 I E2E 0 and 
d,. :E," .s ES+?"-'-+l. Moreover di :Es"' -" EEs+'," is rIp for s even and 

rp2-, for s odd. 

Proof. We have done everything but compute d I. Let x e D2 I 
E 2iP2qX P2- I have the form Exi (0 t'. Then in the LES d(x) = Exi @0r,(t ) 
= 2(')xi X t'-P. If x is primitive then by the argument of 4.6 xi = 

(-1)'ri(xo) so 

d(x) = E (-1)i )ri(xo) X tV-P 

= E(-1)iri_prp(xo)0Xtr P 

and this element corresponds to -rp(xo) under the isomorphism of 4.6. 
The argument for the case when the coboundary operator is r p2p is 
similar. Eli 

Now we compute d1 in 4.8, the E1 -term being determined by 4.7. We 
have (up to nonzero scalar multiplication) 

v+p i+ 1Yv+2 
rP(ui) = (i + 1) P, 2 r2-P(Ud) = 2 

i . j-1 r / . j+1-p V2 v JJ V 
rp( i )= rp2-p( p)=(p - pv-+ 
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t Pi 2PJi- 
I 

rp 2J = J I I and 

rP P(i =~pi+ I -p V2 V2P+- 

rp - 2 1= 
i+- P P p V1 pV 1 

Combining these observations with 4.7 and a routine calculation gives 

4.9. LEMMA. In the SSof 4.8 d EIU + Es+lu is trivial foru > 0, 
but nontrivial for u = 0 such that E?0? is generated by v 2/pijv 1, v 2 /p 2v 
and upj- Ifor j > 0,1 c i < p;E2'0byh1(v2j/p2v|)fori < p and 

h11uj-1 for]j 1 mod(p); E20 by b 1I(vl/pjv1) for j = 1 mod(p) and 
b1l(v2j'/pv') for i 2 3; and for s > = b-IE2'?. El 

Next observe that YPl is a finitely generated A (2)-module with 

HomA(2)(YP-1, A(2)) = E(I-p)qyp-- 

as H(2)-comodules. It follows that 

ExtH(2) (A(2), YP-1 D2) = ExtH(2) ( (I -p)q Yp -I, D2) 

which is a module over the algebra ExtH(2)(Yp-1, YP-1). This contains 
the elements h and b 1I represented by the exact sequences 

o yp-l y2p-l Epqyp-l --+o 

and 

0 yP-l yp2-1 
rp 

2 Epqyp2-1 >Ep2qyp-1 0 

respectively. Hence we have 

4.10. PROPOSITION. If x eEs Euis a permanent cycle in the SS of 4.8 
then so are the elements b hx and h11 b 1x for all i 2 0. Moreover multipli- 
cation by h1l and b1l commutes with differentials. El 

Now we can state our main computational result. 

4.11. THEOREM. In the SS of 4.8, thefollowing differentials (along 
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with those implied by 4.10) occur up to a nonzero scalar. All other differ- 
entials are trivial. 

(a) d3(ytb%0) = n-ythIIbIIb%1. 
(b) d3(yth2ob%0) = nyth2 hIIbib%201 
(c)d3(uib%) = (n + i + 1)uihllbllb%-lforn 2 1. 
(d) d2p2j3(upi+jh 1IbfP2) - b1 P i0Pj+P1P_j for 0 c j < 

p -3. 
(e) d2(h20ud) = (i + 1)blli+2 and d3(h20bj0ui) = (i + 

j + 1)hllbllh2objl1uiforj 2 1. 
(f) d2p-2jp2(upi+jh I h2ob pj22j) = 3pi+p/(pj_l,2)hllb ij for 

0 j ? p -2. 

Now we assume for simplicity that p = 5, the generalization to an 
arbitrary odd prime being straightforward. 

We digress now to describe a simpler SS which serves as a paradigm 
for the one in question. Let P(1) = Z/(5)[tI, t2]/(t25, t5) with the evident 
Hopf algebra structure; it is isomorphic to the dual of the algebra gener- 
ated by the Steenrod reduced powers P 1 and P5 . Let y't be the Z/(5)-vector 
space spanned by {t':O c i c n} for n < 25. We have Extp(l)(Z/(5), 
j24) = ExtQ(l)(Z/(5), Z/(5)) = E(h20 ) (?P(b20) where Q(1) = Z/(5)[t2]/ 
[t5]. The LES 

24 ry 24 5 
s 5q y24 20 _ 25q y24. 

leads to a SS converging to Extp(l)(Z/(5), Y4) with E2 = E(h1j, h20) 0 
P(bll, b20) with h ll eE!'0, bl, e-E2'0 , h20 eE?'1, b20 eE?'2 anddr:E 
ES+r,u-r+l. This SS is analogous to that of 4.8. 

r 

4.12. THEOREM. The differentials in the above SS are asfollows: 

(a) d3(b'0) = ihjbl1b llb2; 
(b) d9(h11b5i+4) = b51b%. 

These differentials commute with multiplication by h20, hII and bII, and 
all other differentials are trivial. Consequently Extp(l)(Z/(5), Y4) is a free 
module on P(b 50)?&E(h20) on {b'1:0 < i < 4} U {h1jbo0:0 c i c 3} 
with the product of h I1 and h 1 b 30 being b11. 4Z 

Intuitively the elements h11 b 0 are Massey products <hj1, ... h I I, 
blh> with i + 1 factors of h1I. Hence the multiplicative extension 
h 1* h b 20 = b14 follows from a Massey product identity, 
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h11 <h11 , , hll, hll, b3 > = (h11, hll, hll, hll, hll >bl = bI I 

Since Y4 is not a comodule algebra, Extp(1)(Z/(5), Y4) is not a ring, but we 
can get products by pulling back to Extp(l)( Y4, Y4), which has a Yoneda 
product. We prefer to think of Massey products such as h IIb20 in the 
following way. b20 E Extp(l)(Z/(5), Y24) pulls back to an element in 
Ext4(1)(Z/(5), Y5), and hll E Ext4(l)(Z/(5), Y4) pulls back to ExtP(l)(Y5, 
Y4). The Yoneda product of these two elements is h1 Ib20E Ext3PM (Z/(5), 
Y4). The choices made in the pullbacks are equivalent to the indetermi- 
nacy in the Massey product, which in this case is trivial. 

Now let RS't = Ext4 )(Z/(5), Y4) as described above. 4.11 implies 
that ExtH(2)(A(2), DI), after filtering to get rid of the elements /5i/(1,2) of 
order 25, can be described as a direct sum of variously displaced copies of 
R, more precisely. 

4.13. COROLLARY. There is a (nonsplit) SES 0 -> J -> Ext(D2) 
K -O 0 where J is the Z/(p)-vector space generated by {I :1i - 0, 
1 mod(p):i > 1}K = KI1?K2whereKI = R {-y,:t 2 2}and K`t- 

s+2i+2,t+qi(p2-"Leti= pj + k with ' k ' p- 1. Theii the ill 

copy of R contains /3i+2 and 13/)1+p/1-k forO k ? p - 3, /2)+,)/(I.2) aiid 
Opj+p/2fork = p -2 and u)+S- fork = p- 1. 0Z 

To visualize K2, imagine a phantom generator in bidegree (-2i - 2, 
qi(p2 - 1)), supporting a copy of R for each i 2 0; K2 consists of the 
portion of this object having nonnegative bidegree. 

One can easily construct P(1)-comodules Ui satisfying 

Exts(1)(Z/(5), Ui& (S 4) = ExtsA)2i(ZI(5), Y4 

4.13 suggests that Y4 ( D D can be filtered in such a way that there is a 
SES 

0 -O Eo(Y4?DI) -D H(2) EZp(1)V0 - H(2) EZp(I)V' - 0 

where H(2) = H(2)/(5, v1, v2), V0 is a direct sum of copies of P(1) and 
Y4 (? US and V1 = Y4 {yt: t> 2 }. Such a description of D 2 would lead 
to a much more direct proof of 4.13, but we have been unable to construct 
the necessary isomorphism. Apparently it does not exist before one tensors 
with Y4. 

The proof of 4.12 is a model for the proof of 4.11 and we give the 
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former now for p = 5. We use the P(1) analogues of the following elemen- 
tary facts which the reader can easily verify. 

4.14. PROPOSITION. 

(a) There are pairings YD Yi y-+ yi+; which induce pairings in Ext 
groups. 

(b) The element h11 E Ext(Y4, Y4) corresponding to 0 -Y4 Y9 - 

E 5q y4 _ 0 can be pulled backfrom a similar element in Extl(Y5i-5, y4) 

for 0 < i < 5 given by o -- -S5-y5-5o. 
(c) b11 E Ext2,25q(Y4, Y4) corresponds to o y4 

- y24 L4 E 5qy24 

r 25q y4 -+ 0, which is obtained by splicing the SES's: 

0 _y4 -y24 5q yl9~ 0 and 0 
y19 y24 20qy4 0 

so multiplication by b 1I is the composite of the map heI Exts t(-, Y4) 
Exts+I,t+20q(-, Y19) induced by the second SES and h II: Exts t(-, 

Y19) - Exts+lt+5q(-, Y4) induced by thefirst. 
(d) The element b20 E ExtG(2)(A (2), A (2)) = ExtH(2)(A (2), Y ) pulls 

back to an element in Ext(Y5) which maps to b1l E Ext(A(2)) under the 
map Y5 S25 A(2). (A generalization to the elements ui will be proved 
below in 4.15. The P(1) analogue is easy.) 

To prove 4.12(a), observe that 4.14(a) and (d) imply that b'0 pulls 
back to ExtP0)(Za/(5), y5i). For i < 5 the SES 0 -o y4 y 

y5q y5-5 0 induces (by 4.14(b)) 

Extpi(,)(Z/(5), y5> EtPi(j)(Z/(5), 5 5i5 

> Extpi(+1 (Z/5, y4 

underwhichb2omapstob 1b 1l, soh1Ib1Ib 
f1 = Oanditmustbekilled 

by the indicated differential. Moreover for i < 4 we can take the Yoneda 
product of b'0 E E xt1)(Z/(5), Y5i) with the element in Ext'(l)(Y5i, Y4) 
given by 4.14(b) and get an element in Extp(l) (Z/5, Y4) representing 

2 b2, so the latter is a permanent cycle. 
To see that multiplication by h20 commutes with differentials, note 

that h20 clearly pulls back to Extp( )j(Z/(5), Y9) and the SES 0 -Y - 

Y 9 S5q Y4 0 shows that the obstruction to pulling it back to Y4 lies in 
Extj4q)(Z/(5) Y4) = 0. Hence we can use the pairing to pull b'0h20 back 
to y5i+4 and argue as before. 
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Alternatively h20 can be realized as an element in Ext 1,6q(Y4, Y4), 
and there is a Yoneda pairing 

Extp(l)(Z/(5)9 Y4) ( Extp(l)(Y4, Y4) Extp(l)(Z/(5), y4) 

For 4.12(b) we use the SES o -yl9 y 24 -0 - 0 to get 

Ext (,) (Z/(5), Y 24)Ext (l) (Z/(5), 2 y4 

Ext9(1)(Z/(5), Y_9) 

in which b20 maps to b 1I by 4.14(d), so h II b II = 0 and b 11 = O by 4.14(c). 
This forces d9 (h I I b 40) = b 51 and b 50 must be a permanent cycle. Multipli- 
cation by it gives the differentials of 4.12 for larger powers of b20. This 
completes the proof of 4.12. 

Untilfurther notice we will abbreviate ExtH(2)(A (2), D2 (3 yn) by 
Ext(Yn). 

In order to prove 4.11 we need to generalize 4.14(d) to the elements ui 
and uih20 . Let i = 5j + k with -1 c k c 3. Then an easy calculation 
shows (j + l)r5k+5(ui) = v5?+5/5v75-k and r5m (ui) = 0 for m > k + 1. 
From the SES 

0 y5m-1 y24 r5m 5mq y24-5in - 0 

we see that r5m(ui) is the obstruction to pulling ui back to Ext(Y5m-). 
Moreover if k * -1 the obstruction 15j+5/5-k pulls back to Ext?(Y?) 

which means that ui pulls back to Ext(Y5k+5). The element uo E Ext0(Y24) 
corresponds to b20 E ExtH(2)(A(2), Y24), so this calculation verifies 
4.14(d). Using the pairings of 4.14(a) we get a similar statement for bnouU. 
If k = -1, ui pulls back to Ext(Y4) where we denote it by f5j+5/6. Com- 
bining these we get 

4.15. LEMMA. With notation as above the element b%un E Ext(Y24) 
pulls back to an element in Ext(Y5k+5n+9) which projects to b''1 135i+5/5-k 
under the map y5k+5n+9 , r5q(k+n+l)y4 i 

The elements uih20 behave a little differently. A low dimensional cal- 
culation shows h20 pulls back to an element in Ext(Y4) corresponding to 
v2/5 - v6/56; there is some indeterminacy generated by v6/55, but it will 
not affect our calculations. Applying r4 gives 2v2/5 = 2a2, which is a non- 
trivial obstruction to pulling back to Y3. 
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Hence for 0 c i c 3 uih20 pulls back to y5i+4 and the obstruction to 
pulling back to y5i+3 is a nonzero multiple of a235/5-i = a _15/4-i_ We 
want to compute the image under y5i+4 ,_ E5iq y4, which must be an ele- 
ment in Ext 1(36+i)q(y4) whose image underr4 is a1I35/4-i From 4.8(a) we 
see this element must be h1ll35/4-i,2. 

Since U4 pulls back to Y4, h20u4 pulls back to Y9 and the image under 
the map Y9 -- E5q Y4 lies in Extl 55q(Y4) which vanishes by 4.9, SO u4h20 
pulls back to Y4. 

The uih20 for i 2 5 behave similarly and we get 

4.16. LEMMA. Let i = 5j + k with -1 ' k c 3 as above. For 
k * -1, h20uib%0 pulls back to Ext(Y5k+5n+9) and projects to 
h Ilb 0I35j+5/4-k,2 under the map y5k+5n+9 + 5q(k+n+1)y4 For k 
-1, h20u5j_ pulls back to Y4so b%h2ou5pq pulls back to y4+5n where 
it projects to b 1 h 20Eu51 l* 

To get information about the SS from the previous two lemmas we 
have 

4.17. LEMMA. In the SS of 4.8 

(1) if x EE2 corresponds to an element in Ext(Y5i+4) for 0 c i < 3, 
then h 11x is a permanent cycle; 

(b) if it corresponds to one in Ext(Y5i+9) for 0 c i < 3 projecting 
under the map r y5i+9 5q y5i+4 to an element corresponding to 
y EE2, then h 11y is the target of a differential; and 

(c) if x EE2 corresponds to an element in Ext(Y24) projecting under 
the map r20: y24 E 20q y4 to an element corresponding to z then b 1Iz is 
the target of a differential. 

Proof. (a) The SES 0 - y4+ y5i+9 E5q y5i+4 o_ 0 has a con- 
necting homomorphism sending x E Ext(Y5i+4) to h 1lx E Ext(Y4). 

(b) The above SES induces Ext(Y5i?9) Ext(Y5i?4) 4 Ext(Y4) in 
which x maps to y which is therefore annihilated by h11. 

(c) The SES 0 -+ y24 20qy4 0 induces Ext(Y24) 

Ext( Y4) Ext( Y19) in which x maps to z which is therefore annihilated by 
h and b11 (see 4.14(d)). L 

We proved 4.12 by arguments similar to the above along with the ob- 
servation that b 50 is a permanent cycle because there is no possible target 
for a differential. In proving 4.11 we need to show the same is true of the 
elements bj01ui and h20bj2'ui with p I (i + j); this involves some book- 
keeping to be described in 4.19. 



964 DOUGLAS C. RAVENEL 

In applying 4.17(b) and (c) one would like to conclude that dr(x) = 

hIy and dr(hIIx) = b1Iz respectively; indeed this is the case in all of our 
examples. However this does not follow immediately because y and z are 
not necessarily uniquely determined by x since some choices are made in 
the construction. Equivalently, h IIy and b 11z could conceivably be killed 
by an earlier differential. Hence some care must be taken to verify the 
stated differentials. 

We can however give a painless proof of 4.11(a) and (b), i.e. of the 
differentials involving the y's, by showing that each 'Yk for k 2 2 induces a 
map of the SS of 4.12 into that of 4.8. Let K C D 2 be the submodule 
spanned by I (V jVk/5v l+i ): i, j, k 2 O, k 2 1 + i-j }. It is easily seen to 
be a subcomodule. 

Define a SES 

(4.18) K K K O 

by letting K have the same description as K without the condition j 2 0. 
ThenK is spanned by {(v k/5v'+iv'+j) :i, j 2 O, k ? 2 + i + j}. An easy 
calculation gives 

ExtH(2)(A (2), K Yy24) k:k 2 2 } E(h20) (P(b20). 

Hence the SS for ExtH(2)(A(2), K ( Y4) iS simply {k:k 2 2} tensored 
with the one in 4.12. Now 'Yk E ExtH(2)(A (2), K) which maps via (4.18) to 
ExtH(2)(A(2),K) and thence to Ext lH(2)(A (2), Di), so 4.11(a) and (b) 
follow. 

Note that this argument does not prevent a y-related element from 
being hit by a differential originating elsewhere. 

To prove 4.1 1(c)-(f) we describe the relation with 4.12 in more detail. 
The elements in 4.8 (excluding those involving y's) are analogous to those 
in 4.12 as indicated in the following table where 0 c i c 3 

4.8 element 4.12 element 

vi+2/(i + 2)5v, 12h,lb' 
05/5-i b1 

l0514-i,2h 1 1 hh2ob U+? 

5?+i1/5h I hllbl lbl, 
ujbkolh20 l 2 20b kh20 h1' for E, r 0, 1 
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Hence the differentials in 4.11(c), (d), (e), and (f) correspond to those 
in 4.12 originating on b20 +n+, b 240h1l, h2ob J+1, and h1lh2 b40 respec- 
tively. The vanishing of each target can be deduced from the previous 3 
lemmas; as an instructive example we will show f33b1I = 0 below. The 
survival of the elements corresponding to h1 b 'o and h, Ih20b for 0 c 
i c 3 can be deduced from 4.17(a). This accounts for all except the ele- 
ments corresponding to b25 . These are the only non y-related elements 
said to be permanent cycles occurring in Exts't with t/q divisible by 6, so it 
suffices to prove 

4.19. LEMMA. In the SS of 4.8 no element of the form uib j2 1 with 
i +r j divisible by p can support a nontrivial differential hitting a y-related 
element. 

Proof. The possible targets are 'Ykb1l and -Ykh2Oh11b%2 . We will 
show that in our range none of these elements have the appropriate bigrad- 
ing. To be safe we will not assume p = 5. uib j 01 Ext2j2q - = 

Exts t so t/q is divisible by p + 1 and t/q - (s + 2)((p2 - 1)/2) = p2j + 

p(i +rj) +r i-j(p2 -1) = (p + 1)(i + j) = Omod(p +p2). 
First 1+ 2 q(p2(k+)+ (k-)p+k-2) p2n -p + k- 

2 = k + n - 1 mod(p + 1). Since k -2, this means k + n 2 p + 2, 
which puts the element out of our range. 

Next -ykh20h n b% E Ext3+2n,q(P2(k+n)+p(k+n- 1)+n- 1), giving t/q 
p + k - 1 mod(p + 1) so k = 2. This (s, t) must also satisfy t - 

(s - 3)(p2 -1)/2 = 0 mod(p2 + p). But this quantity is (3 + n)(1 + p), 
so n 2 p - 3 which gives t/q = p3 + 1 which is again out of our 
range. D] 

Finally we describe, as a representative example, how to show 
b 11 f3 = 0. Consider the two maps of SES's, 

o E lOq y4 E lOq y19 > E15qyl4 > o 

o > EIOqyI4 E lOq y19 > E25q y4 > o 

and 

> 9 y1 rio r 10q y4 - 0 > y 9 . y1Oqy4 > 0 

0 > y-9 > y24 > E l Oq yk4 > O. 
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From this we get a commutative diagram 

Ext '(y'4) 

Irlo 

Ot(r 15q y14) 
hll Ix l( 10q y4) - Ext 2(Y9) 

Irlo 11 

ExO(r 25q y4) I Et(F 10q y14) - Ext 2(Y9) 

in which the horizontal maps are the connecting homomorphisms and the 
top 'L' is exact. Now r10(h20ul) = hII /35/3,2 by 4.16 and rIO0513,2 = /3 by 
4.9. It follows that the image of 03 in Ext2(Y9) is trivial. But the bottom 
composite is multiplication by b II composed with the inclusion Y4 -- Y9. 

It follows that b11 /3 must be in the kernel of h1I, and by inspection one 
sees that Ext l37q(y4) = 0, so this indeterminacy is trivial. 

5. Epilogue. We have completed the calculation of ExtH(2)(A(2), 
D 2 yp- 1) in our range of dimensions. The results for p = 5 are shown on 
Table 5.1. Now it is a simple matter to compute ExtBp*(Bp)(BP*, TP-'); 
we will give the details below. Recall TP-' = BP*(X), where X is a CW- 
spectrum with p cells, So U eq U e2q U ... e (P-i)q where each attaching 
map between adjacent cells is c,. Hence this Ext is the E2-term of the 
ANSS for -r*(X). Since there are no elements with filtration 2 2p, the 
ANSS collapses by sparseness, so we have actually computed i-*(X). 

The real object of interest is of course the Ext for the sphere. To get at 
this we must study the SS analogous to that of 4.8 arising from the LES 

0 > A(2) > yP_ 
r 

Eqyp-1 4Epqyp-l ,* .. 

We will describe this calculation elsewhere. 
To compute Ext(TP-l) we use the complexD, ( YP-I as in section 3. 

Since D is a weak injective for i = 0, 1, the same is true of D Y f P- and 
the skeletal filtration gives 

Eo Ext H(2)(A(2), D' ( YP-1) = ExtH(2)(A(2), D )( WP- 

where WP- is the free Z(p)-module on {t': 0 c i c p - I}. For i = O we 

get Exto spanned by { vk: 0 < k ' p -1 }. For i = 1 the group extensions 
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are all nontrivial and Ext?O(Pi?k)q is generated by ((vP - pPvV'v2I vI/ 
jpl+P) for 0 c k c p - 1. It follows that in the SS of 3.1, d1 

/VP - v-1 V VI V2 V2 

pl ,+p pv 

so 01 is dead and 

Ext' p2,t)(BP , T 1) - ExtH(2)s, t(A), D 2 0 YP-1) for t > pq. 

The following table displays this group for p = 5 and 25 c t/q < 
125. Each dot represents a basis element. Vertical lines represent multipli- 
cation by 5 and horizontal lines represent the Massey product operation 
<-, 5, a a1 >, corresponding to multiplication by v 1. The diagonal lines cor- 
respond to operations <-, h11, h1I, ... h11 >. b denotes :5X5 and ij de- 
notes (v' (v2t5 + v25t2 - - v34)/5v1 ). The generators to the left of 
the chart (i.e. with t < 200) are f3i for i = 2, 3, 4, which would support 
diagonal lines hitting the generators of Ext3,8(29+i). 

UNIVERSITY OF WASHINGTON 
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