MULTIPLICATIVE OPERATIONS IN BP*BP

DOUGLAS C. RAVENEL

One of the present computational difficulties in complex cobordism theory is the lack of a known algebra splitting of BP*BP, the algebra of stable cohomology operations for the Brown-Peterson cohomology theory, analogous to the splitting isomorphism

$$MU*MU \approx MU*(pt) \otimes S$$

where S is the Landweber-Novikov algebra. S has the added advantage of being a cocommutative Hopf algebra over Z.

This paper does not remove this difficulty, but we will show that the monoid of multiplicative operations in BP*BP, (i.e. those operations which induce ring endomorphisms on BP*X for any space X), which we will denote by $\Gamma(BP)$, has a submonoid analogous to the monoid of multiplicative operations in S.

The latter monoid is known (see Morava [3]) to be isomorphic to the group of formal power series f(x) over Z such that f(0) = 0 and f'(0) = 1 and where the group operation is composition of power series.

For the basic properties of MU^*MU and BP^*BP , see Adams [1], especially §§ 11 and 16.

The main construction of this paper was inspired by the work of Honda ([3]) although none of his results are needed here. I am grateful to Jack Morava for bringing Honda's work to my attention.

Before stating our main result we must review the description of $\Gamma(BP)$ implicit in [1] § 16. An operation $\alpha \in \Gamma(BP)$ is characterized by its action on the canonical generator $z \in BP^*(CP^{\infty}) \cong \pi_*BP[[z]]$. It is shown that $\alpha(z)$ is a power series f(z) over π_*BP where

$$(1) f^{-1}(z) = z +_{\mu} t_1 z^p +_{\mu} t_2 z^{p^2} +_{\mu} t_3 z^{p^3} +_{\mu} \cdots$$

where $+_{\mu}$ denotes the sum in the formal group defined over π_*BP and $t_i \in \pi_*BP$. (This formula appears on page 96 of [1].)

The action of α on π_*BP can be read off from (1). Let $l_n \in \pi_{2p^n-2}BP \otimes Q$ be defined by $\log^{BP} x = \sum_{n=0} l_n x^{p^n}$ (l_n is the $m_{p^{n-1}}$ of [1]). Then we have

and this formula also characterizes α .

In other words $\Gamma(BP)$ is an infinite dimensional affine space over

 π_*BP with coordinates t_i with a composition law which can be read off from (2). The difficulty mentioned above is that the subset of elements with integer coordinates is not a submonoid.

The main object of this paper is to construct new coordinates s_i of $\Gamma(BP)$ such that the subset of elements with coordinates in Q_p (the set of rational numbers with denominators prime to p) is a submonoid which will be denoted by $\gamma(BP)$. Moreover this submonoid is isomorphic to a direct product of countably many copies of Q_p , although this isomorphism is somewhat accidental in a sense to be described below. The s_i are not unique as they depend upon a choice of generators of π_*BP . What's worse, they are not algebraic functions of the t_i , so they do not lead to a splitting of BP*BP.

Let $\{v_j \in \pi_* BP\}$ be a set of generators. Define a ring endomorphism σ of $\pi_* BP$ by $v_j^\sigma = v_j^p$, extending σ linearly over all of $\pi_* BP$. Then our main result is

THEOREM. For every sequence of coordinates $\{t_n \in \pi_*BP\}$ there exists $\{s_n \in \pi_*BP\}$ such that

(3)
$$\sum_{0 \le i \le n} l_i t_{n-i}^{pi} = \sum_{0 \le i \le n} l_i s_{n-i}^{qi}$$

for every n > 0, and for every $\{s_n\}$ there exist $\{t_n\}$ satisfying the same conditions.

COROLLARY. Let α' , $\alpha'' \in \Gamma(BP)$ have coordinates s'_n , $s''_n \in Q_p$ respectively. Then the coordinates s'''_n of $\alpha''' = \alpha' \cdot \alpha''$ are given by

$$s_n''' = \sum\limits_{i+j=n} s_i' s_j''$$

i.e. if we define power series s'(x), s''(x), s'''(x) by $s'(x) = 1 + \sum_{n>0} s'_n x^n$, etc., then s'''(x) = s'(x)s''(x).

The corollary follows from (3) by direct computation, remembering that σ fixes $Q_p \subset \pi_* BP$.

To prove the theorem we need an analogue of (1) involving the new coordinates s_n , and some elementary properties of formal groups beginning with

Lemma A. For every $r \in Q_p$ there is a power series $[r](z) \in \pi_*BP[[z]]$ such that

- (a) [1](z) = z
- (b) $[r'](z) +_{\mu} [r''](z) = [r' + r''](z)$
- (c) [r']([r''](z)) = [r'r''](z)
- (d) $[r](z) \equiv rz \ modulo(z^2)$.

Proof. If r is a positive integer define [r](z) inductively by $[r](z) = z +_{\mu} [r-1](z)$; the existence of [-1](z) is one of the formal group axioms; and if r is an integer prime to p, define [1/r](z) to be the formal inverse of [r](z). Then (c) enables us to define [r](z) for any $r \in Q_p$.

Now let $M = (m_1, m_2, m_3, \cdots)$ be a sequence of nonnegative integers, of which all but a finite number are zero, and let

$$v^{\scriptscriptstyle M} = \prod\limits_{j>0} v_j^{\scriptscriptstyle m_j}$$
 \in π_*BP .

Then the v^{M} s form a Q_{v} -basis of $\pi_{*}BP$ and we can write

$$s_i = \sum_i s_{i,M} v^M$$

with $s_{i,M} \in Q_p$ and the sum ranging over all M. With this notation we have

LEMMA B. Formula (3) is equivalent to

where $^{\mu}\Sigma$ denotes the formal group sum.

Proof. Multiplying both sides of (3) by z^{p^n} and summing over all positive n gives

$$\sum\limits_{n>0} \log\,t_n z^{p^n} = \sum\limits_{n,M} s_{n,M} \log\,v^M z^{p^n}$$

which is equivalent to (4).

LEMMA C. For $r \in Q_r$, there exist $r_n \in \pi_*BP$ with $r_0 = r$ such that for any $u \in BP^*CP^{\infty}$

$$[r](u) = {}^{\mu}\sum_{n\geq 0} r_n u^{pn}.$$

Proof. We will first show that there exist $r_{(k)} \in \pi_*BP$ such that

(6)
$$[r](u) = \sum_{k>0} r_{(k)} u^k$$

and then show that $r_{(k)}=0$ unless $k=p^n$. The proof of the former statement is by induction on k. Let $r_{(1)}=r$ and suppose we have found $r_{(1)}, r_{(2)}, \cdots, r_{(m)}$ such that

$$[r](u) = \sum_{k=1}^{m} r_{(k)} u^k \mod (u^{m+1})$$
.

Then we can take $r_{\scriptscriptstyle(m+1)}$ to be the coefficient of $u^{\scriptscriptstyle m+1}$ in

$$[r](u) - \sum_{k=1}^{m} r_{(k)} u^k$$

and the first statement follows. Taking the log of both sides of (6) we have

$$r \log u = \sum_{k>0} \log r_{(k)} u^k$$

i.e.

$$r\sum_{n\geq 0} l_n u^{p^n} = \sum_{k>0 top j\geq 0} l_j r^{pj}_{(k)} u^{k_p j}$$

Equating coefficients of u^i yields the lemma.

LEMMA D. For a', $a'' \in \pi_*BP$, there exist $a_n \in \pi_*BP$ for $n \ge 0$ with $a_0 = a' + a''$ such that for any $u \in BP^*CP^{\infty}$

(7)
$$a'u +_{\mu} a''u = \sum_{n\geq 0}^{\mu} a_n u^{pn}.$$

The proof of Lemma D is similar to that of Lemma C and is left to the reader.

We are now ready to prove the theorem via (4). Given $\{t_n\}$ we will construct $\{s_n\}$ by induction on n, beginning with $s_1 = t_1$. Suppose we have found s_1, s_2, \dots, s_m such that

(8)
$$\sum_{n>0}^{\mu} t_n z^{p^n} \equiv \sum_{\substack{0 < n \leq m \\ M}}^{\mu} [s_{n,M}] (v^M z^{p^n} \mod (z^{1+p^n}))$$

By repeated application of Lemmas C and D we can find $w_n \in \pi_* BP$ such that the right hand side of (8) is equal to $\sum_{n>0}^{\mu} w_n z^{p^n}$ and we know $w_n = t_n$ for $n \leq m$. This allows us to set $s_{m+1} = t_{m+1} - w_{m+1}$, and the first half of the theorem is proved. Similarly if we are given $\{s_n\}$, let $t_1 = s_1$ and suppose we have found t_n for $n \leq m$. Then we can set $t_{m+1} = w_{m+1} + s_{m+1}$, and the theorem is proved.

Now I will describe the sense in which the commutativity of $\gamma(BP)$ is accidental. If this paper were being written for number theorists rather than topologists, we would replace π_*BP by $\pi_*BP\bigotimes_{Q_p}W(k)$, where W(k) is the Witt ring of a finite field k of characteristic p. Lemma A would go through only for $r\in W(F_p)$, the p-adic integers. The ring endomorphism σ when restricted to W(k) would be the lifting of the Frobenius automorphism on k. The corollary (with $s_n', s_n'' \in W(k)$) would then read

$$s_n^{\prime\prime\prime} = \sum\limits_{i+j=n} s_i^\prime (s_j^{\prime\prime})^{\sigma^i}$$

The resulting group $\gamma_k(BP)$ would not be abelian if k has more than p elements.

REFERENCES

- 1. J. F. Adams, Quillen's Work on Formal Groups and Complex Cobordism, University of Chicago Lecture Notes, 1970.
- 2. T. Honda, The theory of commutative formal groups, J. Math. Soc. Japan, 22 (1970), 213-246.
- 3. J. Morava, Structure Theorems for Cobordism Comodules, (to appear).

Received December 4, 1974. Research partially supported by NSF Grant GP-32843.

COLUMBIA UNIVERSITY