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Periodic phenomena in the Adams-
Novikov spectral sequence

By HAYNES R. MILLER, DouGLAS C. RAVENEL,
and W. STEPHEN WILSON

Introduction

The problem of understanding the stable homotopy ring has long been
one of the touchstones of algebraic topology. Low dimensional computation
has proceeded slowly and has given little insight into the general structure
of 73(S". In recent years, however, infinite families of elements of 7$(S°)
have been discovered, generalizing the image of the Whitehead J-homomor-
phism. In this work we indicate a general program for the detection and
description of elements lying in such infinite families. This approach shows
that every homotopy class is, in some attenuated sense, a member of such
a family.

For our algebraic grip on homotopy theory we shall employ S. P.
Novikov’s analogue of the Adams spectral sequence converging to the stable
homotopy ring. Its E,-term can be described algebraically as the cohomology
of the Landweber-Novikov algebra of stable operationsin complex cobordism.
In his seminal work on the subject, Novikov computed the first cohomology
group and showed that it was canonically isomorphic to the image of Jaway
from the prime 2. When localized at an odd prime p these elements occur
only every 2(p — 1) dimensions; so this first cohomology group has a periodic
character. Our intention here is to show that the entire cohomology is built
up in a very specific way from periodic constituents. Our central applica-
tion of these ideas is the computation of the second cohomology group at
odd primes. .

By virtue of the Adams-Novikov spectral sequence this information has
a number of homotopy-theoretic consequences. The homotopy classes G,
t = 1, in the p-component of the (2(;1)2 —Dt—2(p—1) — 2)-stem for p > 3,
constructed by L. Smith, are detected here. Indeed, it turns out that all
elements with Adams-Novikov filtration exactly 2 are closely related to the
B family. The lowest dimensional elements of filtration 2 aside from the 8
family itself are the elements denoted ¢; by Toda. The computation of the
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second cohomology provides an upper bound on the number of elements
generalizing the ¢,’s. We also show that p never divides 5,.

The formalism of our approach is remarkably convenient. It shows for
example that the nontriviality of 5, for all ¢t =1 and all p > 3 follows
immediately from a slight reformulation of Novikov’s calculation of the
first cohomology group. Similarly, and more importantly, using the second
cohomology we are able to prove that H. Toda’s elements 7, in the p-com-
ponent of the (2(p* — 1)t — 2(p* — 1) — 2(p — 1) — 3)-stem are nontrivial
for all ¢t =1 and all »p > 5. Products are also quite easily studied; for
example, we give a condition on ¢ guaranteeing that a,8, # 0 in 75(S°).

Since Novikov’s work a number of advances in our understanding of
complex cobordism and its operations have occurred. A remarkable and
useful connection between complex cobordism and formal groups was
discovered by D. Quillen. Quillen used this to split up the localization of
complex cobordism at a prime p. The summands in this splitting are
suspensions of the Brown-Peterson theory BP, which thus contains all the
information of complex cobordism at the prime p. Quillen’s work was put
on a firm computational basis by M. Hazewinkel’s construction of canonical
polynomial generators v, of dimension 2(p" — 1) for the coefficient ring
BP, = Z, [v, v, ---]. As a result of these advances it is easier to use the
smaller theory BP when dealing with a problem one prime at a time, and
we do so. It is also more convenient to use the dual of the algebra of BP
operations; and for any comodule M over the resulting “coalgebra” BP,BP,
we shall write H*(M) for the graded cohomology group Exty; z(BP,, M).
Thus our object of study is H*(BP,), and our main computation gives
H*BP,).

The discovery which motivated the present research is due to Jack
Morava, and the program described here is an outgrowth of his work.
Morava proved a “localization theorem’ identifying the cohomology group
H*(v;'BP,/(p, vy + -, v,-,)) with the continuous cohomology of a certain
p-adic Lie group already familiar in local algebraic number theory. This
relation led to a striking finiteness result for these cohomology groups, and
to their computation in various cases. In a sense, the machine described in

this paper reconstructs the Adams-Novikov E,-term H*(BP,) from these
localized groups.

More specifically, we construct a long exact sequence of comodules
0— BP, > M° > M — M2 — -
in which M" is “v,-local,” in the sense that v, acts bijectively and M" is
v;-torsion for all 7+ < n. Thus for example M° = p'BP, = Q ® BP,. The




PERIODIC PHENOMENA 471

cohomology H*(M™) can be recovered from Morava’s cohomology groups by
a chain of n exact couples of Bockstein type, since M" can be obtained from
v;'BP,/(p, v, -+, v,_,) by introducing higher torsion one generator at a
time. Application of H*(—) to the displayed long exact sequence now leads
in the usual way to a spectral sequence converging to H*(BP,). We call it
the “chromatic” spectral sequence. In it, E»* = H*(M") is “monochro-
matie,” and differentials may be thought of as “interference.” The entire
spectral sequence is of course an algebraically defined object. The sub-
quotient of H*(BP,) associated with M" constitutes the “n'* order periodic
part” of the Adams-Novikov E,-term. Thus ImJ exemplifies first order
periodicity, the 8 family is second order, and the 7 family is third order.
Morava’s finiteness theorems imply that the chromatic spectral sequence
exhibits a broken vanishing parabola: if » — 1 does not divide n then
HiM™ =0 for 7+ > n* In this case n'" order periodicity can occur in
HBP,) only for n <1 < n* + n. One of the most useful features of the
spectral sequence is that such elements of H*BP,) are represented by
classes in H* "(M"). Since computational difficulties tend to increase with
cohomological degree, this reduction results in substantial simplifications.
In fact, the computation of H%(BP,) reduces to the determination of H°(M?),
which is a subgroup of M* and hence can be studied relatively easily.

Before the appearance of Morava’s localization theorem it appeared
that one should study periodic families in homotopy by means of periodic
homology theories, since the Adams-Novikov E,-term itself appeared to be
formidably complex. For each n, Morava had constructed a theory K(n)
on which v, acted as a periodicity operator. K(1) is a factor of mod p
complex K-theory, and one hoped to detect higher periodic families by
means of these higher K-theories in analogy with Adams’ detection of Im J
by means of ordinary K-theory. This more geometric approach is still
likely to bear fruit. It is closely related to the algebraic program initiated
here; for example, the p-adic groups appearing in the localization theorem
act as stable operations on the K(n)’s.

The choice of BP as a detecting theory for infinite families is not
entirely a matter of personal preference. To describe the favored role it
appears to play in homotopy theory we must briefly describe the method of
constructing the periodic families in 75(S°) studied here. This program as
well as the realization of the special utility of complex cobordism is due to
Larry Smith.

Periodic families arise from a self-map ¢: S?V— V of a finite complex
V such that ¢ is neither nilpotent nor a homotopy equivalence. Such self-
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maps appear to be rare in nature. All known examples share the property
that they induce nontrivial and in fact non-nilpotent maps in BP homology.
Homotopy elements can be constructed by means of the composition

Sdt > SdtV ¢t V > Sk
where the first map is the inclusion of the bottom cell and the last map is
the projection to the top cell.

The fact that these self-maps have BP-filtration zero leads one to hope
that the resulting homotopy classes in 75(S°) have BP filtration which is
small and (at least for ¢ large) independent of ¢. This has in fact always
proved to be the case. The detection of these elements thus reduces to the
algebraic problem of showing that they are nontrivial in the E,term
H*(BP,) of the Adams-Novikov spectral sequence. This is in contrast to
the situation in the classical Adams spectral sequence, in which these ele-
ments occur in filtration increasing with ¢. The algebra rapidly becomes
prohibitively difficult, and information at the E, level will no longer suffice.
In a sense, the present work provides machinery for maximizing the
homotopy-theoretic consequences one may deduce from the existence of
such self-maps. There is still much to be done in this program, and many
more homotopy-theoretic questions could be answered by pressing these
calculations further.

The paper is divided into ten sections.
1. Recollections

Statement of results

The chromatic spectral sequence

H*M;}

H'M;

H°M;

Computation of the differential

On certain products

The Thom reduction

Concluding remarks

© RN O RN

|
e

After recalling conventions regarding BP, we state in Section 2 our
principal results on the Novikov E,-term and deduce from them a variety
of homotopy-theoretic consequences. Next we construct the chromatic
spectral sequence and outline our program for computing its E,-term. The
succeeding three sections are devoted to this computation in the range we
need. Then in Section 7 we derive H*BP,) for » = 3 and prove that 7,
survives to the Novikov E,-term; combined with Section 2 this completes
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the proof of the nontriviality of 7,, and furthermore shows that p does not
divide B, for any ¢t.

Next we present a selection of results on products of alphas and betas;
this implies the nontriviality of a large collection of hitherto inaccessible
products in stable homotopy; these are described in Section 2. Finally we
compare Ext}p,zo(BP,, BP,) with Ext? (F,, F,), A, the dual Steenrod algebra
at the odd prime p, and deduce an upper bound on the survivors in that
group. We conclude with a discussion of various questions which are raised
or made accessible by this work.

Readers interested only in the detection of the 7,’s can avoid a good
deal of the paper. After reading Sections 1 and 3 and the relevant part of
2 the gamma hunter need read only the very beginnings of Sections 4 and
5, all of 6 and the first part of 7.

We wish to thank Jack Morava for the inspiration and guidance he
provided us during the formative stages of this work, and John Moore for
his encouragement and advice once it was under way. We also benefited
from some stimulating correspondence with David Baird. We would like to
thank Larry Smith, Raphael Zahler, David Johnson and Idar Hansen for
their interest in the development of this project. All three authors were
supported in part by the NSF. Special thanks are due to Princeton Univer-
sity and The Institute for Advanced Study for their support of various
combinations of authors during the research for and preparation of this
paper.

1. Recollections on BP and the Adams-Novikov
spectral sequence
Let p be a prime number and let BP denote the Brown-Peterson [4]
ring-spectrum at p constructed by Quillen [24]. Thus H,(BP)=Z[m,,m,, -]
for canonical generators m,; of dimension 2(p’ — 1). Under the Hurewicz
map 7,.(BP) is embedded in H,.(BP) as Z[v,, v, +++], where the v, are
Hazewinkel’s generators [6], [7], described inductively by

(1.1) v, = pm, — Y i v m, .

These allow one to translate into homotopy the formulae of Quillen [24] (as
interpreted by Adams [3]) for the diagonal A: BP,BP — BP,BP ®;., BP,BP
and the right unit »,: BP, — BP,BP:

(1.2) Ei+j=nmi(Ata‘)pi = E,;+j+k,-_-nmit§"i ® AR

(1.3) Dl = 3, ;o Mt}

where m, = t, = 1 and BP,BP = BP,[t, &, ---], |&:] = 2(»* — 1). We also
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have the left unit »,:BP,—BP,BP by #v, = v, the augmentation
¢: BP,BP —BP, by ev, = v,, ¢t, = 0, and the Hopf conjugation ¢: BP,BP —
BP,BP defined inductively by
(1.4) Y e Matr (et = m, .
Definition 1.5 Anideal I c BP, is invariant if and only if I . BP.BP =
BP,BP - I. a €BP, is invariant mod I if and only if 7 a = 7,a mod I - BP,BP.
Landweber ([10]; see also [18], [9]) showed that the only invariant prime
ideals are (with v, = p)

(1'6) In:(py Vy ** ’vn—l)v 0=n= co.
Many results concerning 7, and A mod I, may be found in [25], among them:
a.m NeVnis = Vpyy + V87" — 02, mod I, .

For a direct proof of this formula see [16]; it was also discovered by
Landweber.

For a spectrum X, M = BP,X carries a natural associative, unitary
coaction : M — BP,BP @sp, M. In general a BP,-module M together with
such a map + will be called a left BP,BP-comodule; right comodules are
defined analogously.

It will be a notational convenience in the sequel to have BP,BP coacting
from the right. Note that the categories of left comodules and of right
comodules are naturally equivalent, by means of the following standard
device. Let (M, 4,) be a left comodule. Regard M as a right BP,-module
(BP, is commutative), and define 4, = T+, where T makes the diagram

BP,BP ®,, M ~“Y) ¥ ®,  BP,BP

BP,BP ®ur. M ——~— M ®;.. BP,BP
commute; here ¢ is the Hopf conjugation. Then +r is a right coaction on M.
Henceforth all left comodules will be tacitly converted to right
comodules via this device.
Given a comodule M we may define

(1.8) H*M = Ext}p,z:(BP,, M) = H*(Q*M, d)
where the cobar complex Q*M is the DGZ,,-module with
1.9) QM = M@z, BP,BP Qzp, - - - @sr, BP,BP

(¢t factors of BP,BP) and differential d of degree +1 given by

1.10) dmRPRe,Q ---Rx,) = Em’@m"@xl@...@xt
XL EDMRn,® - QuiRe! ® -+ ®
—(DmP®2,Q - ¥z, Q1



PERIODIC PHENOMENA 475

where Az, = Y 2:®z; and ym = Y m' @ m".

Then for a spectrum X there is a spectral sequence, due to Adams [1],
[3], and Novikov [21], with E, = H*(BP,X), which converges if X is con-
nective to the localization at p of the stable homotopy 7.(X).

Remark 1.11. Note that H°M c M, so cycles are unique and induced
maps are easy to evaluate. One motivation for the program of this paper
is to reduce the computation of higher Ext groups to an H° computation.
In the case M = BP,/I where I is an invariant ideal (see 1.5), H°M is just
the mod I reduction of the group of all @ € BP, which are invariant mod I.

Note 1.12. Note that if M, =0 for ¢ 0 mod ¢, ¢ = 2(p — 1), then
H*M = 0 also for 7 = 0 mod ¢q. This holds for example if M = BP,/I,.

Note 1.13. Since Q' is exact, an exact sequence
0O—M —M—M'—0

of comodules induces a natural long exact sequence

0— H'M' —— HM —— HM" —— H'M' —>

in Ext.

Note. 1.14. Q*(BP,/I,) is a tensor algebra, and the differential clearly
acts as a derivation. More generally, if the comodule M is annihilated by
I,, then Q*M is a DGQ*(BP,/I,)-module. Thus H*M is a module over the
algebra H*(BP,/I,).

Note 1.15. The cobar complex contains a smaller normalized cobar
complex Q*M given by

QM = M @szr. ker () ®@se, - - - @se, ker ()
with ¢ factors of ker(¢) c BP,BP. The inclusion is as usual a chain-
equivalence (see [5]). Now ker(e) is (¢ — 1)-connected, so if M is (m — 1)-
connected then QM is (¢t + m — 1)-connected, and we have:

LEMMA 1.16 [21]. If M is an (m — 1)-connected comodule then H'M is
(gt + m — 1)-conmected.

Remark 1.17. In fact [36], H*M is (pgqt + m — 1)-connected and
H*"M is ((pt + 1)g + m — 1)-connected; but we do not need this stronger
vanishing line here.

2. Statement of results

This section contains a statement of our main results, some of which
were announced in [15]. We begin with our results on E, of the Novikov
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spectral sequence for the sphere.

For the purpose of establishing notation, we recall first the structure
of H'BP, at an odd prime p. (For remarks on p = 2, see §4.) If n =0 and
s = 1 then v*" is invariant mod p**': that is, v'*" € H(BP,/p"*"). Define

@.1) a = 3(v*") e H'BP,

where 9 is the boundary-homomorphism associated as in Note 1.13 to the
short exact sequence

0— BP, 2 BP, — BP,/p"* —— 0 .

THEOREM 2.2. Let p be odd.

a) (Novikov [21]) H'BP, is generated by
spriwss DS OTder P,

b) For m,n=0ands, t =1,

spT/n+1

for n=0, pys=1.

sp®/n+t1
[44

aap’”‘/m+1atp"/n+1 = 0 *

Theorem 2.2 a) is proved in Section 4 (Remark 4.9), and Theorem 2.2
b) in Section 8 (Theorem 8.18). We shall abbreviate c, ., to @, .

Remark 2.3. Novikov proved a) and showed moreover that the
p-primary component of the image of the J-homomorphism maps isomor-
phically to H'BP, for an odd prime p. Since it is known that products of
elements of odd order in ImJ are 0, b) follows from the multiplicativity of
the Novikov spectral sequence. Our proof of Theorem 2.2 however is purely
algebraic.

Turn now to H*BP,. Let a,=1 and a, = p* + p** —1 for n = 1.
The results of [16] (proved also in § 5 below) imply that certain classes By
forn=0,pts=1,1<j=<a,withj < p*if s = 1, generate the submodule
of H’BP, of elements of order p. Our basic algebraic result is simply that
B,,n; is divisible by p* if and only if p*|j < a,_..

To be precise, define elements z, € v;*BP, by

Lo = Uy,

@2.4) %, = xf — v’fzv;lvsz, 2
@y = 2 — VI TP TR — gttty
x, = x8_, — 20" form =3,

with b, = (p + 1)(p** — 1) for n > 1. Now if s =1 and p’|j < a,_, with
j=p* if s =1, then (p**, v{) is invariant and =% ¢ H°BP,/(p**, vi). The
element 2 lies in

BP,/(p**, v]) C v;'BP,/(p™*, vi)
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despite the v;* which appears in its definition. Let
(2'5) ‘3812'”'/.7'.1‘+1 = 5,5"13:, € HZBP*
where 6’ (resp. 6") is the boundary associated to E’ (resp. E"'):

i+1
E':0—BP, 2 BP, — BP,/p""' — 0,

E":0— BP,/p*" —vi—> BP,/p*t* — BP,/(»**, vi) — 0.
We shall abbreviate 8, ,,; to 8, ., and 8, ., to B, e
THEOREM 2.6. Let p be odd. H®BP, is a direct sum of cyclic subgroups
generated by B, ;.. Jor n =0, pfs=1,j=1,1=0, subject to
) jspifs=1,
ii) p'|J = @,y and
iii) a,_,_, <Jjif p*|J.
Boynsi sy a8 order pt,
Theorem 2.2 shows that 8, ., .., is indecomposable. The internal dimen-
sion of B, .,; .., 18 2(p* — L)sp™ — 2(p — 1)J.
For H®BP, we have only partial information, of which we state only
the highlights here. For ¢t =1, let 7,c H*BP, denote the obvious triple
boundary of v} € H°BP,/(p, v, v,).

THEOREM 2.7. Let p be odd. Then v, # 0 for all t = 1.

The proofs of Theorems 2.6 and 2.7 are completed in Section 7.

We remark that the second author has shown that »t7v, fort 0,1
mod p; see Section 10.

THEOREM 2.8. Let pbeodd, n=0,pts=1,1=<j=<a, with j < p" if
s=1.

a) ansp—-l = —7.
b) In H*BP,, @B, ., + 0fand only if one of the following conditions
holds.

i) § =1 and either s = —1(p) or s = —1(p"*?),
i) j=1land s=p—1,
ill) .7 > 1+ Qp—y(j—1)—-1¢
The only linear relations among these elements are
auB,pz/zﬂ, = 3“1‘8,,,2_1 ’
a185p2ﬂ+2/2+a”+1 = 23“1B,p2n+2_,,n ’ n=1.
c) If 0 # a8, .,; € H'BP, then it ©s divisible by at least p* whenever
0<t=nand j < a,_.
d) Forallmz=z0and t =1, &, _n,. . B, n; =B, a5, _my
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Here v(a) is the largest v such that p*|a, and by convention
for 3<0.

These results are proved in Section 8.

We may now appeal to the Novikov spectral sequence to deduce facts
about the p-component of the stable homotopy ring 7,(S°). We shall use
two accessory facts about this spectral sequence: its multiplicative structure
and its behavior with respect to certain cofiber sequences. We recall the
latter from [8].

Let

(2.9) X —X— X"
be a cofiber sequence, and let

X" —m_ X'

=0

ep™/j

be the associated “geometric” boundary homomorphism, induced from
h: X" —33X'. Suppose that BP,(h) = 0. Then (2.9) induces a short exact
sequence in BP-homology and there results from Note 1.13 an “algebraic”
boundary homomorphism

o0:H'BP, X" — H*"'BP . X'.
LEMMA 2.10 [8]. If e H'BP, X" survives to xcm, (X"), then 0%¢
H*"'BP X' survives to ox € w, (X').
We also rely upon the following geometric input. Let V(—1) = S° be

the sphere spectrum. For n = 0, 1 (Adams [2]), 2 (Smith [29]), and 8 (Toda
[34]), there is for p > 2n a cofibration sequence

(2.11) S P — 1) -2 Vi — 1) — V(n)

such that ¢, induces multiplication by v, in BP-homology of V(n — 1). The
self-maps ¢, induce periodic families of elements in 7,(S° as follows. Let
0.: w(V(n)) — T, ny_i( V(n — 1)) be the boundary homomorphism induced
by (2.11), and let ¢: S°— V(n — 1) be the inclusion of the bottom cell. Then
define, for ¢t =1,

a, = 0,(g) , p=3,
Bt = aoal(¢§f) ’ = 5 ’
V= aoalaz(¢§‘) ’ D =T7.

Now ¢, induces an injection in BP-homology, so Lemma 2.10 applies.
Thus, by their construction, the classes a,, 8,, 7. survive in the Novikov
spectral sequence to the stable homotopy element of the same name.
Furthermore, none of these elements can be hit by a Novikov differential
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because their homological degree is too low (see Note 1.12). Since Theorems
2.2a), 2.6, and 2.7 insure that they are nonzero in F,, we have:

THEOREM 2.12. a) (Toda [33]) For p=3 and t 21, @, # 0 in 7*(S°).
b) (Smith [29]]) For p=5and ¢t =1, 8, # 0 in w,(S").
b)Y Furthermore p does not divide B, in w,(S°).
) Forp=Tandt =1, v, # 0 in 7,(S°.

Partial results on the nontriviality of 7, have been obtained by Thomas
and Zahler [31] and Oka and Toda [23] (¢ = 1), Thomas and Zahler [32]
(t=ap+ b,0=<a <b< p), Johnson, Miller, Wilson, and Zahler [8] (¢ = sp",
1<s<p n>0), and Ravenel (unpublished; see §10 below) (¢=0,
1 (mod p)).

Now the work of Moss [20] shows that the Novikov spectral sequence
for the sphere is multiplicative. At E, the product is associated to the
composition pairing; at F, it agrees with the multiplication defined in Note
1.14.

By sparseness (Note 1.12), no differential in the Novikov spectral
sequence can hit H*BP,. Thus Theorem 2.8 b) immediately results in:

THEOREM 2.13. Let p=5. Forn=0andpts =1, ap, .+01in 7.8

if one of the following holds.
i) s # —1(mod p),
ii) s = —1 (mod p**?),
iii) s=p— 1.

Smith [30] and Zahler [36] have shown that for p =5 and ¢t = 1, 5,,,;
survives in the Novikov spectral sequence for 1 < 7 < p — 1. Oka has also
obtained this result and extended it to include 3, ., for 1 < j < 2p — 2 [22],
and B,,,, for t = 2 [39], B, ,,; for t =2 and j < 2p [40], and B,,,,, (elements
of order p* for ¢t = 2 [40]. We remark that once they construct the appro-
priate complex and stable self-map, the survival of these elements is

immediate from the above considerations. In any case, we have from
Theorems 2.6 and 2.8:

THEOREM 2.14. None of the elements of Oka, Smith and Zahler described
in the preceding paragraph are divisible by p except possibly for B t=1,
and ,Btp3,2'p, t > 1, and these cannot be divisible by .

t p2/ »?

Proof. Multiplication by p can never lower the filtration of a homotopy
element in the Novikov spectral sequence. There are no elements in H°BP,
or H'BP, in these degrees so the nondivisibility follows from the non-
divisibility in H*BP, from Theorem 2.6. O
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THEOREM 2.15. Let p=5and pts = 1. In w,(SY,
a) a1:8up/i Ea OfO’l‘ 3 é .7 é D — lr and
b) B, =0 forp+1<j=<2p—2.

Finally we study the Thom map H*BP, — Ext}, (F,, F,) to the E,-term
of the classical Adams spectral sequence. This has the following corollary;
for notation, see Section 9.

THEOREM 2.16. Let p > 2. In the classical Adams spectral sequence for
the sphere,

a) (Liulevicius [12], Shimada-Yamanoshita [28]) Of the gemerators
(9.2) of Ext}, (F,, F,) only a,, h, can survive, and

b) Ofthe generators(9.3) of Extl,(F,, F,), only the following can survive
wn the Adams spectral sequence: a,, b(i = 0), k,, a2, hoh,(t = 2); and if p = 3,
ayh,.

3. The chromatic spectral sequence and the cohomology
of the Morava stabilizer algebras

In this section we describe the key tool of this paper, a spectral sequence
converging to the Novikov E,-term. We then link the E,-term of this
spectral sequence to the cohomology of Morava’s stabilizer algebras by a
sequence of Bockstein exact couples.

A. The chromatic spectral sequence. Let M be a BP,BP-comodule. If
M is I,-torsion, i.e., for all x € M there exists & = 0 such that I*z = 0, then
([14]) v.'M has a unique comodule structure such that the localization map
M —v;'M is a map of comodules.

In particular let N, = BP,/I,. Assuming N: has been defined, set
M; = v;1,N;, and let

k

3.1) 0— N: 2 a2 o5 0

be exact. Thus one might write

Nz =BPy/(D, +++) Vnsy U2y =0 %, Vahasr)
M = v BP (D, « vy Vs, VR, o0, Vi)
Let E = (e, €, - <), e,€Z, with all but a finite number of the e, equal to 0.
The element v* € M;, where
e, =0 for0=t<n,
e, <0 forn=<i<mn+s,
e, =0 forn+s<i,

will consistently be written as
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en+8,,6n+8+1
Un+ts Untst1 *°°

—en ~en4s—1 *
Vn " *°* VUnisr

We shall use the convention v, = p.

We shall also consistently regard these objects as »ight BP,BP-
comodules. The coactions on M: and N: are then induced in an evident way
from the right coaction BP, —=» BP,BP = BP, ®u, BP,BP on BP,.

Let

Ali(n) = H'N, ,

E»(n) = H'M; .
Then the long exact sequences induced by (8.1) give rise to an exact couple
of H*(BP,/I,)-modules

Am) -2 Am)

AN /
kN S Ix
E,(n)

with maps of bidegree |§’'| = (—1, 1), |7« = (0, 0), |k,| = 1, 0).

Associated to this exact couple is a first quadrant cohomological spectral
sequence, with an internal degree preserved by the differentials.

The following alternative construction of this spectral sequence will be
useful. The short exact sequences (3.1) splice together into a complex

(8.2)

M0 — M- pr s
such that
H*(M, d,) = BP,/I, if s=0
=0 otherwise.

Application of Q* gives rise to a double complex Q*M*. Form the total
complex CF with

(8.3) Cr = @,11= VM,

and differential dx = d¥x + (—1)°d.x for x € Q*M;, where d¥ is induced from
d,: M:— M ™ and d, is the differential in Q* M.
Filter first by

’FtC;L,, = e,+;'=ugt’M: .
t'=t
In the associated spectral sequence

'E¥* = Q*(BP,/I,) fors =0
=0 otherwise
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since Q° is exact; and so
H*(C#, d) = '"E® = H*BP,/L,) .
Now filter by
(3.4) F'C: = @y QM

The associated exact couple clearly agrees with (3.2), and the associated
spectral sequence converges to H*(BP,/I,).

Remarks 3.5. a) By Notel.1l4, E (n)is a spectral sequence of H*(BP,/I,)-
modules, and in particular of H°(BP,/I,) = k(n),-modules, where k(0), = Z,,,
and, for n >0, k(n), = F,[v,] ([10], [18], [9]). For s >0, M;: is v,-torsion,
so E*(n) is v,-torsion for all » = 1.

b) The edge-homomorphism

H'BP,/I, —» E%(n) = E>(n) = H'M;
is clearly induced by the localization map
BP,/I,— v;'BP,/I, = M} .

¢) The spectral sequence constructed in this section will be called the
chromatic spectral sequence. In the sequel, we limit our interest mostly to
the case » = 0, and write E, for E.(0).

B. Greek letters. Now consider the following method of producing
elements in H*BP,. Let
Aca,a, -, a,_,
be an inmwvariant sequence of elements of BP,; that is, a, is invariant mod
Ji(A) for 0 <1 < s — 1, where J,(4) = 0and J;(4) = (@, ---, @,_,). Suppose
further that A is regular; that is, multiplication by a, is injective on BP,/J,(4)
for0<7=<s— 1. Then

0 — BP,/J(A) — BP,/J(A) —> BP,/J,,,(4) —> 0

is an exact sequence of comodules. Let d,: H'BP,/J,,,(A)— H'"'BP,/J,(A)
be the induced boundary map, and let 7,: H!BP,/J,(A)— H'"*BP, be the
composite d, -+ - d,_,.

The elements figuring in Section 2 were defined in this manner. For
example, 7, = 9,(vi) for A: p, v, v,.

This construction is related to our spectral sequence in the following
way. Let
(3.6) n: H* N; — H'**BP,
denote the composite

H!N: & > HtV Ng—? 5' > e il > Htte N?
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with 6’ as in (3.2). Then:

LEMMA 3.7. Let A be an invariant regular sequence of length s. Then
there s a canonical comodule map i,: BP,/J(A) — N§ such that 9, = - ¥%.

Proof. The construction of 7, =1/a,- - - a,_, is based on the observation,
due to Peter Landweber |11], that the radical of J, = J,(A) is the invariant
prime ideal I,.

We shall inductively construct comodule maps 1/a,- - - @,_,: BP,/J,— N,
beginning with BP*/L——N—:» N?. So suppose 1/a,--- a,_, has been defined.
Now ¢ € J,,, for some ¢t = 1, so »,;'BP,/J,., = 0. Since localization is exact
this shows that

a,: vy BP,/J, — v;'BP,/J,

is bijective. Let a;' be the element which maps to 1. BP,/J, is I,-torsion,
so [14] »;'BP,/J, is a comodule. Since 1 is invariant, a;' is invariant. We
now complete the diagram of comodules:

0 — BP,/J, — BP,/J, —> BP,/J,,, — 0

{
—1

a, !
1 . | 1
[« PR, Vn BP*/J{D I[ Qo " Ay
!
l lao...a”_l l
0 —_ .Non —_— Mo“ No +t —> 0 . El

Thus 7 is the “universal Greek letter” map. For example, we may
redefine the elements 3, . . .., of Section 2 as follows. For the stated values
of m, s, 7,1, ai/p***vie H°NZ; and

Boyniiies = N(@s/p ")) .

BP,/I,= N)CN; (by 4,4, A= D, v,+++,V,_,), and we will denote the com-

posite H*BP, /I, — H'N; — H'"*BP, equally by ». Thus
Ve = N(vs) .

Remark 3.8. The map 7 also has an interpretation as the bottom edge-

homomorphism in the chromatic spectral sequence. In view of the diagram

0

l

0 — HON; — HOM; 22 HONg

\ 13-
i\ *
H M+
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we have a natural surjection H°N;¢ — E?°(0). Then

H°N;
' \ 8+1
(3.9) S~ (-1 [T 7
| o~
™~
E3°(0) —» E2°(0) =—— H*BP,
commutes.

To account for this sign, let x € Q°N¢ = N¢ be a cycle. In terms of the
double complex Q*M*, 7(x) is computed by picking elements z, € QI Mee,
0 <t <=s, such that d,x, = j(x) and d,x, = d,x,., for 0 < t < s; then d,x, = iy
for a cycle y e Q*N¢, and 7(x) = {y}. But in virtue of our sign conventions
(3.3), d.w, is homologous to (—1)#*/?'d x, in the total complex C;*, and the
result follows.

C. Bockstein exact couples and the Morava stabilizer algebras. We
turn now to techniques for computing Ef*(n) = H*M:. Notice that we

have short exact sequences of comodules for s > 0:
(3.10) 0 Mzt — M2 -2 M 0

where i(x) = x/v,. These give rise to Bockstein spectral sequences in the
usual way, leading from H*M:;! to H*M3:. -

Remark 3.11. In practice we shall proceed more directly. We shall
construct a partial map of exact couples

0—>s E° B B E E

@12 o 7| 7| | 7|
0— H°M;7i— H°M, H'M; H'M; 3 — - -+ — H'M;3}
such that f* is an isomorphism and B* is v,-torsion. An inductive diagram

chase then shows that g* is an isomorphism.
Using these sequences we are in principle reduced to computing

H*M, = H*(v;*BP,/I,) .

The motivation behind our entire program is the computability of these
groups, which was first perceived by Jack Morava and was the subject of
our previous papers [14], [26], [27]. We now recall certain parts of this
work.

First there is a change of rings theorem. Let K(0), = Q and K(n), =
F,[v,, v;'] for n > 0. Map BP, — K(n), by sending v, to v, and v, to 0 for
© # n. Then

Un
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(3.13) K(n),K(n) = K(n), @zr, BP,BP @gr, K(n), ,
is a commutative Hopf algebra over the graded field K(%),. It follows from
[26] that
(3.14) K(n),K(n) = Kn)[t, - )/(.t" — vt 2 1)
as algebras.

THEOREM 3.15 [14]. The natural map

H*M, — Ethm.x(n)(K(’”')*’ K(’”')*)

18 an 1somorphism.

Using essentially this identification, Morava [19] proved the following
finiteness theorem. (See also [27] for the case n < p — 1.)

THEOREM 3.16 (Morava). If p — 1 does not divide n, then H*M? is a
Poincaré duality algebra over K(n), of formal dimension n?.

Note the resulting vanishing theorem for our spectral sequence. Call
a k(n),-module L co-torsion-free if and only if F,@,..,. L = 0; i.e., if and
only if v,|L is surjective.

COROLLARY 3.17. If (p — 1) does not divide n then, for 0 < s < n, the
k(n),-module Er™(n — s) = H™(M:_,) is co-torsion-free, and, for t > n?
Es(n —s) = H(M,_,) = 0.

Proof. By induction on s, using the long exact sequence associated to
(8.10) and the fact that a torsion k(n),-module on which v, is injective is
trivial. O

We shall also need the following results, which were proved in [26] and
[27].

PROPOSITION 3.18. a) For p > 2, H* M) is the exterior algebra over
K@), on one gemerator h, = {t,}. For p =2, H* M) is the commutative
K(Q),-algebra generated by h, and p, = {v7%t, — &) + vi'vit,}, subject to
o = 0.

b) H° M. = K(n), for all n = 0.

c) Let »n>1. H'M, is the K(n),-vector space generated by elements
he = {t'}, 0 < i <, {,, and, if p = 2, p,, where |{,| =0 = |p,|. (e H M;
s represented by

Lo = 0oty + 037(8] — £177) — w7 ot € QMY

Proof. a) is contained in [27] Theorem 3.1; the explicit cycle given
reduces to ¢, + ¢, in K1) K(1) (ignoring powers of v,), and this represents
0, according to the example following Theorem 2.2 of [27]. b) follows from
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Theorem 3.15 since the zero dimensional homology of a Hopf algebra is the
ground field. c) is contained in [27] Theorem 2.2; the explicit cycle given
reduces to ¢, + ¢ — ti*? in K(2),K(2) (where ¢*° = t,), and this represents &,
according to the same example in [27]. O

Finally, we shall use the

LEMMA 3.19. Let p=2, n=0. The elements , and C" of QM. are
homologous.

Proof. Since we are working mod p it suffices to consider the case
n = 1. We use the change of rings Theorem 3.15. In K(2),K(2), £, reduces
to
o= vi'ty + oy (8] — 1147 .
It follows easily from the relation (3.14) v,t?* = v2'¢,, ¢ = 1, that &7 = Z,, so
the result is true on the chain-level in K(2),K(2).
Alternatively, one may compute in Q*M?:

(3.20) d(v; 7w, — vPI™)) = & — &, . O

4. H*M;
In this section we shall compute H* M, for all primes p by means of

the “Bockstein” long exact sequence associated to the following case of
(8.10):
4.1) 0— M —— M} 25 M ——0.
We then compute the differentials on this part of the main spectral sequence,
and so determine the subquotient of the Novikov E,-term exhibiting first-
order periodicity.

This also determines H'BP, (Theorem 2.2a)) and proves that 8,0 for
all t = 1, and hence completes the proof of Theorem 2.12b).

We begin with the case of an odd prime because it is simpler and
because only this case is needed in the remainder of the paper. The case

= 2 is very different because then H" M} = 0 for all » = 0. Indeed, we

use this fact to produce an element of H*BP, of order 2 in nearly every
possible bidegree (4.23). We also show that for p = 2, 0 = 5(v,) € H*BP,)
for all » > 1 (4.22).

THEOREM 4.2. Let p > 2.
a) H°M; is the direct sum of
i) cyclic Z,-modules generated by v’ [p**', of order p*, for i =0,
pYseZ; and
ii) Q/Z.,, whose subgroup of order p’ is generated by 1/p?, j = 1.
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b) H'M; = Q/Z,, concentrated in dimension 0. The subgroup of order
P’ is generated by

— 1)k
Y; = '—Ebo(_kp)ml——k—i_ .
¢) H:M; =0 fort>1.
Proof. By Proposition 3.18 a), H*M? is the exterior algebra over K(1),
on one generator h,c H'M? represented by ¢, € Q'M?. Thus (4.1) induces a
long exact sequence as in (3.12):

(4.3)
0 —— HM® — HM; —2 HM: —°— H'M® — H'M} 2 H'M} — 0 .

From 7pv, = v, + pt, and its consequence (for p > 2),

(4.4) dvi?’ = sp*tiui?' ¢, mod p*+?,
we see that v?*/pi+' ¢ Q°M! is a cycle and
(4.5) SV [pY) = v hy %= 0 .

1/p? is clearly a cycle for all 5 > 0, with 6(1/p’) = 0. Thus (i) the submodule
of H°M} generated by the classes v{*'/p*** and 1/p’ includes the image of
H°M?; and (ii) the reduction-boundaries (4.5) are linearly independent. Part
a) thus follows from Remark 3.11.

By (4.5), only F,-multiples of v;'h,€ H'M;? map nontrivially to H'M;.
The first statement of b) then follows from Remark 3.11. Since p''y; =
v 't,/p, the second assertion holds if y; is a cycle. Formally let

Yy = _E:=1 (_"p’;:l—ltl)k
so ¥; = y/p’*'. We have

(4.6) 7ot = vt + purt) T,
_ -k —1
(4.7 1-X)*= EZ';o(z i )X‘ ,
E—1
SO

, +k— 1 . [k
d(vr"t'o:vrk(zr;(%; . )(—-pvrtl)*@t':— :;:(i)tf@ti‘-i)-

Collecting the coefficient of ¢! ® ¢! in dy, we find dy = 0. Hence dy; = 0 for

allj = 1.
Part ¢) is contained in Corollary 3.17. ]

COROLLARY 4.8. Let p > 2. In the chromatic spectral sequence:
a) EP* = Z, concentrated in degree 0, and E}* = E3*.
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b) EM is a direct sum of cyclic Z,-modules generated by v*[p™', of
order p, fori=0and pfs=1.

c) E;° = EL and EL' = 0 for t > 0.

Proof. d,;: Ef*— Ef"* is induced from d,: M; — M;*'. Part a) is thus
clear from Theorem 4.2 a) (ii) and the fact that H*M{ = Q. b) follows from
Theorem 4.2 and c¢) from the vanishing line Lemma 1.16. ]

Remarks 4.9. a) Theorem 2.2 a) is immediate from this corollary: for

n=0and pfts>0, v:*"/p*t e H°N{, and the classes
&,y = DO D)

generate H'BP, for p odd.

b) Theorem 2.12 b) also follows, since vi/pv, € E*° survives to —23..

¢) Corollary 4.8 represents all the data from this section needed in the
rest of this paper. The reader will find the principal results of the remainder
of this section stated in Corollaries 4.22 and 4.23 b).

d) We will show in Lemma 8.10 that d,y; # 0, so E;»* = E5* for p odd.

We turn now to p = 2; (4.4) no longer holds for 7 = 2. We shall begin
by stating a replacement for (4.5). Define z, ; € v7'BP, by

Li0 = Vi
(4.10) ., = Vi — dvr', ,
X, = x,, fori=2,
and let
=1,
(4.11) @10

a;=1+ 2 for e =1.
Recall from Proposition 3.18 a) the element
0, = vi(t, — &) + vitvt, e vi*BP,BP .
Then we have:
LEMMA 4.12. Let p = 2.
a) Fort =0, x,, 18 tnvariant mod (2°1),
b) Mod 2'teui:
dx,,;, = 2t, for 1=0,
= 2wip¥p, for i=1.
Proof. Clearly b) includes a), and b) for ¢ = 0 is obvious from 7;v, =
v, + 2t,. For ¢ =1 we use
(4.13) NVt = vt — 207, mod 4,
(4.14) NeV: = v, — vt + vit, + 2t, mod 4
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to compute
(4.15) dwx,, = 8vr'(vi'vt, + ¢, + ) mod 16
and the result follows. For ¢ > 1, use (4.15) and the binomial theorem. []

THEOREM 4.16. Let p = 2.

a) H°M! is the direct sum of (i) cyclic Z.-submodules generated by
a2 /241, of order 244, for 1 =0 and odd s€Z; and (ii) Q/Z,), generated by
1/2¢ for 7 = 1.

b) Ift=1and ucZ s even,

H*M; = 2|2 Q/Zy for (t, u)=(1,0)
= Z/2 otherwise.

The elements of order 2 are generated by

0. vt vip, QP
’

2 g ' 2

for odd s €Z.

Proof. Again we shall use the long exact sequence associated to (4.1).
By Proposition 3.18 a), H*M? is a polynomial algebra on k, tensored with
an exterior algebra on p, (all over K(1),).

Apply the binomial theorem to Lemma 4.12 to see that mod 2'*“v:

dat , = 2svi7't, =0,
= 2nisvitp, iz1.
Hence
4.17) o(vi/2) = w7ty

d(xs /2%1) = v, , 1=1
and a) follows as before from Proposition 3.18 a).
By (4.17) the generators of H'M; not in the image of ¢: H°M; — H'M;
are o, vit,, and v;p, for odd s € Z. Using (4.13), (4.14), and
At, = t2®1 + tl®tf + 1®t2 - 171t1®t1
we find

d(_P_l) _ Q6+ vt R+ L QL+ ERE)
4 2

The numerator of the right side represents d(o,/2) € H*M;. To see it is
homologous to zero use Theorem 3.15 to reduce to the cobar construction of

K1), K@) = K@)t « - V(w,t; — ¥ t:0 2 1)
where our cycle is
v;‘(tl®t2 + &, ®t1) = d(vl_4 t, tz) .
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Once we show that z, = p,/2 is infinitely 2-divisible, b) follows by an easy
induction using the long exact sequence associated to (4.1).
Consider the portion

vy 2 oM =2 Hro M s H M
of the long exact sequence of (4.1). Recall that H>°M? is spanned by the
classes of v, ®t, and vi'p, ® ¢t,. We have seen that 7, {vi'p, ® ¢} # 0, so
of{vr't,/2} = {vr%, ® t,} spans Im 8. Suppose inductively that 2, € H*°M¢ such
that 2%z, = {0,/2} has been found. Then
0z; = ao{vr't,/2}

for some a e€F,. Thus there exists z,,, such that 2z, = z, — a{v't,/2};
hence 2¢*'z,,, = {0,/2}. O

Before stating the analogue of Corollary 4.8, we make the following
observation.

LEMMA 4.18. Let p = 2. Then
a) H**BP,=0 Sfor u <2t,
b) H**BP,=1Z/2 for t=1,
c) H»*»"™BP, =0 for t=2.
Proof. We use the normalized cobar complex as in Note 1.15. Thus for
¢ = 0 (¢ ) means “span of”)
Q*BP, = 0 for w < 2t,
GtuBP, = () ,
QuetBP, = (u,tf, 620 < 5 < 8y, .
where ¢; = t&7 ® ! @ t2¢1, Since d((1/3)t}) = — (2 t, + t, ® t}), the ¢,’s
are all homologous (up to sign). Thus b) follows from
de, = d(v,t8) = 224t |
and ¢) follows from
d(t, Q™) = v, 2 — ¢, . O
PROPOSITION 4.19. Let p = 2. In the chromatic spectral sequence:
a) E)* = Z,, concentrated in degree 0, and E>* = E%*,
b) EL4* =0 for u < 2t + 2.

c) For uw=2t+ 2 we have exactly the following nontrivial differentials
on Eph*.

4.20 df ) = %
(4.20) ( 8 > 20,

B REN _ v, .
(4.21) @H( : ) R r=1.
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Proof. a)is as in Corollary 4.8, and b) follows from the vanishing line
Lemma 4.18 a). For u = 2t + 2, only the listed generators can support
nontrivial differentials since all the others are cycles in the total complex
Cy (3.3). (4.20) follows from the definition of z,,.

We have in C¥, for » = 1:

d(vi'e1®t?"‘” 4oy Wy = vﬁvxlvwz)t;@"“")
i=1
2

20,0}

Vpss

2000V,
It follows that vip, ® t¥"~"/2 survives to E,,, and that (4.21) holds. If (4.21)
were trivial, i.e., if v,.,/2:--v, =0 in E,,, then o, QP /2 would
survive to EL* because Eft = 0 for s <0, ¢t > 0. This contradicts Lemma
4.18 ¢) and completes the proof. '

Notice that we have also shown:
COROLLARY 4.22. Let p = 2. Then 0 = n(v,) € H*BP, for all n = 2.

COROLLARY 4.23. Let p = 2.
a) [21] H'BP, is a sum of cyclic Z,-submodules generated by
i) p(vi/2),2}ks=1, of order 2
i) n(x,,,/4) of order 4
iii) (s /2742 for other © =1, 2} s =1, of order 2%
b) Fort=2and u such that 2u = 2t and 2u + 2t + 2, H***BP, contains
the nontrivial class

(CHa i ) Jor u — t even ,
P20, @ tEER[2) for uw — t odd .
5. H°M;

In this section we determine the groups H°M, for n =1 and for all
primes p. This computation is closely related to [16]. We use the short
exact sequence (3.10)

0 M, M2 M 0
which gives rise to the long exact sequence (3.12)
0— HOM?,, — HOM: -2 HOM: 2 M2, — -
We know H°M,,, (3.18) so we need only push these elements into H°M, and
divide by v, until we can reduce them to linearly independent elements in

H'M?.,. Doing this requires an explicit construction of the generating
cycles in H°M,. The case n =1, p > 2, will concern us for the rest of the
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paper, so we treat it first.
We begin by defining certain elements of v;*BP,, » > 2. Let

(5.1) Xy = 0, ,

v, = af — vy,

@y = af — VY TP — gty gy,

x, = g, — bippnriTiH g >3
where b, = (p + 1)(p*~* — 1) for 7 > 1. Next define integers
(5.2) a=1a=p"+p"'—1, i=1.

THEOREM 5.3. Let p > 2. H°M} is the direct sum of

i) cyclic F,[v,]-modules isomorphic to F[v,]/(v¥) generated by /v for
1=20and pYseZ; and

if) F,lv,, v'l/F[v.], generated by 1/vi for j = 1.

It is important to note that s may be negative in this theorem. To
interpret zi/vi for s < 0, notice that », = v2'(1 — v,2) for some z € v;'BP,.
Then formally

xyt = ’vz_pi Ekgo’vlizk ’
but in x;'/v{: only terms with & < a, are nonzero. This procedure also gives
meaning to xj/v/s for s < —1, and to similar expressions which occur later
in the paper.

The proof will use part b) of the following computation. The reader
will recall from Section 3 the element &, = v;'t, + v;?(¢5 — tP*+?) —
V7?7 v,t? € v;' BP,BP.

PROPOSITION 5.4. Let p > 2.

a) Fori1=0, z; ts tnvariant mod (p, v%).

b) Mod (p, vi*™*),

da, = v,t2 , i=0
= vl e, , 1=1
= oy > 2,
¢) Mod (p, vi**),
dr, = v, t%, 1=0
= w3 (it + oo, — 1Y) — &), =1
= o T Quiet, — ot Y i=2.

Proof. Clearly c) includes a) and b). For ¢ = 0, c¢) follows from
(5.5) NV, = v, + 0,85 — V3L, mod p ,

and for 7+ = 1 we use also
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(5.6) Nevyt = vyt — v, vt mod (p, vi) ,
(5.7 Mol = Uy + 0,80 — vit, + vty mod (p, v}) .
For ¢ = 2 we note the following consequence of the binomial theorem.
Observation 5.8. Let x € BP,, y € BP,BP, and I < BP, be an ideal. If
dx = y mod (p, I)BP,BP, then dx” = y* mod (p, I*)BP BP.
Thus the case 7 = 1 implies
dat = o P(v"t] + o (o () — 877 — £3))  mod (p, v*HY)
and hence mod (p, vi**z). Also, by (5.5)
AP PP = o (0,0 R — VIRTR(VAE, + ,tl) — PP et erter)
and by (56.5) and (5.7),
A(uI P o ) = o el (0,80 — vht, + 0.t ,

both mod (p, v¥"2). Collect terms now to obtain the case i = 2.
Now proceed by induction. Let ¢=3. Since (2 + a,_ ) =2 + a,
Obervation 5.8 and the case v — 1 yield

dw%’,l = ,Uép._;)pi—l(zvgai_ltlp _ ,v{,(1+ai_1) pi— 1) ,
and by (5.5) (since a;, = b, + D),
d(2vliv ) = 20kl T (vt — wit)

both mod (p, v**%). Collect terms and use the fact that pa,_, =1 + b, for
1 > 1 to complete the induction. ]

Proof of Theorem 5.3. We use the exact sequence

00— H'M}— H'M! — H°M1————+H M, .
Recall from Proposition 3.18b) and ¢) that H°M, = K(2), and H'M; is
(freely) generated over K(2), by h, h,, {,. By Remark 3.11 we must show
i) the image of H°M, is contained in the sub F,[v,]-module generated
by {xi/vi*:7 = 0, s % 0(p)}, and
ii) these generators map to linearly independent elements in H*'M);.
i) follows from the congruence
=" mod(p,v). ,
For ii), we deduce from Proposition 5.4 b) and the binomial theorem that
d(ws/vy) = svi"'hy
(5.9 o(xt/vh) = svy" 'k, ,
S(myfvr) = 200P " " hy, > 1.

These classes are clearly independent. M
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Turn now to H° M. for » > 1 or p = 2. This work will not be used in
the remainder of this paper.

We shall define «z, ; € v, BP, and a,,; = 1 for all primes p and all n =1,
1 =0, in such a way that the following uniform theorem holds.

THEOREM 5.10. As @ k(n — 1),-module, H° M}_, is the direct sum of
i) the cyclic submodules generated by x%, ,/vi~i for 1 = 0, s # 0 (p); and

n—1

ii) K(n — 1),/k(n — 1),, generated by 1/vi_,, j = 1.

So let
Zyo =V,
x,, = v — 4o, for p =2,
Xy, = X7 otherwise,
La; = X (see (5.1)) for p>2o0ri<3,
(5.11) Loy = X5y s for p=2and 1 =3,
Lao = Up n>2,
Ly = Vi — VE_ 107" Vpis
Lys = Lyis forl1<i1z1l(n-—1),
Bpy = B,y — Vomign' =PI forl<i=1(n—1),
where for ¢ = 1 (mod (n — 1)),
_ @ =" —1)
(5.12) b, = -1 .
Also let
a,,=1,
Q=1+ 2 for p=2and 1>1,
a,;=1+1 for p>2and 1 =1,
a,; = a, (see (5.2)) for p>2o0ri<2,
(5.13) a,; =321 for p=2and 1> 2,
a,,=1, n>2,
Uy = P,
Qp,; = Py, for1<iz1(n—-1),
Qs = Py +0—1 forl<i=1mnm-—-1).

For n = 1, Theorem 5.10 is equivalent to Theorem 4.2 for p > 2 and to
Theorem 4.16 for p = 2. For » = 2, Theorem 5.10 is equivalent to Theorem
5.3 for p > 2, and for p = 2 it follows from Lemma 3.19 and the next pro-
position.

PROPOSITION 5.14. Let p = 2.
a) Fort =0, x,,; ts invariant mod (2, vi2i).
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b) Mod (2, v} te),

dx,, = 0,8, =0
= vint,, 1=1
= v (3, iz2.

Proof. b) contains a), and 7+ = 0 is as in Proposition 5.4. Just as in 5.4
¢) one shows that

(5.15) da,, = vy(vit, + vi{vi't, — ) — &)) mod (2, o),
and this includes the case ¢ = 1. (5.15) and Observation 5.8 imply
dat, = v3(vit + od(vi%(E — t) — C3))  mod (2, v})
and this together with (5.7) gives the case ¢ = 2. Then ¢ = 8 follows by
induction using Observation 5.8. O
Thus in case p = 2, for s odd
5(“’3,0/”1) = '”;_lhl ’
(5.16) 0(xs,./v]) = v hy
(s v = v, 1=2.
For n > 2 we have the following proposition. The proof is analogous
to the proof of Proposition »5.14.
PROPOSITION 5.17. For all p and for n = 3,
a) Fori=0, x,,; s inveriant mod (I,_,, vi~i).
b) Mod (In—-u viztax"’i ’

dxn,i = vn—1tfn—1 ’ 1=0 ’
= tniglp- i g 1 =1
n—1 ’% ’ =
where j=1—1mod(n —Land0=j<n—1. ]

Hence for n = 3

0 o Vnt) = :‘—1 n—1 9
(5.18) wifv,_) = svi™'h

o, ofvint) = svP P 1 =1.
Theorem 5.10 follows now in these cases in the usual way. ]

Remark 5.19. We invite the reader at this point to compute d,: E}"°(n)—

EX°(n) in the chromatic spectral sequence. The principal results of [16] are
then immediate corollaries.

6. H°M:
In this section we carry out the computation of
H° M = EXt%P*BP(BP*’ v;*BP,/(p>, v©))
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for an odd prime p. This group is central to all our main results. In outline
we proceed as follows.
We will use the short exact sequence (8.10)

V1

0 M; M} M} 0
which gives rise to the long exact sequence (3.12)

0— H' M — H'M; -2 H'M} 2, H'M; H'M; -2 HM — ..
Our knowledge of H' M, (8.18) and of H°M; (5.3) allows us to determine an
F, basis for ker v,| H' M;. This will in fact enable us to detect many other
elements in this group. Next we use the exact sequence (3.10)

0— M} — M 25 M ——0
and the associated long exact sequence (3.12):
0— H'M! — H'M; —"~ H'M; —— H' M} — - --
Recall that we know H°M; (5.3) and from the above we know something
about H'M;!. We take our generators for H° M. and push them into H° M.
Here we divide by powers of p until we can show they reduce to a linearly
independent set in H'M;. This gives us H° M..

Recall (Theorem 5.3) that H°M; is generated over F, by certain classes
a5/vi. Todetermine their p-divisibility in H°M¢, we first obtain in Proposition
6.4 an invariant ideal smaller than (p, »)) modulo which z, is invariant.
This implies in particular that «}/p*"vi e Q" M? is a cycle for pi|j < a,_,.
Our main theorem is then:

THEOREM 6.1. Let p = 3. H°M? is the direct sum of cyclic Z,)-sub-
modules generated by

) a/p"vifor n=0,ptseZ i=0,j=1, such that p'|j < a,_, and
either p*** Y5 or a,_,_, < j; and

il) 1/p*"'vi for i = 0 and p*|j = 1.

By Theorem 5.3 these elements certainly span a Z,-submodule of H°M¢
containing the image of H°M, i.e., the submodule of elements of order p.
So by Remark 8.11 what remains is to show that the set R of modp
reduction-boundaries of these elements is linearly independent in H'M:. It
turns out that it suffices to know v!™*z where ¢! is the lowest power of v,
killing z€ R. Thus the computations modulo (p, ¥:***) contained in Propos-
tion 5.4 c) suffice. The linear independence argument is given at the end of
this section. It relies upon a particular choice of cycles representing a basis
for ker (v,| H' M}), given in Lemma 6.12.
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Throughout this section » will be an odd prime.

We must study the integral invariance of the element «}, € v;*BP,. We
shall begin with some generalities on certain I-primary invariant ideals.
Let ¢, ¢, +-- be a strictly increasing sequence of positive integers, and for
n =0 let

Jz,n = (p'mhy p” ’Uf(‘, D) p’Uf"_‘; /Uf") - BP* .

LEMMA 6.2. Let n = 0.

a) J,,, 18 invariant.

b) If x = y mod J,,, then x* = y® mod (pJ,, + J7.).

c) pJZ,n + Jz’fn = (p'n+2, p’n—vaO, ct %y pv:”y /vfc’”')-

d) Ife, = pc,_, then

Joon = (0, ¥") O (PLyyuey + SLns) -

Proof. a) follows from 7%,v, = v, + pt, and b) from the binomial
theorem. c¢) and d) are easy observations. ]

In particular take ¢; = a, as in (5.2), and let
(6.3) L,, = ("™, p"vio, « -, vin).

I, , is thus invariant.

PROPOSITION 6.4. Let n =0, s€Z. Then x} ts invariant mod I, .

Proof. Clearly we may take s = 1. For n = 0 we have v, invariant
mod (p, v,), cf. (1.7). Assume by induction that x,_, is invariant mod I, ,,_,.
Then #%_, is invariant mod (pl,,,_, + I7,_,) by Lemma 6.2 b), and x, — x2_,
is invariant mod this ideal by ¢) and the definition (5.1) of xz,. Thus z, is
also invariant mod thisideal. By Proposition 5.4 a) «,, is invariant mod (p, v?»),
so the result follows from Lemma 6.2 d). H

COROLLARY 6.5. Letn=0,s€Z,9=0,j=1. Then x3/p" " v{c Q" M2 is
acycleif i <mand p'|j < a,_,.

Proof. Since p*|j, (p**, v{) is invariant, we are claiming that «3 is in-
variant mod (p**!, ). Since j < a,_,, ('™, v{) 2 I, ., so the result follows
from Proposition 6.4. 1

Remark 6.6. Observe that »*|j < a,_, if and only if 2¢ < » and j = mp*
form £ a,_,;.

Let b, = (p + L)(»** — 1) for k > 1 as in Section 5, and let b, = p.

LEMMA 6.7. Let © =0,k > 1. Then

@i = @f-y mod (piolk, piT o, e, vl ;

— i+1 i i— i—1
T = a) mod (ptv?, piiels, - .., 0P )
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Proof. Since x, = z}_, mod v,
) " ) _ .
o = 277 mod (piolk, piTiutE, < - o, WP

The result follows from the observation that

min {by,j, Pbyrj 1y + =+, P O} = p7b, ifE>1,
= pi-b, ifk=1. [
LEMMA 6.8. Let s€Z,1=0. Then mod (p‘"', v¥"*) we have
day? = spiviTlu, tr + (P oprireier if k=0
= sp' o (vt + VP (i, — YY) — G,)) if k=1
= spPopr PR Qe g, — piter(2F Y if b>2.

Proof. This follows from Proposition 5.4 ¢). We leave the case &k = 0
to the reader. Note that if L is any ideal such that y*c L, and if dx = v
mod (p, L), then da*** = sp’2***~'y mod (p**, L). Apply this, with L = (v2***),
to Proposition 5.4 ¢). Then use the definition of x, to replace xz*' by
v;zr"—l)p". ]

PROPOSITION 6.9. Let ptseZ, 0515k, 1=<m=Za,,;, and write
j = mp'. For é: H' M;— H' M}, we have

s 8 8—1 — fp+1 .
i) 5( Litr ) - _ V3t + svy 't — ) Wfk=20
pﬂ.l’vi /vf v,
L
— _mx%+1t1 Sv;p _ ltf 4 e ’l:fk =1
,v:{+1 ,vi—l
42— —
_ mas, .t + sv;"' l(tl + v,v; 1(t2 - tf“) - v1Cz) R
S ein v 4
k=2
i+2—1)pk—2 k2
o om@lt, | suPr TR R — 9,08 Cifk>3
— s — + b zf = ’
it v Mt

where - -+ denotes an element of Q' M} killed by a lower power of v, than
those shown; and

ii) 3(.—_1-—) — __sh fors=1.

i+1 3 1+sapi
PP v

Proof. Since
Ne(vi?) = v — mp*tor T ¢ (mod ptt?)
(remember, j = mp*), we have

@ = Na@iw) _ MYp(wip)t
(6.10) mal oty ) = Taen) — MR

Equation (ii) follows immediately: take s = 0.
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We leave the case k = 0 to the reader.
Now 7., = 2%,, mod (p, v¥+¥). Since j < a,,, (With equality if and
only if 7 = 0 and j = a,) the second term in (6.10) is
= M3y by
p,v:liﬂ
(mod 0 unless 7 = 0 and j = a,).
We turn now to the first term of (6.10) in case & > 0. By Lemma 6.7,
(6.11) Nethys = Npaily" mod (¥, p ok, - oo, wikt)
since the indicated ideal is invariant by Lemma 6.2. (6.11) holds in particular
mod (p**?, v'*'). Except when p =3andk=1,b, —1=2 + a,_,, so (6.11)
holds also mod (p*+?, vite—1).
In the exceptional case we need to compute 8(x1, /3" v¥™) mod ker v¥™2,
so it suffices to compute 7g(xi,;) mod (3'*%, v}). Thus Lemma 6.8 gives

NpXhis _ wgzﬂ“ + sp”‘v;”‘“‘lvlt”

mod ker v,

! .
. : 4 .. ifk=1
ps-l-z,vir pi+2,v{
I T il O R o e 40 et ) SRV
- pi+2 ,v{ -
_ o 4 sp o gty — o Y L k>3
pi+2 ,v{ =%

The result now follows upon using Lemma 6.7 again to convert 22 to Ty pe

(|

LEMMA 6.12. The following cycles represent the elements of a basis for
ker v, in H*M}: for t € Z and pts € Z such that either s* —1(p) or s= —1(p?),
vt
4
b) vi Tt + VPt — 7Y
vt v
c) '——“—v;pt_:pk b
v

a) k=0

prt

E=1,ptt
d) A
(2

k
e) UG
v,

£y b, 5
v, v

Proof. By virtue of the short exact sequence

0——')M20"—?"—)M11_1£—>M11_—’0’
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we must find Coker (6: H° M} — H*M{). By Proposition 3.18 ¢), Theorem

5.3, and (5.9), this F,-vector space is spanned by:
A A sl G O

, ’ ’

v, U, U, v,

for k=0, teZ, and s as in the lemma. Now Lemmas 6.8 and 3.19 together
give homologies
A R A + vyt — )
v, v} v, ’

and for k=1
’v;”t“”’kcz N v;pt—mk@"*l N 21);”t")”kt1
v, v, V7
The result follows. 1

Proof of Theorem 6.1. As we have said, it suffices to prove that the
set R of mod p reduction-boundaries of the elements listed in the theorem
is linearly independent in H'M!. We do this by induction on the (v,)-adic
filtration on H'M;. Write l(2) for the lowest power of v, killing z <€ R, and
let

F\R={zeR:l(z) < 1}.

Say that ze R is of type (x) if v}"7'z occurs in part (x) of the list of
generators of ker(v,|H'M;) given in Lemma 6.12. Further say z =
8(xs, /0" v’y of type (a) has type (a), if and only if p /' m and type (a), if
and only if p|m. Let 7(2) denote the power to which v, occurs in the leading
term of v"”7'z. Among elements z € R of fixed type with I(z) = [, 7(z) and
dim z determine each other.

Proposition 6.9 now results in the following table, all but the last line
of which refers to z = é(zi. /"' v) e R, 7 = mp'.

l=1,r=s, type (b), if k =0ands=pt — 1, p}t.

L =j3,r = sp'¥, type (¢), ifk >0, p}tm,ands=pt—1, p }t.
l=7+1,r=spt, type (a),, if k = 0, p ¥ m, and s otherwise.
l=7—1,r=sp'™ —1, type (d), if k = 1 and p|m.

l =17 — ay,, r=sp™™ — p*%, type (a),, if £ > 1 and p|m.

l=14,7r=0, type (f), if z = 1/p*t'ol.

Thus F(R is empty, and this starts the induction. So suppose F,_ ,R is
linearly independent. Now it is very easy to see from the table that there
is for fixed ! and r at most one element z € R of each type. Thus a homo-
geneous linear relation among elements of F,R must be of the form

¥ a.z, = 0 with 2z, of type (a),, 2, of type (a),, and z,€ F,_, R for v > 2.
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Consider v{7*) a.2,. According to Proposition 6.9, the leading term of
az, + a2, is

(6.13) — a,

(spit2—1)pk—2 ppk—2 (sptt2—1)pk—2
s"? Ll sv"? e

—_— a2
’01 vl

(using Lemma 3.19), and each element of F',_, R contributes its leading term,
which is described in the table. Since (6.13) occurs in Lemma 6.12 (e) while
(e) is absent from the table, the coefficient «, = 0. Thus «, = 0 also, and
we have a relation among elements of F',_, R. Thus by induction it is trivial,
so F,R is independent. This completes the induction and the proof of
Theorem 6.1. D

7. Computation of the differential

In this section we complete our computation of H*BP, (for p odd) and
construct a plethora of nonzero classes in H*BP,. Among these classes are
v, for t > 0.

We have already done all the hard work. We have computed H°M? =
E?>° in the chromatic spectral sequence, and we have seen:

i) 0 = d,: E"*— E?° in positive dimensions (Corollary 4.8).

iil) E%* = EP* = 0 for t > 0 (Corollary 3.17).

iii) EL' = E}' = 0 in positive dimensions (Theorem 4.2).

These facts together with Remark 3.8 show that the sequence

(1.1) 0 — H*BP, — H°M? % H'N: - H*BP,
is exact in positive dimensions.

LEMMA 7.2. Let x3/p""™ v! be one of the generators of H°M? listed in
Theorem 6.1. Then 0 = k (x3/p'"™ v)) € H' N¢ unless

i) s<0or
i) n=2,s=1,1=0,and p*<j < a,.
In case ii), ‘
-1
a9 S T
pvi puiTT VR

Proof. i) is clear, so supposes > 0. Letn = k + 7. Lemma 6.7 implies
that «},; = #7' mod (¢v/++1). Since b,,, =a,=j, it suffices to consider
' [p* ' vi. Mod p, x, = v2" — v v;?" T 02" + terms v viv; with @ = p* — pF2
and b > 0. Since x = y(p) implies z** = y*'(p'™), it suffices to consider the
sp'th power of this sum. Because 2(p* — p*™?) = a, = j, the only term in
a7 /p** vi which can map nontrivially is thus

iy (8pi—1)pk E,  —pk—1
spluy? TR (— P v ?

k—1
vi )
pi+1 ’l){ °
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The power of v, here is negative if and only if s =1 and 7 = 0, and the
power of v, is negative if and only if j > »*. This completes the proof. []

Remark 7.4. Since

HOM: -2 HoM
n ., N
M; — M7
commutes this lemma determines d,: E*°— E?*° in positive dimensions.
Remark 7.5. From Theorem 6.1 and Lemma 7.2 it is now easy to read
off the structure of H*BP, given in Theorem 2.6. Furthermore, since
vi[pvv, ¢ Im(k,), it survives in (7.1) to H°BP,, and this is Theorem 2.7. This
completes the proof of Theorem 2.12.
The reader may easily construct many elements of H°N¢ which survive
to H®*BP,. We give some examples of elements of order p, based on the
next lemma.

LEMMA 7.6 (Baird). Lets, ---, s, be a sequence of positive integers, and

let p° be the largest power of p dividing s;. Then the sequence
p’ ’l)?l, oo, Q);n

18 invariant tf and only if s; < pitt for 1 < ¢ < n.

Proof. We argue by induction on n. The case n = 0 is clear, so
suppose that p, vi, ---, v’»-1is invariant and that s, < p‘i+ for 1<t <m —1.

If also s, , < p*» then

I=(p, vt -, vn ) 2J = (p, 0", ---, 0200) .

Now v, is invariant mod I,, so ;™ (and hence v'») is invariant mod J and so
also mod I.

If on the other hand v’» is invariant mod I then it is also invariant mod
the larger ideal (I,_,, v'»1). But

NpVm?t = o™ 4 molm 2’ " mod (I,_,, vZ%) ,
so v*° is invariant mod I only if s,_, < p°», as desired. O

Consequently vi3/pviivze Q°NJ is a cycle for 1 < s, < p*2, 1 < s, < p%,
1 <s,. Write

(7.7) Vagrons, = NV DV1VE) € HBP, .
From Lemma 7.2 and (7.1) we have:

COROLLARY 7.8. 0 +# 7,,,,,,, € H*BP, unless s, <s, = p3 = s,. In fact,
these elements are linearly independent. ]
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Remarks 7.9. a) We shall see in Theorem 8.1 that v, = 7,,,,, = —&, 5,
and in Theorem 8.6 that ¥, . . = —2&8,_, . for n = 1.

b) There are of course many other nonzero elements of H°N;. For
example, by Theorem 5.10, 3, pv,v5€ H°N; for s=1, 1<k < a,, with
k < p*if s = 1. This provides many elements not included in Lemma 7.6.
By Lemma 7.2, most of these give rise to nonzero elements in H*BP,.

¢) There is an exact sequence
00— E}*— H*BP, —> E>*— 0.

In Section 8 we shall investigate the third term in this sequence.

8. On certain products

In this section we exploit the H* BP,-module structure of the chromatic
spectral sequence (Remark 3.5a) to study products in H*BP,. We regard
this module structure as one of the most powerful computational features
of the spectral sequence and expect to see further applications of it in the
future. It enables one to obtain a representative for a product in the
chromatic E, term by replacing one factor by its “chromatic representative”;
for example, B,a, is represented by —vit,/pv, € Q'M¢ since B, is represented
by —vi/pv, € Q° M¢ and «, is represented by ¢, € Q'BP,.

Many of the results of this section are collected in Theorem 2.8.

We have made no attempt to be systematic; indeed we have restricted
ourselves to results closely related to the work of earlier sections. In
particular we leave open the question of the decomposability of v, for ¢ > 1
and the question of the nontriviality of 5,8, products. However, we do
attempt to demonstrate all of the basic techniques for dealing with products
in the chromatic spectral sequence and many of our results have immediate
homotopy theoretic consequences.

The section is divided into six subsections. We begin by showing
7(v,) € H*BP, is decomposable for n = 3. As a consequence of our decom-
position, we have a,3,_, = —7, in stable homotopy; and using a result of
Thomas and Zahler, we also find that a,7,_, # 0 in H*BP, and in stable
homotopy. The next subsection is devoted to an analysis of the products
a,B,,; € H*BP,. This is our principal result on products and it has numerous
homotopy-theoretic corollaries; see Theorem 2.15.

Next we give an algebraic generalization of the first element of order
p* in the cokernel of the J-homomorphism; we show inter alia that ¢ divides
a, B, in H*BP,. In part D we show that all products of the form «,/,5,,;
reduce to those studied in part B. We then give an algebraic proof of the
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known result that the product of any two elements in H'BP, is trivial.
Finally we show that for p =2, @,8._,,,, =0 in H°BP,. The result
dampens any hope that the mod 2 Arf invariant question might be resolved
using the Adams-Novikov spectral sequence.

A. Decomposability of n(v,). To begin with we prove a generalization
of the relation
B, = —"
(see [23]). Recall the Greek letter map (from before 3.8)
7. H'(BP,/I,)— H™(BP,).
THEOREM 8.1. Let p be arbitrary and n = 2. In H"*'(BP,),
™) =0 for pys>1
and
a, ;™) = (="' (V) -
Proof. Let

e= U = sv,‘;_lvi,’“”":le eQM; .
DV VR

In the double complex Q* M} we have, using the congruence dv,,,, = v,t" —
v2t, mod I, of (1.7),

d,z = _svt (— 1)[2?]77<_8_”:":_> a, from 3.9,
p'.'v-n—l poocv“
de — Vg1 — __(_1)[01‘7“]77< Vi1 ) R s=1 ,
Pee-v, PV,
d,z = 0 (all the powers of v, are positive) , s>1.

From 8.3, dz=dz+ (—1)"dz so in the double complex

(—1)=ap(svr~t/p -++ v,), is homologous to 0 if s>1 and to

(—D(—=D)+4p(p, /o -+ v,) if s =1. By our convention concerning the
use of 7 (see before 3.8), this says that in H**'BP,

() psvr1e, = 0 ifs>1,

= () (-0, ifs=1.

This proves the first statement. For s = 1, an analysis of the signs involved
gives

=i e, = N(v,.,) always.
However, 7(v2™") is in cohomological degree n and «, in degree 1 so

7](”n+1) = ""77(’0:—1)“1 = (—1)”““1 7](%") .
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This concludes the proof of 8.1. The signs can be somewhat confusing.
In an attempt to give the reader faith in these signs we offer a more direct
proof of this last result.

Let 0,: H*BP,/I,.,— H*"'BP/I, denote the boundary homomorphism
associated with the exact sequence

0 — BP, /I, —> BP,/I, — BP,/I,.,— 0.
Then %(v.) = 6y+++0,_,(v,) € H*BP,, where ¢, e H°BP,/I, =F,[v,]. It
follows from dv,,, = v,t" — v3t, mod I, that
04(Vpyy) = 8" — v27't, in H'BP,/I, .
Now ¢?" is an element in H'BP,/I,_, so by exactness
5n-15n(vn+1) = B,,_l(**’l]ﬁ_ltl) .
An elementary computation in the cobar complex shows that this is
—0,,(v371t,. The same computation shows that
50 e 3n(”‘n+1) = _50 M 5%——1(/05—1)1&11
i.e., P(W,uyy) = =PI, = —N(vi e, .
The argument proceeds from here as in the first proof. O
Remarks 8.2. a) Thus @, 8,_, = —7, mod F*"'r (S’ (using Note 1.12);
but in this dimension F'***! = 0 by Remark 1.17. So we have recovered the
relation in 7, (S°).
b) Thomas and Zahler [32] have shown that for p >5, 0= n(v,)e
H*BP,). We have just seen that 7(v,) = @,7,_,. Combining these two

results with the fact that a,7,_, cannot be a boundary in the Novikov
spectral sequence (Note 1.12), we find that @,7,_, # 0 in 7, (S°).

B. The products e, 5,,;. Throughout part B, » will be an odd prime.

We turn now to the study of products of the form «,B,,; = B,
The element «, € H'BP, is represented by ¢, € Q'BP,. The element
is represented by —ux:/pvi € Q" M¢ in the double complex CF (8.3) (see 3.9 for
the sign). By the module structure, — 3 ¢,/pvi € Q' M? in the double complex
represents &, 8,,»,; € H*BP,. We first decide which of these is zero in H'M;*
From the definition of z, (5.1) we see that 22 = v:*" mod (p, v?). Thus from
6.12 a) and c¢) for p Y se€ Z, x.t,/v, is a generator of ker (v,| H' M) if n =0
and either s = —1(p) or s = —1(p%, and x%t,/v? is a generator if » = 1 and

= —1(p) but s = —1(p?.
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Consequently, the set T'c H'M; of classes xt,/viforn =0,1<j < a,,
and ptseZ such that if 7 =1 then either s = —1(p) or s = —1(p?), is
linearly independent.

Consider the exact sequence

(8.3) H°M2——>H1M1 H'M:.
Proposition 6.9 shows that (with j = mp?)

] me;, .t .
o(Shee ) = — My kzl,j<a m
s - = == k— p
pH-l’Ui ’U}-H ’ 9 1 *
3 S,Uapz—l .
— &b 8 p g i—0m=p+1
,Uz+p )
1
itk_pk—2
(8.4) _ 2sp
v,
Tty 23v;'pk_l)pk_2t1
viteE—1 v,

|
=
v
~®
o
I

1 + Wg—yy plm

’

k=z38,i=k—2,m=p+1.

An excruciatingly painful inspection of the proof of Theorem 6.1 can con-
vince the reader that the images under ¢ of the remaining generators (for
H°® M) are linearly independent modulo the span of T. Combining this with
the exact sequence (8.3) and recalling that 7.(x) = 2/p, we have:

LEMMA 8.5. Letn=0,pts€eZ, 1< j<a, In H M x.t/ovi+0 if
and only if either i) or ii) holds.

i) 4 =1 and either s = —1(p) or s = —1(p"*?).

i) 7>1+ ansijons-
Furthermore all linear relations among these classes are given by

ot i
pvit? P,
n+2_
Linialy — 23 zw 't n=1
Pt Y,

Here v(a) is the largest integer v such that p*|a.
We can now prove the central result of this section.

THEOREM 8.6. Letn=0,p}ts=1,andl < j=Za,withj < p*ifs=1.
In H*BP,, a, Bopns; 0 if and only if one of the following conditions holds.

i) 7 =1 and either s = —1(p) or s = —1(p"*?).

iil) 9=1and s=p — 1.

lll) .7 > 1 + Qpy(G—1)—1¢
In case ii), we have @, B,_, = —7, and for n =1, 20,8 ,_, o = —7 u/m n (see
(1.7)). Finally, the only linear relations among these classes are
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a16”,2/2+p = sa1B,p2_1 ’
alB“’Z"M/”“nH = 23“1:8”,27»4-2_,,«; ’ n=1.

Proof. As noted above, ¢, /pv] survives to —a, Bw,,/j in the chromatic
spectral sequence. So to show this element is nontrivial it suffices to see
that it is never a boundary. The chromatic spectral sequence lies in the
first quadrant, so the result follows from Theorem 4.2 (E*' = 0 in positive di-
mensions) and Corollary 3.17 (E;"*=0) for the non-zero elements of Lemma 8.5.

All of the other «% ¢ /pvi represent zero in H'M;. Thus for these s, n,
and 7, @, B, ,x,; lies in filtration 3 of H*BP,. To find a representative for it,
one must find z € Q° M¢? such that d,z = 2% t,/pv{ and evaluate d,z € Q" M¢; for
d,z and —d,z are homologous in the total complex.

There are two distinct types of x%t,/pv! which we must check. All of
them represent elements in H'M;! (as x%t/vi). Our first type, «%/pv,
s = pt — 1, pkt, is already zero here (6.12 ¢)). Our second type, listed in
8.4, is nonzero in H'M! but goes to zero in H'M; as in 8.3. We compute
for the first type now.

From (5.9) we see that

t tp—
di< xl.; > = b forn =1,
Pv;T Y,
(8.7) —pypn—1
— 2w for n > 1
oV,

in Q* M2. Mod p,

PR py—pn—1 pn—l

x, = 0" — " "7 + terms v{viv;

with @ = p" — p"*and b > 0. Since 2(p" — »**) =1 + a,, we find:

n—1
d,(__””i ) S t=1

p,vi-hz,, - p,vfn—lvgn—q ’

=0, t>1.
Thus the element (8.7) survives, and this gives condition ii) and the relation
20,8 ,_ypn = T gusgn,pn for n = 1; for the sign, see Remark 3.8.
The elements of the second type are just i, (as in (8.8) i,(x) = z/p) of
those listed in 8.4. Since on the chain level, 7, d(z) = d,(z/p),

(8.8) d, (@, /p 20" = 0

for values of %, 7, m as in (8.4). The proof of Lemma 7.2 applies since in all
cases of (8.4) 7 <1+ a,_,, and b, =1 + @,_,, and the result follows. 1

C. Divisibility of a,B,,;. These products are more highly p-divisible
than the bare B, elements. To see this, define cycles y;,,, € Q' M; for
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7=1,1=0, by
C; bt
(8.9) Yiirn = Ek>o_kazy~:W
where ¢;,, = (—1)*7(j5 — 1, k — 1). Note that

Yiivt = e Yipr
for y,., as in Theorem 4.2 b), and that for 5 > 1,

ikl = '_d< Y L - >;
Ys.it P75 — 1)vi

SO ¥;,:4, is indeed a cycle. Notice also that for ¢ > 1,

PYiivr = Yip
and that if p® divides j then
t
Yiirr = W .

It is convenient to prove here the assertion of Remark 4.9 d).
LeEmMMA 8.10. For ¢ =0, y,,,,., # 0 in H' M.,

Proof. Since py, ., = ¥, it suffices to see that ¢,/pv, = ¥,, is nonzero
in H'M;. Now in the diagram (with ¢ = 2(p — 1))

H>M;  H™M;

1 l

HI,qM;) 6 HI,OMII 5 Hl,OMOZ y
the two L-shaped pieces are exact, and 0 = {t,} = h, e H"? M is carried to
{%,,.}. But by Theorems 5.3 and 6.1 the top groups are 0, so {y,,} # 0. O

Recall from Corollary 6.5 that x:/p*"'vi € Q° M? is a cycle for ¢+ < n and
|7 £ a,_,. In contrast, we have

LemMA 8.11. Let p > 2. Then x4y, ., cQ M is a cycle for 0 <1< n
and §j < @,_;.

Proof. Let I be so large that all terms of %y, lie in ', = »;'BP,BP/
(P, v c Q' Mz T, is a Hopf algebroid with coefficient algebra v;'BP,/
(p'*, v?"), and it suffices to show ¥, .., is a cycle in its cobar construction.

Recall (Proposition 6.4) that x, (and hence z3) is invariant modulo the
ideal I,, = (p*, ---, p""tw, --.). We claim that I,,%;., = 0. Clearly
Nysodivit)¥iiss = 0, where J; ., = (kp*™** »{***); and we claim that
IS J;,,, for all £ > 0 and the stated values of #, 7, and j.

The condition % = ¢ insures that p**eJ;,, for all k& > 0.
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Now p"tvited;, ,if eithern —t =71+ 2+ vk) — k (where (k) is the
largest integer v such that p”lk) or ¢, =47 +k — 1. Thus we claim that
n—t<i+ 2+ vk) — k implies

(8.12) a,=j+k—1.
The first statement is equivalent to
(8.13) t=zm—1) +m

where m = k — 1 — v(k). Notice that m > 0anda, =% If » — ¢ =0, then
j=1 and (8.12) follows from a, =k. Otherwise (8.13) implies that
a, = a,_; + a,; and (8.12) follows since a,_, = j and @,, = k.

Write x = %, ¥ = ¥;,.... Then Ay = y®1 + 1Qy, and we have
dizy) =2y ®1 -2y Q@1 + 1Ry + 1Ry

=1QRxy —2QY
= (7x(x) — ) Qyel,Qy =0
since I, , is invariant and I, .y = 0. -

We may now apply the technique of proof of Lemma 7.2 to show that
(2% Y;5,040) € Q' M is nonzero if and only if s <<0ors=1,7 =0, and j > p.
Thus with these exceptions % ¥; ., is a cycle in Q' N;. Define

(8.14) Somrsin = N@Yses) € H'BP,
so that for 7> 0

(8.15) DBynsiiir = Popnrine

and if p* divides j then

(8.16) ¢ap""/j,i+1 = alBap""/j,i+l .

In particular ¢,,,,, is the well-known element such that p¢,, .= @,8,; it
survives in the Novikov spectral sequence to the first element of order p*
not in the image of the J-homomorphism. Notice that more generally s
divides , 8, in H*BP,.

This completes the proof of Theorem 2.8 c¢).

D. Products with other elements of H'BP,. By convention let 8
for 5 < 0.

PROPOSITION 8.17. Let p be odd. Let s and t be prime to v, let m, n = 0,
andletl<j<a, with j<p*ift =1. Then in H*BP,,

=0

tp"/j

aspm/m+1‘8tp”/j = salBtp‘”/j—spm+1 ¢
Proof. H*BP, acts on H*N! through H*(BP,/p). The element
&, m .+, € H'BP, reduces to svi*"'t, ¢ H(BP,/p»). Hence, since 7 is H*BP,-
linear,
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s Bignss = oy N0/ DVD) = N80 8,/PVIP" ) = 8B, )i iomey » [
E. Triviality of H'(BP,)- H'(BP,). We next prove Theorem 2.2 b):
THEOREM 8.18. Let p be odd. Then H*BP,)- H(BP,) = 0.

Proof. By Theorem 2.2 a) it suffices to show that
/s Coprrniy = 0

for s and ¢ positive and prime to p, and m, » = 0. In Q'BP,,

a . E tp"‘ i—n‘lvtp"b—i tz
tp%/n+1 21 /l: p 1 L.
Thus in Q' M},

vspm tp‘"' ,Uspm+tp”b—iti
(8'19) yoeedl atp'”/n+1 = Eigl < >_!—1 ‘

m+1 . m+n+2—1
p 1 D

We claim that this is a boundary in the total complex C¢, and the theorem
follows. In fact,

d 2 A W
spm + tpn pm+n+2 - pm+1.at1’"’/%+l ¢

To see this, note that this boundary is by definition
n m 4 tp"‘ vspm+tp”—iti
(8.20) <_tz>___> P i
spm + tpn Eig1 'L. pm+n+2—1

We claim that (8.19) and (8.20) are equal term-by-term. That is, for
1=iEm+n+1,

tp” tp* sp™ + tp© ;

(8.21) ( ) - (_._)< ) mod prHehi |
7 sp™ + tp” 7 p

For ¢ = 1, 2 this is clear (for p odd) so suppose ¢ > 2. For p =3 and 7 = 3,

compute directly. Otherwise (again for p odd), p*~* does not divide i!, so
(8.21) follows from the obvious congruence

(Ep") -+ (tp” — 7 + 1) = tp™(sp™ + tp" — 1) -+ (sp™ + tp" — 1 + 1)
mod p™™ . []
F. On the Arf invariant. The element v¥/2v¥ € Q" M2, p = 2, survives
by Section 4 in the chromatic spectral sequence to a nontrivial element
B,;,i € H*BP,. If it survives in the Novikov spectral sequence then it

represents an element in 75(S°) of Arf invariant 1 ([35]; see also §9 below).
The work of Milgram and others leads one to expect

d; :821'/2:' = aQ, ;821'—1/2]‘—1

in the Novikov spectral sequence. It is well-known that the analogous
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product in the Adams E,-term is trivial, but it might be hoped that it is
nonzero for large j in the Novikov E,-term. This is unfortunately not the
case:

PROPOSITION 8.22. In H*'BP, for p = 2, 8%,; = 0 for j > 0.
Recall (Corollary 4.22) that 8,,, = 0.
Proof. First compute the mod 2 reduction of B

2/2*
. L . . i1 5ised
5[( ,vgi > . /vfjt%]_H . vf.1+1 tf] _ tf]+ . ’Ufjtfj
1 =] — - =

20}’ 20}’ 2

t2j+1 . /vzftzf . . it -
W=V ) = e+ o' @ (mod 2).
So B%;,,; is represented in the chromatic spectral sequence by v2't¥ ®Q t¥//2v¥ ¢
Q*M;. Now an easy calculation shows that this is the boundary of
,vgj‘l.stfj ,vgi—l tfa

J—1.
20¥ 3

e Q' MZ.
27—1

2’01

Furthermore, this element is killed by the external differential d,, so
B,,i = 0 as desired. O

9. The Thom reduction
In this section we study the map
®: Ext3p,50(BP,, BP,) — Ext% (F,, F,)
induced by the Thom map ¢: BP— H. Here H is the mod p Eilenberg-
MacLane spectrum and A, = H, H is the dual Steenrod algebra. We restrict
ourselves to p odd. By studying the I-adic filtration on Extgp,»(BP,, BP,)
(Where I=(p, v, --) = ker (BP,—F,), we evaluate ® on Ext' and Ext=.
This puts a strong upper bound on the possible survivors in Ext (F,, F,) in
the Adams spectral sequence, analogous to the mod 2 results of [13] (as

corrected by [38] Prop. 3.3.7).
Recall that

A, = Ele, e, - |QF,[t, t,y ---] with ¢, = 1,

At, = E:=0ti ®tii_i ’

Ae, = :‘=lei®t£’f_i +1Qe,.
Thus e, is the Hopf conjugate of Milnor’s 7, [17], and ¢, is the conjugate of
&,. Zahler [35] showed that ¢, +— ¢, under

¢+6: BP,.BP — A, .

From the work of Liulevicius [12], we recall the following facts.
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9.1) Ext%, (F,,F,)=F,.
9.2) Extl, (F,, F,) has generators
a, = {e} ,
h, = {7}, 1=20.
(9.3) Exty, (F,, F,) has generators
a, = {2¢,Xt, + ¢, Rt ,
I ()
b, = 13 Lo @i i=0,
9= {20 @ + " @Y, i=0,
k= 28 @' + e @Yy, i20,
as
ayh; , 1>0,
h.h; Jj—1>:=0.

THEOREM 9.4. Let p > 2. a) (Novikov [21]) @ maps the generators of
H'BP, given in Theorem 2.2 to zero with the following single exception:

Oa, = h, .

b) ® maps the generators of H*BP, given in Theorem 2.6 to zero with
the following exceptions:

DB, = ko ’
®18pi/pi_l = hohz‘+1 ’ ©>0,
q)Bpi/pi = _bi ’ % =0.

Proof. Let I = (p, v, --+) be the augmentation ideal of BP,. Give the
comodule M; the I-adic filtration: that is, for k€ Z, v* € F* M; if and only if
2_e;=k. This induces a filtration on the subcomodule N;. Since I is
invariant, these are filtrations by subcomodules.

Now the exact sequence

0 N¢ M F 0
has the property that for all %,
(9.5) 0 — F*N¢ —> F* M —— FFNs+H —— 0

is exact. If we filter Q* N¢ by
F*Q*N; = Q* F*N;
then it follows from (9.5) that the connecting homomorphism
0 H'N;*' —— H'"' N;



PERIODIC PHENOMENA 513

is filtration-preserving. Thus
7: H'Ng — H'"*BP,
is filtration-preserving.

Now [16] Q*(BP,/I) is isomorphic to the unnormalized cobar construc-
tion of the Hopf algebra F,[¢, ¢, ---]; and Q* BP, — Q*(BP,/I) induces the
Thom reduction ®. Thus @ kills F*H*BP,. So for e H'N;, ®(nz) + 0
only if x ¢ F* H* N¢.

To prove a), note that for n = 0, p t's, v{*"/p"™ ¢ F' N} if and only if

sp" — (m + 1) < 1;
i.e., if and only if n = 0, s = 1. Further, 5(v,/p) = ¢,, and this proves the
result.

In b) we are concerned with 7(xi/pi"'vi) for n =0, pts=1, i =0,
i=1, p'|j =< e, ; with j < p"if s = 1. Since the term in z, having lowest
filtration is v3", x;/p**'vi ¢ F'* N¢ if and only if

sp" — (1 + 1) — 5 <1.
For 7 =1, sp” is minimized by s = 1 and j is maximized by j = p‘a,_,;, but
still p*» — (2 + 1) — p‘a,_,;, = 1. For ¢ = 0, we may have either

i) s=1landp"—1< 7 < p, or

iil) s=2,n=0,75=1.

We compute ®7(x,/pv’") and leave the other cases to the reader. Note
that z,/pv?" = v2"/pv?". Now

51< ”5:) S A mod F*,
pv? poy P
" <2?n+1)
W) = —m L
= _p, mod F'. []

COROLLARY 9.6. Let p > 2. In the classical Adams spectral sequence
for the sphere,

a) (Liulevicius [12], Shimada-Yamanoshita [28]) Of the generators
(9.2) of Ext},(F,, F,), only a, h, can survive, and

b) Of the genmerators (9.3) of Ext?(F,, F,), only the following can
survive in the Adams spectral sequence: a,, b, (1 =0), k,, a2, hoh; (i =2),
and if p = 8, a,h,.

Remark 9.7. a) Of course a, survives to » and h, to «,. This is

Novikov’s proof of the mod p Hopf invariant 1 theorem. It works also for
» = 2; we leave the details to the reader.
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b) @, survives to ,, b, to 8, k, to B, hoh, to B,,,_., and if p = 3, a,h,
survives to @,,. The element b, supports the “Toda differential.” The
second author has used the stabilizer algebras to show that for p > 3, Aop_y
Byn/pn# 0 in the Novikov spectral sequence for all #» = 1. This implies that
b, dies in the Adams spectral sequence for alln =1, p > 3 (see [37]).

Proof of Corollary 9.6. The map BP— H induces a map from the
Novikov spectral sequence to the Adams spectral sequence. Thus for any
survivor in Ext}(F,, F,) there corresponds a survivor in H*BP, with
0=<1=2. HBP,) survives to 7,(S%, = Z,; s0 aican survive. The image
of the J-homomorphism maps isomorphically to H'BP,, and the only
elements of Ext},(F,, F,) surviving to Im J are a, and, if p = 3, a,h,. Any
other survivor must be in the image of ® and the result follows from
Theorem 9.4. ]

10. Concluding remarks

The computability of the cohomology of the Morava stabilizer algebras,
H* M, was the motivating force behind this entire project. However, in
retrospect, the attentive reader may observe that we needed very little
information about H* M in this work. In fact we have only used the
structure of H* M! and the nontriviality of h,, h, and {,c H* M. Stronger
use of H* M, will presumably lead to other homotopy-theoretic results.

For example, the second author has computed H* M? for p > 3 and used
it to detect elements in H*BP,. The natural map BP,.— M. induces a
reduction map H*BP,— H* M;, and he proved that v,c H*BP, reduces
nontrivially if and only if ¢ # 0, 1 (mod p). This shows not only that 7, = 0
but also that p } 7, for these t.

In our view the next step in this program should be the computation
of the second column H* M¢ of the chromatic E,-term, at least for p > 3.
Since H*M; is a 12-dimensional vector space over K(2), for p > 3, this
problem appears to be tractable using our Bockstein spectral sequences.
We have computed H°M; here and obtained H*BP, and 7, # 0 as essentially
immediate corollaries. Our partial computation of H'M? has given us
considerable information on products of a’s and 8’s. Complete information
on these products and the decomposability of the 7’s could come from having
all of H'M;. Similarly, the proper partial information about H*M¢Z could
give results about products of the form A,8,. The spectral sequence
behaves very well with respect to products. Although we have restricted
our attention to products that used computations we had already made we
have attempted to demonstrate all of the basic techniques needed to handle
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products in the spectral sequence.

Many of the elements of stable homotopy in the various programs for
constructing infinite families show up in H° M. These groups are also the
most accessible because H° My < M naturally. So perhaps there is a real
hope that they can be computed. In particular we have not computed
H°M¢ for the prime 2.

Finally, H?BP, provides an enormous supply of potential homotopy.
It would be very interesting to understand the subquotient of stable
homotopy represented by this line as well as we understand the image of
the J-homomorphism.

HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS
UNIVERSITY OF WASHINGTON, SEATTLE
JouNs HoPkiNS UNIVERSITY, BALTIMORE, MARYLAND
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