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The Arf-Kervaire elements 0; € mo11_»(S°) do not exist for
j>7.

Our strategy is to find a map S° — M to a nonconnective
spectrum M with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the
image of each 6 is nontrivial. This is the Detection
Theorem discussed by Hopkins here on July 8.

(i) m—2(M) = 0. This is the Gap Theorem discussed by Hill
here on July 15.

(iii) It is 256-periodic, meaning ¥2°6M = M. This is the
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Cg on the 4-fold smash product MU™). It is derived using a
norm induction from the action of C, on MU by complex
conjugation.

We show that its homotopy fixed point set (MU®))"Cs and its
actual fixed point set (MU*)% are equivalent. It is an E..-ring
spectrum, and M is obtained from it by inverting an element

D € mo56 which we will identify below.

The homotopy of (MU™*))"% can be computed using the
homotopy fixed point spectral sequence, for which

Es> = H*(Cg; m.(MU™))

In this case it concides with the Adams-Novikov spectral
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One variant has the form
Eyt =78 ((CPIMUY) — 7E (MUW). %

Recall that 78(MU@) is by definition ., ((MU®)%), the
homotopy of the fixed point set.
Our strategy

Slice Theorem The spectrum M

In the slice tower for MU®), every odd slice is contractible and

P21 = W, A HZ, where HZ is the integer Eilenberg-Mac Lane e
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o S("/4rs where pg denotes the regular real representation
of Cy,
e Cg Ae, S(n/2)ps gand
o Cg ANe, Shez,

The same holds after we invert D, in which case negative
wvaliiae Nnf N ~an Neertir
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e The slice spectral sequence for MU®) is concentrated in
the first quadrant and confined by the same vanishing
lines. .
ur strategy
o Later we will invert elements in 7, (MU®). The fact that 10 cpecrumm

The slice spectral

These calculations imply the following. %

S8 A (Cg Ay S™1) = Cg Ay SIM—8/Men S vz
| implations
means that the resulting slice spectral sequence is Cecpeticiicteonts
confined to the regions of the first and third quadrants Some slce diferentials

The proof
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In order to proceed further, we need another concept from
equivariant stable homotopy theory.

Unstably a G-space X has a fixed point set, 4%
XG:{XEX W(X):XV’YE G} Our strategy
The spectrum M
This is the same as F(S°, X, )%, the space of based Thesﬁce —
equivariant maps S° — X, , which is the same as the space of e
unbased equivariant maps x — X. impicatons
[ Geometrc fixed points

Some slice differentials

The homotopy fixed point set X" is the space of based
equivariant maps EG, — X., where EG is a contractible free
G-space. The equivariant homotopy type of X"C is
independent of the choice of EG.

The proof
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Both of these definitions have stable analogs, but the fixed
point functor is awkward for two reasons:

e it fails to commute with smash products and
o it fails to commute with infinite suspensions.

The geometric fixed set X is a convenient substitute that
avoids these difficulties. In order to define it we need the
isotropy separation sequence, which in the case of a finite
cyclic 2-group G is

EC,, — S° — EC..

Here EZ/2 is a G-space via the projection G — Z/2 and S°
has the trivial action, so EC; is also a G-space.
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H of G, EC}! = EC,, which is contractible. For an arbitrary
finite group G it is possible to construct a G-space with the
similar properties.

Under this action E02G is empty while for any proper subgroup %

Our strategy

Definition The spectrum M
The slice spectral

For a finite cyclic 2-group G and G-spectrum X, the geometric sequence

fixed point spectrum is o
= | Geometric fixed points
G
(DGX = (X /\ ECZ) . Some slice differentials

The proof
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This functor has the following properties:
e For G-spectra X and Y, dG(X A Y) = dGX A ¢CY.
e Fora G-space X, $Fr>X = £(XC).
e Amap f: X — Yis a G-equivalence iff ®''f is an ordinary 4
equivalence for each subgroup H C G.

. Our strategy
From the suspension property we can deduce that The spectrum M
oC MU = MO il
’ S"Ps A Hz
Implications
the unoriented cobordism spectrum. [CoomeraTmea el
Some slice differentials
Geometric Fixed Point Theorem S—

Let o denote the sign representation. Then for any G-spectrum
X, 7, (ECo A X) = a; ', (X), where a, : S° — S is the
element defined in Hill’s lecture.
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It is not hard to show that
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where |r;| = 2i, v is a generator of G and v*(r;) = (—1)'r. In
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Mike Hill
Recall that 7, (MO) = Z/2[y; : i > 0, # 2k — 1] where |y;| = i. Doug Aaven

It is not hard to show that

where |r;| = 2i, v is a generator of G and v*(r;) = (—1)'r. In
Tips (MU®) we have the element

™. (MU®) = 2[5, (r), (). 7*(n) : i > O]
s

Our strategy

Nri = riy(r)y? (i) (r)- IR

The slice spectral
sequence

Applying the functor ®€ to the map Nr; : St — MU®) gives a P

map S' — MO Implications
[ Geometrc fixed points
Lemma Some slice differentials

The proof

The generators r; and y; can be chosen so that

®CNr: — 0 for/__2 1
yi otherwise.
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It follows from the above that the slice spectral sequence for
MU™) has a vanishing line of slope 7. We will describe the
subring of elements lying on it. %

Let f, € m;(MU™) be the composite

Our strategy

. Qipg . Nr; The spectrum M
i 1] 4
S S P8 MU( ) The slice spectral
sequence
. mPs
The following facts about f; are easy to prove. B

Geometric fixed points

« It appears in the slice spectral sequence in £, which is T
on the vanishing line. The proof

e The subring of elements on the vanishing line is the
polynomial algebra on the f;.
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e Under the map %
T (MUY2)) = 7 (0CMUY/2)) = 71, (MO) {

we have Our strategy
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e Under the map %
T (MUY/?)) = 7, (6CMUY/2)) = 7, (MO) {

Our strategy

we haVe The spectrum M

0 fori=2k—-1
fi = . The slice spectral
yi Othel’Wlse sequence

§"Ps A Hz
Implications

¢ Any differential landing on the vanishing line must have a *
target in the ideal (f, fs, 7, .. .). Seomene hedpane
* Some sice difrentials

The proof
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e Under the map %
T (MUY — 7, (6EMU/2)) = 7, (MO) {
we have f:'s"a“:gy .,
0 fori=2k—1 ¢ spectium
f,‘ = . The slice spectral
yi Othel’Wlse seg;ence

Implications

¢ Any differential landing on the vanishing line must have a *
target in the ideal (f, f3, f7, ... ). A similar statement can be “
made after smashing with S2° . Fe—
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Our strategy

Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in my_ |y (HZ).
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in my_ |y (HZ).

Slice Differentials Theorem 4 %
In the slice spectral sequence for 2 MU®) (for k > 0) we S
have d(Up,) =0 forr < 1+8(2K — 1), and The spoctum
i The slice spectral
Ay g(ox—1)(Upky ) = &5 oy P
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Geometric fixed points

The proof
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in my_ |y (HZ).

Slice Differentials Theorem 4 %
. k
In the slice spectral sequence for 27 MU (for k > 0) we S
_ k ur strate:
haVe dr(nga.) = O forr < 1 + 8(2 - 1), and The spectrum M
i The slice spectral
Ay g(ox—1)(Upky ) = &5 oy P
Implications
Geometric fixed points
| some siice diferentiats.
The proof

Inverting a, in the slice spectral sequence will make it
converge to m.(MO).
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in my_ |y (HZ).

Slice Differentials Theorem 4 %
. Kk
In the slice spectral sequence for 27 MU (for k > 0) we S
_ k ur strate:
haVe dr(nga.) = O forr < 1 + 8(2 - 1), and The spectrum M
e The slice spectral
Ay g(ox—1)(Upky ) = &5 oy P
Implications
Geometric fixed points
| some siice diferentiats.
Inverting a, in the slice spectral sequence will make it D

converge to 7.(MO). This means each f,x_{ must be killed by
some power of a,.
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Recall that for an oriented representation V there is a map
uy : SVl — £VHZ, which lies in my_ |y (HZ).

Slice Differentials Theorem 4 %
. Kk
In the slice spectral sequence for 27 MU (for k > 0) we S
_ k ur strate:
haVe dr(nga.) = O forr < 1 + 8(2 - 1), and The spectrum M
e The slice spectral
Ay g(ox—1)(Upky ) = &5 oy P
Implications
Geometric fixed points
| some siice diferentiats.
Inverting a, in the slice spectral sequence will make it D

converge to 7.(MO). This means each f,x_{ must be killed by
some power of a,. The only way this can happen is as
indicated in the theorem.
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Let _®

Ak = Nf'zk,1 S 7T(2k,1)p8(MU(4)). %
We want to invert this element and study the resulting slice 4
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Let _®
Ak = Nf'zk,1 S 7T(2k,1)p8(MU(4)). 4%

We want to invert this element and study the resulting slice
spectral sequence. As explained previously, it is confined to the
first and third quadrants with vanishing lines of slopes 0 and 7.

Our strategy
The spectrum M

The slice spectral

The differential d- on u«:1, described in the theorem is the last ~ seuence

} ) s e . ) . Ss"P: A Hz
one possible since its target, a2 ’ foki1_4, lies on the vanishing ligleaics
||ne Geometric fixed points
' [ some sice differentials

The proof
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Let _®
Ak = Nf'zk,1 S 7T(2k,1)p8(MU(4)). 4%

We want to invert this element and study the resulting slice
spectral sequence. As explained previously, it is confined to the
first and third quadrants with vanishing lines of slopes 0 and 7.

Our strategy
The spectrum M

The slice spectral

The differential d- on u«:1, described in the theorem is the last ~ seuence

. . . k+1 . L ST A i
one possible since its target, @2 fy:1_1, lies on the vanishing el
line. If we can show that this target is killed by an earlier e
: . . L (8 . * Some slce diferentials
differential after inverting AE( ), then uy«1,, Will be a permanent Fe—

cycle.
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We have
~(@)
f2k+1_1Ak = a(2k+1_1)p8Nr2k+1_1 Nr2k_1 4
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The spectrum M
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We have

f2k+1_1£§(8) - a(2k+1_1)p8 Nr2k+1_1 Nr2k_1 4%

—~(®)
- a2kp8Ak+1 f2k71
Our strategy
The spectrum M

The slice spectral
sequence
§"Ps A Hz
Implications

Geometric fixed points

The proof
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We have
O
f2k+1_1Ak = a(2k+1_1)p8Nr2k+1_1 Nf2k_1 4
_ Z(B) £
= 8okpg Byt ok
7(8) Our strategy
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We have
f, A® N N
2t 18y = okt 1) pg N1 1 NIk _4 4
+(8)
= pDpyrfr_y
7(8) Our strategy
= Ak+1 dr’(ngg) fOI’ I’/ <Tr. The spectrum M
The slice spectral
sequence
Ss"P: A Hz
COI'O"aI'y Implications
5 Geometric fixed point
In the RO(G)-graded slice spectral sequence for corere hecpen

a —1
(Aﬁ(s)) MU®), the class ugf, is a permanent cycle. The proof
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The corollary shows that inverting a certain element makes a
power of uy, a permanent cycle. 4%

Our strategy
The spectrum M

The slice spectral
sequence
§"Ps A Hz
Implications
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power of u,, a permanent cycle. We need a similar statement

The corollary shows that inverting a certain element makes a
about a power of Us,,. { %
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The spectrum M
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The corollary shows that inverting a certain element makes a
power of u,, a permanent cycle. We need a similar statement

about a power of Up,,. {
We will get this by using the norm property of u, namely that if etz

V is an oriented representation of a subgroup H c G with VIO CEESt )
VH = 0 and induced representation V’, then the norm functor sesence e

g itine NI Vij2 _ - A 12
Ny from H-spectra to G-spectra satisfies Ny (uy)u, pam = UV I

Geometric fixed points

Some slice differentials



The proof of the Periodicity Theorem

The corollary shows that inverting a certain element makes a
power of u,, a permanent cycle. We need a similar statement
about a power of Uy, .
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The corollary shows that inverting a certain element makes a
power of u,, a permanent cycle. We need a similar statement
about a power of Uy, .

We will get this by using the norm property of u, namely that if
V is an oriented representation of a subgroup H C G with
VH = 0 and induced representation V’, then the norm functor

NY from H-spectra to G-spectra satisfies N7 (uy) V72

UZﬂG/H = Uy

From this we can deduce that ts,, = Uy, NE(Uss, NS (Uzs, ),
where o, denotes the sign representation on Com.

The periodicity
theorem
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The spectrum M

The slice spectral
sequence
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Geometric fixed points
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Our strategy

We have s, = Ugyy NS (Usw, )NS(U2s, ).

The spectrum M

The slice spectral
sequence
§"Ps A Hz
Implications
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We have s, = Ugyy NS (Usw, )NS(U2s, ).

By the Corollary we can make a power of each factor a %

permanent cycle by inverting some Zﬁfm ) for 1 <m<3. Ifwe
make K, too small we will lose the detection property, that is

we will get a spectrum that does not detect the ;. It turns out Our strategy
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Inverting the product D of the norms of all three makes
Usz,, @ permanent cycle.
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Our strategy

Since the inverted element is represented by a map from S™%8,  the spectrum m

the slice spectral sequence for 7..(M) has the usual properties: Tne slce specral
e Itis concentrated in the first and third quadrants and fnf;;a@njz
confined by vanishing lines of slopes 0 and 7. Gonmenic fad points
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[Theproof

dimensions —4 and 0.
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Thus we have an equivariant map 26D~ "MU® — D-TMU®)  seauence

. . . . S"Ps A Hz
and a similar map on the fixed point set. The latter one is implcatons
invertible because u3> restricts to the identity. Geometcfxed points
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[Theproof

Thus we have proved

Periodicity Theorem
Let M = (D~"MU™)% . Then £2%6M is equivalent to M.
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