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Review of our strategy

Our goal is to prove

Main Theorem

The Arf-Kervaire elements θj ∈ π2j+1−2(S0) do not exist for
j ≥ 7.

Our strategy is to find a map S0 → M to a nonconnective
spectrum M with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the
image of each θj is nontrivial. This is the Detection
Theorem discussed by Hopkins here on July 8.

(ii) π−2(M) = 0. This is the Gap Theorem discussed by Hill
here on July 15.

(iii) It is 256-periodic, meaning Σ256M ∼= M. This is the
Periodicity Theorem.
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1.3

Our strategy (continued)

(ii) and (iii) imply that π254(M) = 0.

If θ7 exists, (i) implies it has a nontrivial image in this group, so
it cannot exist.

The argument for θj for larger j is similar, since
|θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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The spectrum M

As explained previously, there is an action of the cyclic group
C8 on the 4-fold smash product MU(4).

It is derived using a
norm induction from the action of C2 on MU by complex
conjugation.

We show that its homotopy fixed point set (MU(4))hC8 and its
actual fixed point set (MU(4))C8 are equivalent. It is an E∞-ring
spectrum, and M is obtained from it by inverting an element
D ∈ π256 which we will identify below.

The homotopy of (MU(4))hC8 can be computed using the
homotopy fixed point spectral sequence, for which

E2 = H∗(C8;π∗(MU(4)))

In this case it concides with the Adams-Novikov spectral
sequence for π∗((MU(4))hC8 ) The algebraic methods described
by Hopkins can be used to show that it detects the θjs. D has
to be chosen so that this is still true after we invert it.
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1.5

The spectrum M (continued)

The homotopy of (MU(4))C8 and M = D−1(MU(4))C8 can be
also computed using the slice spectral sequence described by
Hill. It has the convenient property that π−2 vanishes in the
E2-term. In fact πk vanishes for −4 < k < 0.

This is our main motivation for developing the slice spectral
sequence. We do not know how to show this vanishing using
the other spectral sequence.

In order to identify D we need to study the slice spectral
sequence in more detail.
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1.6

The slice spectral sequence

Recall that for G = C8 we have a slice tower

. . . // Pn+1
G MU(4) // Pn

GMU(4) // Pn−1
G MU(4) // . . .

GPn+1
n+1 MU(4)

OO

GPn
n MU(4)

OO

GPn−1
n−1 MU(4)

OO

in which

• the inverse limit is MU(4),
• the direct limit is contractible and
• GPn

n MU(4) is the fiber of the map Pn
GMU(4) → Pn−1

G MU(4).

GPn
n MU(4) is the nth slice and the decreasing sequence of

subgroups of π∗(MU(4)) is the slice filtration. We also get slice
filtrations of the RO(G)-graded homotopy π?(MU(4)) and the
homotopy groups of fixed point sets π∗((MU(4))H) for each
subgroup H.
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1.7

The slice spectral sequence (continued)
This means the slice filtration leads to a slice spectral
sequence converging to π∗(MU(4)) and its variants.

One variant has the form

Es,t
2 = πG

t−s(GP t
t MU(4)) =⇒ πG

t−s(MU(4)).

Recall that πG
∗ (MU(4)) is by definition π∗((MU(4))G), the

homotopy of the fixed point set.

Slice Theorem

In the slice tower for MU(4), every odd slice is contractible and
P2n

2n = Ŵn ∧ HZ, where HZ is the integer Eilenberg-Mac Lane
spectrum and Ŵn is a certain wedge of the following three
types of finite G-spectra:

• S(n/4)ρ8 , where ρg denotes the regular real representation
of Cg ,

• C8 ∧C4 S(n/2)ρ4 and
• C8 ∧C2 Snρ2 .

The same holds after we invert D, in which case negative
values of n can occur.
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1.8

Slices of the form Smρ8 ∧ HZ

Here is a picture of some slices Smρ8 ∧ HZ.
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1.9

Slices of the form Smρ8 ∧ HZ (continued)

• Note that all elements are in the first and third quadrants
between certain black lines with slopes 0 and orchid lines
with slope 7,

and are concentrated on diagonals where t is
divisible by 8.

• Bullets, circles and diamonds indicate cyclic groups of
order 2, 4 and 8, and boxes indicate copies of the integers.

• A similar picture for Smρ4 ∧ HZ would be confined to the
regions between the black lines and blue lines with slope 3
and concentrated on diagonals where t is divisible by 4.

• A similar picture for Smρ2 ∧ HZ would be confined to the
regions between the black lines and green lines with slope
1 and concentrated on diagonals where t is divisible by 2.
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1.10

Implications for the slice spectral sequence

These calculations imply the following.

• The slice spectral sequence for MU(4) is concentrated in
the first quadrant and confined by the same vanishing
lines.

• Later we will invert elements in πmρ8 (MU(4)). The fact that

S−ρ8 ∧ (C8 ∧H Smρh ) = C8 ∧H S(m−8/h)ρh

means that the resulting slice spectral sequence is
confined to the regions of the first and third quadrants
shown in the picture.
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1.11

Geometric fixed points

In order to proceed further, we need another concept from
equivariant stable homotopy theory.

Unstably a G-space X has a fixed point set,

X G = {x ∈ X : γ(x) = x ∀ γ ∈ G} .

This is the same as F (S0,X+)G, the space of based
equivariant maps S0 → X+, which is the same as the space of
unbased equivariant maps ∗ → X .

The homotopy fixed point set X hG is the space of based
equivariant maps EG+ → X+, where EG is a contractible free
G-space. The equivariant homotopy type of X hG is
independent of the choice of EG.
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1.12

Geometric fixed points (continued)

Both of these definitions have stable analogs, but the fixed
point functor is awkward for two reasons:

• it fails to commute with smash products and
• it fails to commute with infinite suspensions.

The geometric fixed set ΦGX is a convenient substitute that
avoids these difficulties. In order to define it we need the
isotropy separation sequence, which in the case of a finite
cyclic 2-group G is

EC2+ → S0 → ẼC2.

Here EZ/2 is a G-space via the projection G→ Z/2 and S0

has the trivial action, so ẼC2 is also a G-space.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.12

Geometric fixed points (continued)

Both of these definitions have stable analogs, but the fixed
point functor is awkward for two reasons:
• it fails to commute with smash products and

• it fails to commute with infinite suspensions.

The geometric fixed set ΦGX is a convenient substitute that
avoids these difficulties. In order to define it we need the
isotropy separation sequence, which in the case of a finite
cyclic 2-group G is

EC2+ → S0 → ẼC2.
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1.13

Geometric fixed points (continued)

Under this action ECG
2 is empty while for any proper subgroup

H of G, ECH
2 = EC2, which is contractible. For an arbitrary

finite group G it is possible to construct a G-space with the
similar properties.

Definition

For a finite cyclic 2-group G and G-spectrum X, the geometric
fixed point spectrum is

ΦGX = (X ∧ ẼC2)G.
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1.14

Geometric fixed points (continued)

This functor has the following properties:

• For G-spectra X and Y , ΦG(X ∧ Y ) = ΦGX ∧ ΦGY .
• For a G-space X , ΦGΣ∞X = Σ∞(X G).
• A map f : X → Y is a G-equivalence iff ΦH f is an ordinary

equivalence for each subgroup H ⊂ G.

From the suspension property we can deduce that

ΦC8MU(4) = MO,

the unoriented cobordism spectrum.

Geometric Fixed Point Theorem

Let σ denote the sign representation. Then for any G-spectrum
X, π?(ẼC2 ∧ X ) = a−1

σ π?(X ), where aσ : S0 → Sσ is the
element defined in Hill’s lecture.
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X, π?(ẼC2 ∧ X ) = a−1

σ π?(X ), where aσ : S0 → Sσ is the
element defined in Hill’s lecture.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.14

Geometric fixed points (continued)

This functor has the following properties:

• For G-spectra X and Y , ΦG(X ∧ Y ) = ΦGX ∧ ΦGY .
• For a G-space X , ΦGΣ∞X = Σ∞(X G).
• A map f : X → Y is a G-equivalence iff ΦH f is an ordinary

equivalence for each subgroup H ⊂ G.

From the suspension property we can deduce that

ΦC8MU(4) = MO,

the unoriented cobordism spectrum.

Geometric Fixed Point Theorem

Let σ denote the sign representation. Then for any G-spectrum
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1.15

Geometric fixed points (continued)

Recall that π∗(MO) = Z/2[yi : i > 0, i 6= 2k − 1] where |yi | = i .

It is not hard to show that

π∗(MU(4)) = Z[ri , γ(ri ), γ
2(ri ), γ

3(ri ) : i > 0]

where |ri | = 2i , γ is a generator of G and γ4(ri ) = (−1)i ri . In
πiρ8 (MU(4)) we have the element

Nri = riγ(ri )γ
2(ri )γ

3(ri ).

Applying the functor ΦG to the map Nri : Siρ8 → MU(4) gives a
map Si → MO.

Lemma

The generators ri and yi can be chosen so that

ΦGNri =

{
0 for i = 2k − 1
yi otherwise.
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1.16

Some slice differentials

It follows from the above that the slice spectral sequence for
MU(4) has a vanishing line of slope 7.

We will describe the
subring of elements lying on it.

Let fi ∈ πi (MU(4)) be the composite

Si
aiρ8 // Siρ8

Nri // MU(4).

The following facts about fi are easy to prove.

• It appears in the slice spectral sequence in E7i,8i
2 , which is

on the vanishing line.
• The subring of elements on the vanishing line is the

polynomial algebra on the fi .
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1.17

Some slice differentials (continued)

• Under the map

π∗(MU(g/2))→ π∗(ΦGMU(g/2)) = π∗(MO)

we have

fi 7→
{

0 for i = 2k − 1
yi otherwise

• Any differential landing on the vanishing line must have a
target in the ideal (f1, f3, f7, . . . ). A similar statement can be
made after smashing with S2kσ.
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1.18

Some slice differentials (continued)

Recall that for an oriented representation V there is a map
uV : S|V | → ΣV HZ, which lies in πV−|V |(HZ).

Slice Differentials Theorem

In the slice spectral sequence for Σ2kσMU(4) (for k > 0) we
have dr (u2kσ) = 0 for r < 1 + 8(2k − 1), and

d1+8(2k−1)(u2kσ) = a2k

σ f2k−1.

Inverting aσ in the slice spectral sequence will make it
converge to π∗(MO). This means each f2k−1 must be killed by
some power of aσ. The only way this can happen is as
indicated in the theorem.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.18

Some slice differentials (continued)

Recall that for an oriented representation V there is a map
uV : S|V | → ΣV HZ, which lies in πV−|V |(HZ).

Slice Differentials Theorem

In the slice spectral sequence for Σ2kσMU(4) (for k > 0) we
have dr (u2kσ) = 0 for r < 1 + 8(2k − 1), and

d1+8(2k−1)(u2kσ) = a2k

σ f2k−1.

Inverting aσ in the slice spectral sequence will make it
converge to π∗(MO). This means each f2k−1 must be killed by
some power of aσ. The only way this can happen is as
indicated in the theorem.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.18

Some slice differentials (continued)

Recall that for an oriented representation V there is a map
uV : S|V | → ΣV HZ, which lies in πV−|V |(HZ).

Slice Differentials Theorem

In the slice spectral sequence for Σ2kσMU(4) (for k > 0) we
have dr (u2kσ) = 0 for r < 1 + 8(2k − 1), and

d1+8(2k−1)(u2kσ) = a2k

σ f2k−1.

Inverting aσ in the slice spectral sequence will make it
converge to π∗(MO).

This means each f2k−1 must be killed by
some power of aσ. The only way this can happen is as
indicated in the theorem.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.18

Some slice differentials (continued)

Recall that for an oriented representation V there is a map
uV : S|V | → ΣV HZ, which lies in πV−|V |(HZ).

Slice Differentials Theorem

In the slice spectral sequence for Σ2kσMU(4) (for k > 0) we
have dr (u2kσ) = 0 for r < 1 + 8(2k − 1), and

d1+8(2k−1)(u2kσ) = a2k

σ f2k−1.

Inverting aσ in the slice spectral sequence will make it
converge to π∗(MO). This means each f2k−1 must be killed by
some power of aσ.

The only way this can happen is as
indicated in the theorem.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.18

Some slice differentials (continued)
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1.19

Some slice differentials (continued)

Let
∆

(8)

k = Nr2k−1 ∈ π(2k−1)ρ8
(MU(4)).

We want to invert this element and study the resulting slice
spectral sequence. As explained previously, it is confined to the
first and third quadrants with vanishing lines of slopes 0 and 7.

The differential dr on u2k+1σ described in the theorem is the last
one possible since its target, a2k+1

σ f2k+1−1, lies on the vanishing
line. If we can show that this target is killed by an earlier
differential after inverting ∆

(8)

k , then u2k+1σ will be a permanent
cycle.
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In the RO(G)-graded slice spectral sequence for(
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(8)

k

)−1
MU(4), the class u2k

2σ is a permanent cycle.
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The proof of the Periodicity Theorem

The corollary shows that inverting a certain element makes a
power of u2σ a permanent cycle.

We need a similar statement
about a power of u2ρ8 .

We will get this by using the norm property of u, namely that if
V is an oriented representation of a subgroup H ⊂ G with
V H = 0 and induced representation V ′, then the norm functor
Ng

h from H-spectra to G-spectra satisfies Ng
h (uV )u|V |/2

2ρG/H
= uV ′ .

From this we can deduce that u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ),
where σm denotes the sign representation on C2m .
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The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3.

If we
make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj .

It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.

• Inverting the product D of the norms of all three makes
u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.22

The proof of the Periodicity Theorem (continued)

We have u2ρ8 = u8σ3N
8
4 (u4σ2 )N8

2 (u2σ1 ).

By the Corollary we can make a power of each factor a
permanent cycle by inverting some ∆

(2m)

km
for 1 ≤ m ≤ 3. If we

make km too small we will lose the detection property, that is
we will get a spectrum that does not detect the θj . It turns out
that km must be chosen so that 8|2mkm.

• Inverting ∆
(2)

4 makes u32σ1 a permanent cycle.

• Inverting ∆
(4)

2 makes u8σ2 a permanent cycle.

• Inverting ∆
(8)

1 makes u4σ3 a permanent cycle.
• Inverting the product D of the norms of all three makes

u32ρ8 a permanent cycle.



The periodicity
theorem

Mike Hill University of Virginia
Mike Hopkins Harvard University
Doug Ravenel University of Rochester

Our strategy

The spectrum M

The slice spectral
sequence
Smρ8 ∧ HZ

Implications

Geometric fixed points

Some slice differentials

The proof

1.23

The proof of the Periodicity Theorem (continued)

Let
D = ∆

(8)

1 N8
4 (∆

(4)

2 )N8
2 (∆

(2)

4 ).

The we define M̃ = D−1MU(4) and M = M̃C8 .

Since the inverted element is represented by a map from Smρ8 ,
the slice spectral sequence for π∗(M) has the usual properties:
• It is concentrated in the first and third quadrants and

confined by vanishing lines of slopes 0 and 7.
• It has the gap property, i.e., no homotopy between

dimensions −4 and 0.
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The proof of the Periodicity Theorem (continued)

Preperiodicity Theorem

Let ∆
(8)
1 = u2ρ8 (∆

(8)

1 )2 ∈ E16,0
2 (D−1MU(4)). Then (∆

(8)
1 )16 is a

permanent cycle.

To prove this, note that (∆
(8)
1 )16 = u32ρ8

(
∆

(8)

1

)32
. Both u32ρ8

and ∆
(8)

1 are permanent cycles, so (∆
(8)
1 )16 is also one.

Thus we have an equivariant map Σ256D−1MU(4) → D−1MU(4)

and a similar map on the fixed point set. The latter one is
invertible because u32

2ρ8
restricts to the identity.

Thus we have proved

Periodicity Theorem

Let M = (D−1MU(4))C8 . Then Σ256M is equivalent to M.
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