
A solution to the Arf-Kervaire invariant problem

Mike Hill and Doug Ravenel

(joint work with Mike Hopkins)

For more information on this topic, including links to our preprint and detailed
notes for our talks, we refer the reader to the second author’s website

http://www.math.rochester.edu/u/faculty/doug/kervaire.html

We gave a series of four lectures, the first by the second author and the rest by
the first author. The latter was followed by a 2 hour question and answer session.

The problem in question is nearly 50 years old and began with Kervaire’s pa-
per [Ker60] of 1960 in which he defined a Z/2-valued invariant φ(M) on certain
manifolds M of dimension 4m + 2. He showed that for m = 2 and M aclosed
smooth manifolds, it must vanish. He also constructed a topological 10-manifold
M on which it is nontrivial. This was one of the earliest examples of a nonsmooth-
able manifold. Milnor’s paper on exotic 7-spheres [Mil56] had appeared four years
earlier. In their subsequent joint work [KM63] they gave a complete classification
of exotic spheres in dimensions ≥ 5 in terms of the stable homotopy groups of
spheres, modulo a question about manifolds which they left unanswered:

For whichm is there a smooth framed manifold of dimension 4m+2
with nontrivial Kervaire invariant?

Such manifolds were known to exist for m = 0, 1 and 3, and Kervaire had
shown there are none for m = 2. A pivotal step in answering the question was the
following result of Browder [Bro69] published in 1969.

Browder’s Theorem. The Kervaire invariant φ(M) of a smooth framed manifold
M of dimension 4m + 2 is trivial unless m = 2j−1 − 1 for some j > 0. In that
case such an M with φ(M) 6= 0 exists if and only if the element h2j in the Adams
spectral sequence is a permanent cycle.

The Adams spectral sequence referred to in the theorem was first introduced
in [Ada58], and we refer the reader to [Rav04] for more information. The rela-
tion between framed manifolds and stable homotopy groups of spheres had been
established decades earlier by Pontryagin.

This result raised the stakes considerably and brought the problem into the
realm of stable homotopy thoery. The name θj was given to the hypothetical
element in the stable homotopy group π2j+1−2(S0) representing the permanent
cycle h2j . It was known to exist for j = 1, 2 and 3. In the next few years its
existence was established for j = 4 ([BMT70] and [Jon78]) and j = 5 [BJM84].
It was widely believed that such framed manifolds existed for all values of j. In
the ensuing decade there were many unsuccessful (and unpublished) attempts to
construct them. We now know that they were trying to prove the wrong theorem.

In [Mah67] Mahowald described a beautiful pattern in the unstable homotopy
groups of spheres based on the assumption that the θj exist for all j. It was
so compelling that the possibility that they did not all exist was later called the
Doomsday Hypothesis. After 1985 the problem faded into the background
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because it was thought to be inaccessible. In early 2009 Snaith published a book
[Sna09] on it “to stem the tide of oblivion.”

Soon after we announced the following.

Main Theorem. The element θj ∈ π2j+1−2(S0) (representing h2j in the Adams
spectral sequence and corresponding to a framed manifold in the same dimension
with nontrivial Kervaire invariant) does not exist for j ≥ 7.

Our proof relies heavily on equivariant stable homotopy theory and complex
cobordism theory. Neither was available in the 1970s. Here is our strategy.

We construct a nonconnective ring spectrum Ω with the following properties:

(i) Detection Theorem. If θj exists, its composition with the unit map
S0 → Ω is nontrivial.

(ii) Periodicity Theorem. πkΩ depends only on k modulo 256.
(iii) Gap Theorem. π−2Ω = 0.

Note that (ii) and (iii) imply that π254Ω = 0, and 254 is the dimension of θ7.
But (i) says that if θ7 exists it has nontrivial image in this group, so it cannot
exist. The argument for larger j is similar.

Our spectrum Ω is the fixed point set of a C8-equivariant spectrum Ω̃, i.e.,
Ω = Ω̃C8 . We will describe Ω̃ below. It also has a homotopy fixed point Ω̃hC8 . We
show that it has properties (i) and (ii), while the actual fixed point set satisfies
(iii). Thus we need a fourth result,

(iv) Fixed Point Theorem. The map Ω̃C8 → Ω̃hC8 is an equivalence.

The starting point for constructing Ω̃ is the observation, originally due to
Landweber [Lan68], that the complex cobordism spectrumMU has a C2-equivariant
structure defined in terms of complex conjugation. Recall that MU is defined in
terms of Thom spaces of certain complex vector bundles over complex Grassman-
nians. Complex conjugation acts on everything in sight and commutes with the
relevant structure maps. The resulting equivariant spectrum is known as real
cobordism theory and is denoted by MUR.

Next there is a formal construction which we call the norm for inducing up
from an H-equivariant spectrum X to form a G-equivariant spectrum NG

HX for
any finite group G containing H. The underlying spectrum (meaning the one we
get by forgetting the equivariant structure) of NG

HX is the |G/H|-fold smash power
of X. G then acts by permuting the factors, each of which is invariant under H.
The case of interest to us is H = C2, X = MUR and G = C8. The underlying
spectrum of NG

HMUR is MU (4), the 4-fold smash power of MU .
Let V be a real representation of G and let SV be its one point compactification.

For a G-equivariant space or spectrum X we denote the group of equivariant maps
from SV to X by πGVX. In this way a G-equivariant spectrum X has homotopy
groups indexed by RO(G), the real representation ring of G. These are denoted
collectively by πG? X.

We can now describe our C8-equivariant spectrum Ω̃. We choose a certain

element D ∈ πC8
19ρMU

(4)
R , where ρ denotes the real regular representation of C8.
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There are many choices of D that would lead to Periodicity (possible with periods
other than 256) and Gap Theorems. Ours is the simplest one that also gives the

Detection Threorem. Since MU
(4)
R is a ring spectrum, we get a map

MU
(4)
R

D // Σ−19ρMU
(4)
R .

This can be iterated, and we define Ω̃ to be the resulting telescope,

Ω̃ = D−1MU
(4)
R .
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