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LOCALIZATION WITH RESPECT TO CERTAIN PERIODIC 
HOMOLOGY THEORIES 

By DOUGLAS C. RAVENEL* 

This paper represents an attempt, only partially successful, to get at 
what appear to be some deep and hitherto unexamined properties of the 
stable homotopy category. This work was motivated by the discovery of the 
pervasive manifestation of various types of periodicity in the E2-term of the 
Adams-Novikov spectral sequence converging to the stable homotopy 
groups of spheres. In section 3 of [34] and section 8 of [41], we introduced 
the chromatic spectral sequence, which converges to the above E2-term. 
Unlike most spectral sequences, its input is in some sense more interesting 
than its output, as the former displays many appealing patterns which are 
somewhat hidden in the latter (see section 8 of [41] for a more detailed 
discussion). It is not so much a computational aid (although it has been 
used [34] for computing the Novikov 2-line) as a conceptual tool for under- 
standing certain qualitative aspects of the Novikov E2-term. 

Since the Novikov E2-term is a reasonably good approximation to sta- 
ble homotopy itself, one is led to hope that the periodicity in it displayed by 
the chromatic spectral sequence is more than just an artifice of the algebra 
of complex cobordism. Hopefully, there is some sort of geometric periodic- 
ity behind the algebraic periodicity of the chromatic El -term. More specif- 
ically, we conjecture (5.8) that certain short exact sequences of BP*BP- 
comodules (5.6) used to construct the chromatic spectral sequence can be 
realized by cofibrations (5.7) and that the spectra involved enjoy a similar 
sort of periodicity (5.9). 

In attempting to prove this conjecture, we soon became aware of 
Bousfield's work on localization with respect to generalized homology, the 
relevant portions of which are described in section 1. For each generalized 
homology theory E*, Bousfield [10] defines an idempotent functor LE on 
the stable homotopy category whose image is equivalent to the category of 
fractions defined by Adams in section III 14 of [4]. If both X and E (the 
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352 DOUGLAS C. RAVENEL 

spectrum representing the homology theory E*) are connective spectra, 
then LEX is simply the appropriate arithmetic localization or completion 
of X (1.12), but if either X or E fail to be connective, then LEX is much 
harder to predict. For example if E = K, the spectrum representing com- 
plex K-theory, then LKS0, which is described in section 8, is not connective 
and I-2LKS0 - Q/Z. 

In [11] Bousfield defines an equivalence relation on spectra byE ? F 
if LE = LF (1.19). We call the resulting equivalence class <E > the Bous- 
field class of E. The set A of all such classes is partially ordered (1.20) and 
has wedge and smash product operations. It has a subset BA which is a 
Boolean algebra (1.21), whose structure we conjecture in 10.8. 

In section 2 we study the Bousfield classes of various spectra associ- 
ated with BP including K(n), the spectra for the nth Morava K-theory, and 
certain spectra E(n) with <E(n)> = (vn 1BP>. In particular we show 
<E(n)> = v <=0 (K(i)>. Localization with respect to E(n) is a natural tool 
for getting at the periodicity referred to above. E(O) is the rational Eilen- 
berg-MacLane spectrum and E(1) is one of p - 1 isomorphic summands 
of complex K-theory localized at the prime p. For n 2 2, the spectra E(n) 
represent periodic homology theories which at present have no known geo- 
metric interpretation comparable to the description of K-theory in terms of 
vector bundles. 

In section 3 we construct some Thom spectra X,] for n - 0 with X0 = 

(p) and nX1 > > (X+l> and <Xn> > <BP> for all n. 
In section 4 we define a spectrum to be harmonic if it is local with 

respect toE = Vn>0 K(n). Harmonic spectra include all finite spectra (4.5) 
and all connective spectra with torsion free homology (4.6). If, on the other 
hand, X is E*-acyclic we say that X is dissonant. An example of such a 
spectrum is H/(p), the mod (p) Eilenberg-MacLane spectrum (4.7). It fol- 
lows from the definitions that there are no nontrivial maps from a disso- 
nant spectrum to a harmonic spectrum (4.9) and this fact leads to easy 
proofs that BP*H/(p) = 0 (4.10), that there are no nontrivial maps from 
H/(p) to a finite spectrum (4.11) and that each finite spectrum has infi- 
nitely many nontrivial homotopy groups (4.12). The last of these was 
proved earlier by Joel Cohen using entirely different methods. These three 
results were entirely unexpected side effects of our investigation. 

In section 5 we derive the elementary properties of the localization 
functors with respect toE(n), which we denote byLn . In particular we find 
natural transformations Ln -_ Ln1 . We conjecture (5.9) that the fibres of 
these maps are in a certain sense periodic. 
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In section 6, we describe LnBP and related spectra for all n. 
In sections 7-9, we discuss the functor L 1, which is the same thing as 

localization with respect to K-theory at a prime p. In section 7, which is 
purely algebraic, we show that for p odd the category of torsion E(1)* E(1)- 
comodules (or K*K-comodules) is equivalent to a certain category of mod- 
ules over the ring A = Zp [[t]]. These modules have been studied in a dif- 
ferent context by Iwasawa. In section 8, we show that L1X X A L1SO 
(8.4), BP A L1X = X A L1BP (8.6) and we compute 7r*L1S0 (8.13 and 
8.18). In section 9, we describe L1RP' (9.1) and L BP' (9.2). 

In section 10 we give some conjectures concerning these topics. These 
include various nilpotence statements (10.1) inspired by Nishida's theorem 
[39], the existence of finite spectra realizing certain cyclic BP*-modules 
(10.2), a description of the Bousfield class of any finite spectrum (10.4 and 
10.5) and the structure of Bousfield's Boolean algebra of spectra BA 
(10.8). Known special cases of these conjectures (10.9 and 10.10) are also 
given. 

Throughout, we will be working in Boardman's stable homotopy cate- 
gory [48] and the reader should be warned that nearly all of the spectra we 
shall consider are nonconnective. 

This paper supersedes a preprint of the same title which I had 
planned to publish along with [41] in the proceedings of the 1977 Evanston 
conference. I withdrew the manuscript when some serious errors were 
found in it by Zen-ichi Yosimura and others. In particular I claimed to 
prove that E(n) is a retract of v7 1BP, which I now believe to be false. It is 
likely that such a splitting of v -7'BP exists only after a suitable completion. 
An analogous splitting of a completion of B(n) into a wedge of suspensions 
of K(n) has been established by Wurgler [50], along with the result that 
B(n) itself does not so split. 

Bousfield's work [11] did not exist then and has since provided a con- 
venient language for expressing many of the ideas here, e.g. the results of 
section 2. The results of section 3 are new as is most of section 10. I am 
grateful to Z. Yosimura, D. C. Johnson, H. R. Miller, P. S. Landweber, 
and J. F. Adams for many helpful conversations. In particular I am in- 
debted to Yosimura for the present definition of harmonic spectra and to 
Landweber for the proof of 6.1. I apologize to all interested parties for my 
delay in publishing this paper. 

The ten sections of the paper are as follows. 
1. Some results of Bousfield on localization in the stable homotopy 

category. 
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2. The structure of <BP>. 
3. Some Bousfield classes larger than <BP>. 
4. Harmonic spectra. 
5. The chromatic filtration. 
6. The E(n)*-localization of BP. 
7. Torsion E(M)*E(1)-comodule. 
8. Localization with respect to K-theory. 
9. L 1RP' and L 1 CP. 

10. Some conjectures. 

1. Some results of Bousfield on localization in the stable homotopy 
category. Let E* be a generalized homology theory. 

1.1. Definition. A spectrum X is E* -acyclic if E*X = 0. 

1.2. Definition. A map f: X -- Y is an E*-equivalence if it induces 
an isomorphism in E*-homology. 

1.3. Definition. A spectrum Y is E*-local if for each E*-acyclic 
spectrum X, [X, Y] = 0. 

1.4. Definition. An E*-localization functor LE is a covariant func- 
tor from S, the stable homotopy category, to itself along with a natural 
transformation - from the identify functor to LE such that tx: X -+ LEX is 
the terminal E*-equivalence (i.e., map inducing an isomorphism in E* (*)) 
fromX, i.e. 

(i) 71X X -+ LEX is an E-equivalence, and 
(ii) for any E*-equivalence f: X -k Y there is a unique r: Y -- LEX 

such that rf = 77x. 

The following elementary results are left to the reader. 

1.5. PROPOSITION. If the functor LE exists, 

(i) it is unique, 
(ii) it is idempotent, i.e. LELE = LE, and 

(iii) for any map g: X Ywhere Yis E*-local, there is a unique map 
g: LEX- Y such that #qx f.D 

1.6. PROPOSITION. If LE exists and W -+ X -+ Y is a cofibre se- 

quence, so is LE W -- LEX -+ LE Y. 

1.7. PROPOSITION. The homotopy inverse limit (see [12] Chapter 
XI or [4] p. 325) of E*-local spectra is E*-local. C 
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1.8. PROPOSITION. Let El and E* be generalized homology theo- 
ries such that El*X = 0 implies E 2X = 0. Then if a spectrum Y is 
E2*-local it is E*-local. In particular, if E*X = 0 iffE*X = 0, then the 
functors LE1 and LE2 are the same. C] 

1.9. Example. The direct limit of E*-local spectra need not be lo- 
cal. Let M(p) denote the mod p Moore spectrum, where p is a prime num- 
ber. In [1] Adams constructs a map ae: M(p) -* E-qM(p) (where q = 8 
for p = 2 and q = 2p - 2 for p > 2) which is a K* -equivalence, K* being 
the homology theory associated with complex K-theory. Let X = lim 
E -qiM(p) and let H* denote ordinary homology with integer coefficients. 
Then clearly H*X = 0 since H* commutes with direct limits. We will see 
below (1.12), that every connective spectrum is H* -local. On the other 
hand, X is H*-local only if it is contractible, but K*X * 0, so it is not. 

1.10. Example. Despite 1.7, LE need not commute with inverse 
limits. Let {Xi } be the Postnikov tower for M(p), so M(p) = lim Xi and 
each Xi has only finitely many nontrivial homotopy groups, each of which 
are finite. Let H/(p) denote the mod (p) Eilenberg-MacLane spectrum. 
From [6] we know K*H/(p) = 0, so K*Xi = 0 for each i. Hence LKXi 

(whose existence is given by 1.11) and lim LKXi are contractible, but 
LKM(P) is not since K*M(p) * 0. 

Now we come to Bousfield's main result. An unstable form of this 
theorem appeared in [9]. 

1.11. LOCALIZATION THEOREM (Bousfield [10]). For every general- 
ized homology theory E*, there is a localization functor LE: S -* S (1.2), 
where S is the stable homotopy category. Lii 

Examples 1.9 and 1.10 indicate that LEX is somewhat unpredictable 
if either X or E fail to be connective. However, if both E and X are connec- 
tive, then LEX is easily described. 

Let J be a set of primes, finite or infinite. Let Z(J) denote the subring 
of Q in which a prime p is invertible iff p 0 J, and let ZJ = HPj ZP, where 
Zp denotes the p-adic integers. Let X(j) = X A M(Z(J)), where M(Z(J)) 
is the Moore spectrum for the group Z(J), and XJ = HP'J XP where XA 

denotes the p-adic completion of X, i.e. XA = lim n X A M(Z/pn). Then 
Bousfield has shown 

1.12. THEOREM [10]. Let E* be a connective homology theory and 
X a connective spectrum. Let J be complementary to the set of primes p 
such that Ei is uniquely p-divisible for each i. Then LEX = if each 
element of E* has finite order, and LEX = X(J) otherwise. C] 
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Next we need to consider the E*-Adams spectral sequence. Let E be a 
ring spectrum, not necessarily connective. Consider the Adams tower X = 

DOX +- D1X +- D2S _ *- where D+1 X is the fibre of DnX -*E A D,X. 
Let KnX be the cofibre of DnX X and consider the associated tower 

pt = K0X K1X K2X * ' . 

1.13. Definition. The E-nilpotent completion of X, EAX, is 

lim K X. 

1.14. Definition. The E*-Adams spectral sequence for X {ES'tX } is 

the spectral sequence associated with the homotopy exact couple 

D*+,X -+D*X -+E A D*X. 

1.15. THEOREM [10]. If for each s, t there is a finite r such that 

ES tX = Es,otX, then the Adams spectral sequence 1.14 converges to 

7r*EAX, i.e. the terms {E s+iX }sO ,are the quotients of a complete Haus- 

dorff filtration of iriEAX. C 

1.16. Example. If X is connective and E = HFp, the mod p 
Eilenberg-MacLane spectrum, EAX = XA and 1.12 is the classical mod p p 

Adams spectral sequence. If E = MU or E = BP, then EAX = X 

or EAX = X(p) respectively, and 1.14 gives the Adams-Novikov spectral 

sequence [41]. 
If X or E fail to be connective, then 1.15 converts what is usually 

called a convergence question to the problem of describing EAX. The fol- 
lowing result gives some information about EAX. 

1.17. PROPOSITION. 

(a) If E is a ring spectrum, then any E-module spectrum M (e.g. 

E A X for any X) is E*-local. 
(b) If E is a ring spectrum, EAX is E*-local. 

Proof. (a) Let W be a spectrum which is E*-acyclic, i.e. 

E A W = pt. By definition 1.3, M isE*-local if [W, MI = 0. For any map 
W -- M we have a commutative diagram 

W - w- M 

pt =EA W -E AM 

so the map is trivial. 



LOCALIZATION 357 

(b) By 1.7, it suffices to show K,X is E*-local, which we do by induc- 
tion on n. Since KOX = pt, we can start the induction. The fibre of 

Kn1X -+lx KnX is E A DnX which is E*-local by (a), so Kn+lX is E*-local 
by 1.6. DG 

Unfortunately, 1.7(b) does not imply that EAX = LEX even though 
EAX is E*-local. We do not know that the map X -- EAX is an E*-equiva- 
lence because in general, we cannot compute E*EAX since smash prod- 
ucts (and hence generalized homology) need not commute with homotopy 
inverse limits. Nor does one know that EAEAX = EAX in general. 

However Bousfield has shown that under certain conditions, the 
above equalities hold. 

1.18. THEOREM [10]. Let E be a ring spectrum such that 7r*E is 
countable and such that for some rO and so c oo, ES*, X vanishes for all 
r 2 ro, s 2 so and all finite complexes X. Then for any spectrum X, 
EAX = X A EAS = LEX, EAX = EAEAX, and the Adams spectral 
sequence converges to 7W*LEX. DG 

The following definitions are due to Bousfield [11]. 

1.19. Definition. For a spectrum E, <E> denotes the equivalence 
class of E under the following equivalence relation. E - G if for any spec- 
trum X, E*X = 0 X G*X = 0. Equivalently, E - G if a map is an E*- 
equivalence (1.2) iff it is a G*-equivalence. We will refer to <E> as the 
Bousfield class of E. 

1.20. Definition. <E> c <G> if each G*-acyclic (1.1) spectrum is 
E*-acyclic. <E> < <G> if <E> c <G> and <E> * <G>. <E> v <G> = 
<E v G> and <E> A <G > = <E A G >. (We leave it to the reader to verify 
that these classes are well defined.) A class <E> has a complement <E> c if 
<E> A <E>c = (> and <E> v <E>c = <S>, where S is the sphere spec- 
trum and <0> is the class of a point. 

1.21. Definition. A is the class of all classes <E>, DL C A the sub- 
class consisting of classes satisfying <E> A <E> = <E>, and BA C DL is 
the subclass of classes having complements. 

DL is a distributive lattice and BA is a Boolean algebra. Bousfield [11] 
shows that both of the above inclusions are proper. If E is any wedge of 
ring spectra and finite spectra then <E> E DL. In [11] Bousfield defines a 
subalgebra MBA C BA consisting of classes represented by Moore spectra 
and shows that any wedge of finite spectra represents a class in BA. In [10] 
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he shows that K > E BA, where K is the spectrum representing complex K- 
theory. In section 10 we will discuss some possible generalizations of this 
fact. 

1.22. PROPOSITION. If <E> <G> thenLE = LG, and conversely. 
If (E> c (G> then LELG = LE and there is a natural transformation 

LG --LE. D 

1.23. PROPOSITION. If W -k X -+ Y -+ E Wis a cofibre sequence, 
then each of the three Bousfield classes <W>, <X>, and <Y> is c the 
wedge of the other two. O 

1.24. PROPOSITION. If E is a ring spectrum and M a module spec- 
trum over E, then <E> > <M>. 

Proof. By definition the composite M -- E A M -- M is the identity, 
where the first map is induced by the unit in E. Hence M is a retract of 
E A M, so <M> < <E A M> - <E>. D 

1.25. PROPOSITION. Let E be any spectrum and T = LES. Then T 
is a commutative ring spectrum. 

Proof. T A T is E*-equivalent to S so localization gives a multiplica- 

tion T A T -+ LE(T A T) = LES = T. The unit S T is given by localiza- 
tion on S. The commutativity of T follows from that of S. O 

1.26. Example. Let E = S/(p), the mod p Moore spectrum for a 
prime p. Then T = SZP, the p-adic completion of the sphere (see section 2 
of [10]) and TA T * TsinceZp Zp Z Zp. Also we have (T> (SZ(p)> 
so LTS * T. On the other hand if E = SZ(P) then T A T = T and 

LTS = T. 

1.27. PROPOSITION. For E and T as in 1.25, the following are 
equivalent. 

(a) (E> = (T>, 
(b) X -X A T is an E-localization (in particular T - T A T is an 

equivalence), 
(c) every direct limit of E*-local spectra is E*-local, and 
(d) LE commutes with direct limits. 

Proof. First we show (a) X (b). Since T is a ring spectrum (1.25), 
X A T is T*-local (1.17). If <E> = <T>, X A T is thereforeE*-local and in 
any event is E*-equivalent to X, so LEX = X A T. Conversely if X A T = 
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LEX and T = T A T, then the T*-local spectrum X A T is T*-equivalent to 
X, so X A T = LTX and < T> = <E> (1.22). 

We complete the proof by showing (b) > (c) > (d) > (b). For 
(b) > (c), let {Xi } be a directed system of E*-local spectra. Then 
LE limXi = (limXi) A T = lim(Xi A T) = limXi so limXi isE*-local. For 
(c) > (d), let {Xi } be any directed system. Then LE lim Xi = 
(limXi) A T = lim(Xi A T) = lim LEXi . For (d) > (b) any spectrum X is 
the direct limit of its finite subspectra Xi. For Xi finite Xi A T is E*-local 
and E*-equivalent to Xi so LEXi = Xi A T. Then we have LEX = 
LE lim Xi = lim LEXi = lim(Xi A T) = (lim Xi) A T = X A T. DG 

1.28. Definition. A spectrum E is smashing if it satisfies the condi- 
tions of 1.27. 

1.29. PROPOSITION. If E is a ring spectrum for which the multipli- 
cation E A E -- E is an equivalence then E is smashing. 

Proof. Since E is a ring spectrum X A E is E*-local (1.17) and since 
E A E = E, X A E is E*-equivalent to X, so X A E = LEX. DG 

1.30. PROPOSITION. If spectra F and G are smashing, so is F A G. 

Proof. LetU=LFSandV=LGS.Then<FAG> = <UAV>. 
U A V is a ring spectrum and hence is U A V*-local (1.17). F A G A U A 
V = F A G, so U A V is F A G*-equivalent to S. Hence U A V = LFAGS 
and F A G satisfies 1.27(a). DG 

1.31. PROPOSITION. If E is smashing then <E> E BA. 

Proof. Let CES be the fibre in CES -- S -- LES = T. By 1.23 we 
have (S> = <CES> V <T>. CES is E*-acyclic and therefore T*-acyclic so 
<CES> A <T> =<O> and <CES> = <E>C. a 

From 1.26 we see that S/(p) is a counterexample to the converse of 
1.31. 

Now let B be a wedge (possibly infinite) of finite spectra. Combining 
2.9 of [11] and 3.5 of [10] we get 

1.32. PROPOSITION. LetB be as above. Then <B> e BA (1.21). Let 
<E> = <B > c. Then E is smashing (1.28). D 

The following conjecture is equivalent to one due to Bousfield. 

1.33. Conjecture ([10], 3.4). A spectrum E is smashing iff <E> = 
<B>C with B as in 1.32. 
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The following result about telescopes will be useful. 

1.34. LEMMA. Let X be a spectrum, g: 2dX -- X a map with co- 
fibre Y, and X = lim E idX. Then <X> = (X> V <Y>. 

gA 

Proof. Let C be the cofibre of X X. We will show below that 
<C> = (Y>. 1.23 implies < Y> c <X> and <X> < <X> V <C> . The con- 
struction of X guarantees <X> ' <X>. Combining these facts gives 

<X>v <y> <X> <X>v <y>. 

To show <C> = < Y> let Ci be the cofibre of g1: X -- E2-idX. Then 
C1 = -d y and there is a cofibre sequence C1 -_ C, + E-dC_1. Using 
1.23 and induction on i we get <Ci > c < Y> for all i. Since C = lim Ci this 
gives <C> c <Y>. Letting i go to oo in the above cofibre sequence gives 
C1 -_ C E"-dC, so < Y> c <C> and the result follows. DG 

2. The structure of <BP>. In this section we will discuss the Bous- 
field class of the Brown-Peterson spectrum BP and various related spectra. 
The basic properties of BP are given in Part II of [4] and in section 3 of 
[41]. The related spectra we will discuss are described by Johnson-Wilson 
in [21] and [22]. Recall that for each prime number p there is a spectrum 
BP with 7r*BP = Z(p)[vl, v2 * *] with dim vn = 2(pn - 1). We denote 
this ring by BP*. For each n 2 0 there are BP-module spectra BP<n >, 
P(n) and k(n) with 7r*BP<n> = BP*/(vn+l, Vn+2, ... ), -r*P(n) = 

BP* /(p, v1, ... Vn-1) and ir*k(n) = BP*/(p, V1, ... Vn-1 , Vn+1 9 

vn+2 ...). In particular, P(0) = BP, and k(O) = BP<O> = H(p), the 
Eilenberg-MacLane spectrum for Z(p) , the integers localized at p. H/(p) 
will denote the mod (p) Eilenberg-MacLane spectrum. If E is BP<n >, P(n) 
or k(n), there is a map E2(p -')E E which induces multiplication by vn 
in ir* (where v0 is understood to be p) and we can form v,,1E = 
lim F-2i(p' 1)E, denoted respectively by E(n), B(n) and K(n). E(O) = 
K(0) = HQ the rational Eilenberg-MacLane spectrum. BP< 1>, and E(1), 
are summands of the connective and periodic complex K-theory localized 
at p, while k(l) and K(1) are the analogous mod (p) spectra. 

We also denote liM- F-2i(pn l)BP by v-1BP. If J = (q0, ql, 
... qn-1) E BP* is an invariant regular ideal, BPJ will denote the BP- 
module spectrum with 7r*BPJ = BP* /J (see Johnson-Yosimura [23]). 

Most of these spectra have multiplications; we will discuss this point 
at the end of the section. 
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The main results of this section are the following two theorems. 

2.1. THEOREM. With notation as above, 

(a) (Johnson-Wilson [22]) <B(n)> = <K(n)>, 
(b) (Johnson-Yosimura [23]) <V-1BP> ( <E(n)>, 
(c) <P(n)> = <K(n)> V <P(n + 1)>, 
(d) <E(n) > = V < (K(i)>, 
(e) <k(n)> = <K(n)> V <H/(p)>, 
(f) <BP<n>> = <E(n)> V <H/(p>>, 
(g) if Jhas n generators then <BPJ> = <P(n)>, 
(h) for <E> = <H/(p)> or <K(n)> and any <X>, <E> A <X> = (E> 

or <0>, and 
(i) <K(m) > A (K(n) > = ( > for m * n and <K(n) > A <H/(p)> = 

(0>. D 

2.2. THEOREM. Let E = Vj>0 K(i) or H/(p). Then <E> has no 
complement in <BP >, i. e. there is no Bousfield class < G > such that <E > A 

<G> = <0> and <E> V <G> = <BP>. Consequently, <E> 0 BA. DG 

After proving these results we will discuss some classes < G > ' <BP> 
with <G> A Vj>0<K(i)> = (0>. 

Proof of 2.1. For (a) we use Lemma 3.5 of [22] which gives a natural 
isomorphism 

B(n)*X 07r*B(n) 7r*K(n) K(n)*X 

for all finiteX, and the fact that a ir*K(n)-basis of K(n)*X pulls back to a 
-r*B(n)-basis of B(n)*X, which is a free module. 

Any spectrum X is a direct limit of finite spectra X,a. Since homology 
and tensor products commute with direct limits we can deduce that 
K(n)*X = 0 if B(n)*X = 0, so <B(n)> 2 <K(n)>. 

For the reverse inequality suppose K(n)*X = 0. Then for each oa 
there is a 3 with X, C Xo such that K(n)*Xag has trivial image in 

K(n)*Xo. If F. is the fibre of the inclusion map then the map 

K(n)*Fc,o -+ K(n)*Xc, is surjective. The above lemma implies the same for 
the map in B(n)-homology, so B(n)*X, maps trivially to B(n)*Xfl and 
B(n)*X = lim B(n)*X, = 0. 

(a) implies that (c) is equivalent to <P(n)> = <B(n)> V <P(n + 1)>, 
which follows from 1.34. 
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For (d) first we have <E(n)> E DL by 2.16. Then we iterate (c) to get 
<BP> = <P(O)> = V=0 <K(i)> V <P(n + 1)>. Since <E(n)> = <vn1BP> 
and ?' 1BP = lim- F-2i(pn-l)BP, we have <E(n)> < v7o0 <K(i)> V 

<P(n + 1))>. We will show below (2.3) that E(n) A P(n + 1) = pt., which 
implies <E(n)> V =7 <K(i)>. For the opposite inequality, Theorem 0.1 
of [23] implies that <E(n)> 2 <E(i)> for 0 c i c n. Since B(n) can be 
obtained from v7 1BP (or K(n) from E(n)) by a finite sequence of cofibra- 
tions, <E(i) > <K(i)>, so <E(n)> 2 Vo=0 <K(i)> and (d) follows. 

For (e) we have a cofibre sequence 2(pn --+ k(n) -+ H/(p) with 
K(n) = lim- -2i(Pn l)k(n) so 1.34 gives the result. 

(fvn 2(nVi For (f) we have a cofibre sequence -2(P"1) BPn> - BP(n> 
BP<n - 1> with E(n) = liM- _-2i(pn-1) BP<n>, so 1.34 gives vfl 

<BP<n? = <E(n)> v <BP<n - 1>>. Iterating this and using (d) gives 
<BP<n > > <E(n)> V <BP<-1 > > where BP<-1 > = H/(p). 

To prove (g), let Jk (0 C k ' n) be the ideal obtained from J by re- 
placing qi by vi for i < k (where vo is understood to be p). We will show 
below (2.4) that each Jk is invariant regular and that in it qk can be re- 
placed by v' for some m > 0. Then we have Jo = J and BPJn = P(n) and 
we will show <BPJk > = <BPJk+l > for each k. We have a cofiber sequence 

r 2pk- 1 Bj~Vk 1k 
S 2(pk-l) BPJ,k -BPJk BPJk+ 1 

where Jk is obtained from Jk by replacing vW by vW1 (we ignore the case 
m = 1 because then Jk = Jk+l); Jk is invariant by 2.4 below. We can 
assume by induction on m that <BPJk > = <BPJk+l >, so 1.23 gives 
<BPJk > < <BPJk+l >. For the opposite inequality, Proposition 5.5 of [23] 
give multiplications with unit on BPJk and BPJk+l. Hence we get maps 

S0 A BPJk+ 1-- BPJk A BPJk+ 1-- BPJk+ 1 A BPJk+ 1-- BPJk+ 1 

whose composite is the identity, showing that BPJk+ 1 is a retract of BPJk A 

BPJk+l, so <BPJk+l > ' <BPJk >. 
To prove (h) we show that for any X, E A X is a wedge of suspensions 

of E, where E = K(n) or H/(p). E is known to be a ring spectrum [49] 
(albeit a noncommutative one for p = 2) and ir* (E) is a graded field in the 
sense that every graded module over it is free. E A X is an E-module spec- 
trum so 7r*E A X = E*X is a free wr*E-module. Choose a -r*E-basis for 
7r*E A X and let W -- E A X be the corresponding map from a wedge of 
spheres. Then the composite 
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EA W- E A EA X -EA X 

is an equivalence. 
For the first part of (i) we can assume m > n. Using (c) we have 

(K(m)> c <P(m)> < <P(n + 1)>, and by (d) <K(n)> < <v 1BP>, so the 
result follows from 2.3 below. For the second assertion we have H/(p) = 

lim P(m) so P(n + 1)*X = 0 =* H*(X; X/(p) = 0 so <P(n + 1)> > 
<H/(p)> and the above argument applies. DG 

2.3. LEMMA. vn 1BP A P(n + 1) = pt. 

Proof. In wr*P(n) A BP = BP*BP/In, the maps induced by vn A 1 
and 1 A vn are the same since XL(vn ) = 7R (vn)mod (vo .. ., vn - 1). Conse- 
quently the map vn A 1 on P(n) A vn 1BP is an equivalence, so its cofibre 
P(n + 1) A v7 1BP is contractible. El 

2.4. LEMMA. Let Jk be as in the proof of 2. 1(g). Then Jkis an invar- 
iant regular ideal in which qk can be replaced by some power of Vk. 

Proof. According to Landweber [27] Proposition 2.5, an invariant 
regular ideal with k generators is primary with radical Ik = 

(v0, ..., Vk1). Since Ik D (q0, * ... qk-), Jk is invariant since J is. By 
Proposition 2.11 of Landweber [25] the only elements which are invariant 
modulo Ik are polynomials in Vk, so we can replace qk by some power of Vk . 
For the regularity of Jk we use Proposition 2.7 of [27], which says that any 
invariant ideal with n generators having radical In is regular; Jk clearly 
satisfies these conditions. 

Our main tool for proving 2.2 (and for constructing most counter- 
examples in this theory) is Brown-Comenetz duality [14]. Their main result 
is the following. 

2.5. THEOREM [14]. Let Y be a spectrum with finite homotopy 
groups. Then there is a spectrum c Y (the Brown-Comenetz dual of Y) such 
that for any spectrum X, [X, c Y] -i = Hom(iriX A Y, R/Z). In particular 
ir_icY = Hom(ixriY, R/Z) and cH/(p) = H/(p). Moreover c is a con- 
travariantfunctor on spectra with finite homotopy groups which preserves 
cofibre sequences and satisfies ccY = Y. El 

2.6. LEMMA. Let Y be a spectrum with finite homotopy groups. 

(a) If Y is connective and p-local, then <c Y> ' <H/(p) >. 
(b) If[X, Y] = 0 then wr*XAcY= 0. 
(c) If Y is a ring spectrum then <cY> < Y>. 
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(d) If Y is a noncontractible ring-spectrum and X is a Y-module spec- 
trum with [X, Y] = 0 then <X> < <Y>. 

Proof. (a) 7r*cY is bounded above so cY is the direct limit of its 
connective covers. Each connective cover c Yi has a finite Postnikov decom- 
position so <c Yi > ' <H/(p) > and the result follows. 

(b) Since Y = ccYwe have 0 = [X, ccY] _i = Hom(riX A cY, R/Z), 
so 7r*X A cY = 0. 

(c) By 1.24 it suffices to show that cY is a Y-module spectrum. The 
multiplication on Y induces a monomorphism HomY,* Y A cY, R/Z) -+ 

Hom(ir* Y A Y A cY, R/Z), which by definition corresponds to a mono- 
morphism 

[cY, cY] - [Y A cY, cY]. 

The image of the identity of cY is the desired module structure map; in 
particular it is a retraction of Y A c Y onto c Y. 

(d) <X> c <Y> by 1.24. Since [X, Y] = 0, <X> A <cY> ( <0> by 
(b), so cY is X*-acyclic. However <0 > < <cY> c < Y> by (c) so cY is not 
Y*-acyclic. It follows that <X> * <Y>. DG 

Proof of 2.2. For E = H/(p), we claim [E, P(1)] = 0. This can be 
shown either by an Adams spectral sequence argument using the methods 
of section 3, or, more easily by the results of section 4 (4.2, 4.7, and 4.9). 
Hence <H/(p)> A <cP(1)> = <0> by 2.6(b) and <cP(1)> < <H/(p)> by 
2.6(a). Also <cP(1)> c <P(1)> c <BP> by 2.6(c) since P(1) is a ring spec- 
trum. (For p odd this is Theorem 5.1 of Wurgler [49]. For p = 2 a unitary 
map P(1) A P(1) -- P(1) is given in Proposition 5.5 of Johnson-Yosimura 
[23] and such a map is sufficient for the argument in 2.6(c) and 1.24.) 

If <G> exists we have <BP> = <E> v <G>. Smashing with cP(1) gives 

(BP A cP(1)> = <E A cP(1)> A <G A cP(1)> 

i.e. <cP(1)> = <G A cP(1)>. On the other hand, <cP(1)> ? <E> so 
<G A cP(1)> < <E A G > = (0>. Hence we get <cP(1)> ( 0<> which is a 
contradiction. 

For E = V0<j K(i) we have <E> A <H/(p)> = <0> by 2.1(i). Conse- 
quently <E> A <cP(1)> = <0> so <cP(1)> < <G> if <G> exists. We will 
see in section 4 (4.2 and 4.9) that any spectrum G which is E*-acyclic satis- 
fiesBP*G = 0. Hence [G, P(1)] = 0 so by 2.6(b) <G> A <cP(1)> = (0>. 
Again this implies <cP(1)> = <0> which is a contradiction. DG 
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Now we will describe some classes <E> < <BP> satisfying <E> A 
(K(n)> = <0> for all n 2 0 and <E> > <H/(p)>. We will consider spectra 
of the form BPJ where J is an invariant regular sequence of infinite length. 
If J = {p, v1, v2 .}, we have BPJ = H/(p). Let I(J) denote the corre- 
sponding infinitely generated invariant regular ideal. 

2.7. Definition. Let J = (pj, vJ ...) and K = (pko, vk,, ...)be 
invariant regular sequences (IRS's). Let J A K = (p min(JO,kO), 

vmin(1l,k1) ... ) and J V K = (pmax(JOkO) vmax(]1,kl) .) K if 

BP* /I( J A K) is finitely presented as a module over BP* /I( J V K). J 2 K 
if K JAK. 

2.8. Conjecture. Let J and K be IRS's of infinite length. 

(a) (BPJ> = (BPK> X J- K. 
(b) (BPJ> 2 (BPK> X J 2 K. 
(c) (BPJ > V (BPK > = (BP(J V K)>. 
(d) (BPJ> A (BPK> = (BP(JA K)>. El 

This conjecture implies that there are uncountably many distinct 
Bousfield classes (BPJ>. Similar statements may hold for noninvariant se- 
quences J. Now we will prove part of 2.8. 

2.9. THEOREM. Let J and K be as above. 

(a) If J K then (BPJ> = (BPK>. 
(b) If J 2 K then (BPJ> 2 (BPK>. 
(c) (BPJ> < (BP(J v K)>. 
(d) (BPJ> 2 (BP(JAK)>. 

Proof. For (c), BPJ is a module spectrum over BP(J V K) so 
the result follows from 1.24. The argument for (d) is similar. For (a) it suf- 
fices to show that if J - K then (BPJ> = (BP(J A K)>, which can be 
shown by an argument similar to that used for 2.1(g). (b) follows from (a) 
and (d). El 

Additional evidence for 2.8 is contained in the following. 

2.10. THEOREM. LetK ={p, v1, v2, .. .} so BPK = H/(p) and let 
J be as above with J - K. In fact J + K whenever J * K.) Then 
(BPJ> > (BPK>. 

Proof. By 2.6(d) it suffices to show [H/(p), BPJ] = 0. Using 3.10 
one can show that the Adams E2-term for this group vanishes. The Adams 
spectral sequence converges by 3.4. El 
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Conceivably this argument can be generalized to other K with J > K 
by using an Adams spectral sequence based on BPK*-homology. 

For future reference (section 10) we record the following property of 
Morava K-theories. 

2.11. THEOREM. Let X be a finite spectrum. Then dim K(n)*X < 

dim K(n + 1)*X for every n. In particular K(n)*X = 0 if 
K(n + 1)*X = 0, and if X is K(n)*-acyclic then it is E(n)*-acyclic. 

Proof. Consider the functor E(n + 1)* OBP* P(n)*X. By 
Johnson-Yosimura [23] Lemma 3.5, it is a homology theory which we de- 
note byE*. We will show that K(n)*X and K(n + 1)*X can both be com- 
puted in terms of E*X, namely that there is a short exact sequence 

0-O K(n + 1)* OE*E*X -- K(n + 1)*X -- TorfE*(K(n + 1)*, E*X) -O 0 

and vn71E*X is a free vn71E*-module having the same rank asK(n)*X. We 
will also show thatE* is a graded principal ideal domain (PID) in the sense 
that every finitely generated graded module over it is a direct sum of cyclic 
modules of the form E*/(v,k) for 0 < k c oo. Then the rank of K(n)*X is 
the number of free summands in this decomposition, while the rank of 
K(n + 1)*X is that number plus twice the number of torsion summands 
(each torsion summand gives a summand of Toro and Tor1 ), thereby prov- 
ing the theorem. The statement about E(n)*-acyclicity follows from the 
earlier statements along with 2.1(d). 

Note that if X were not finite, E*X could have summands of the form 
vnT1E*. These would contribute to the rank of K(n)*X but not of 
K(n + 1)*X, so the theorem would be false. 

Now we need to verify the facts used above. For the assertion about 
K(n + 1)*X, in [2] it is shown that given a suitable pairing E*X (0 
K(n + 1)* -- K(n + 1)*X, there is a spectral sequence converging to 
K(n + 1)*X with 

E2= TorE*(E*X, K(n + 1)*), 

so we need to show that this Tori vanishes for i > 1. To get the pairing note 
that the standard pairing 

P(n)*X 2Bp* K(n + 1)* K(n + 1)*X 
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factors through E*X 0 K(n + 1)*. For the vanishing of the higher Tor 
groups it suffices to prove a similar vanishing for TorBP*(P(n)*X, 
K(n + 1)*). It follows from the Landweber Filtration Theorem ([23] 1.16) 
that it suffices to consider 

TorfBP*(BP*/Im, K(n + 1)*) 

for m 2 n. (Here Im is the invariant prime ideal (p, v1, .v.. Vml)). A 
routine calculation shows that this group vanishes unless i 0 O and m = n 
or n + 1 or i = 1 and m = n + 1. 

For the assertion about K(n)*X, note that vT1E*X = 
E(n + 1)* ?BP* B(n)*X. It is known (Johnson-Wilson [22] 3.1) that 
B(n)*X is a free B(n)*-module having the same rank as K(n)*X, so our 
assertion follows. 

Finally we need to show that E* is a graded PID. Note that for n > 0 
E* = Fp [vn s Vn+1 + V 1+ ] so multiplication by vn + 1 induces an isomor- 
phism in any graded E*-module which raises degree by 2(pn+1 - 1). It 
follows that the category of Z-graded E*-modules is equivalent to the cate- 
gory of Z/(2pn+1 - 2)-graded modules over Fp [vn]. This latter ring is a 
PID, so our assertion follows. El 

Now we will discuss the existence of multiplications on the various 
spectra above. A multiplication on a spectrum E is a map ,: E A E -- E 
which is associative, commutative and unitary (with respect to a given map 
So -- E) up to homotopy. Hence it corresponds to a class m E E?(E A E) 
with appropriate properties. If E is countable (as in the case in all exam- 
ples of this section) then E A E is a countable direct limit of finite spectra 
X, and we compute E?(E A E) by means of the Milnor short exact se- 
quence [36] 0 -- lim1E 1(X,) -- E?(E AE) -- limE?(X,) -O 0. Generally 
one can compute the righthand term and show that it contains an appro- 
priate m. The real problem is to show that the lim1 group on the left van- 
ishes. Equivalently, we need to show that E?(E A E) is Hausdorff in the 
topology induced by the maps to the E0(Xj). 

For E = k(n), BP(n >, BPJ or P(n), the results of Shimada-Yagita 
[53] are relevant. They show that if E is a spectrum obtained from MU by 
the Sullivan-Baas construction (e.g. any of those listed above) then there is 
an external multiplication E*X E*Y -- E*(X A Y). This product may 
not be commutative when p = 2. Contrary to their claim, this multiplica- 
tion does not implyE is a ring spectrum, but merely that there is an appro- 
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priate element in lim E0(Xa) above. The following argument for the van- 
ishing of the lim1 term and the extension of the multiplication to v -'BP, 
E(n), B(n), and K(n) is due to Yosimura. 

2.12. LEMMA (Yosimura [51]). Given an associative BP-module 
spectrum E offinite type there exists a similar spectrum VE with V VE = E 
satisfying 0 -O Ext(VEkl,X, Z(p)) EkX -- Hom(VEkX, Z(p)) O. D 

(The notation of [51] for VE is E(Z(p)).) 

2.13. LEMMA. If E is as in 2.12 with7rkE ( Q = O if (2p - 2) k 
and X is a countable CW-spectrum with WkX (O Q = 0 if (2p - 2) 4 k, then 
EkX in Hausdorff unless k 1 mod (2p - 2). 

Proof. Suppose we know that Ek(XQ) = 0 for (2p - 2) 4f (k - 1). 
Then Ek(X) is a subgroup of Ek+l(XQ/Z). X is a countable direct limit of 
finite spectra X, so XQ/Z = lim(X, Q/Z). Consider the commutative dia- 
gram 

EkX Ek + 1(xQ z) Ext(VEk(XQ/Z); Z(p)) 

lim EkX, -- lim Ek+1(Xa Q/Z) +- lim Ext(VEk(X,aQ/Z), Z(p)). 

Since -r*(XQ/Z) and -r*(XQ/Z) are all torsion, so are VE*(XQ/Z) and 
VE*(Xa,Q/Z), so the right hand horizontal maps are isomorphisms. The 
right hand vertical map is an isomorphism since VE*(XQ/Z) = 
lim VE*(Xa,Q/Z) and Ext converts lim to lim. It follows that the left hand 
vertical map is monic and Ek(X) is Hausdorff for (2p - 2) ) (k - 1). 

We still need to show Ek(XQ) = O for (2p - 2) ) (k - 1). Using 2.12 
and the fact that Hom(VEk(XQ), Z(p)) = 0 since VE*(XQ) is a rational 
vector space, it suffices to show VEk(XQ) = 0 for (2p - 2) 4 k. Now 
VE*(XQ) = ir* (VE) O -r*XX(O Q, so we need to show rk (VE) (O Q = O for 
(2p - 2) 4 k. Reversing the roles of E and VE in 2.12, setting X = So and 
tensoring with Q we get a short exact sequence 

0 -O Ext(7rkl,E, Z(p)) 09 Q _ 7rk(VE) (0 Q -- Hom(OrkE, Z(p)) (0 Q -O 0. 

Now 7rkE is torsion by assumption so the Hom vanishes, and the Ext is 
torsion since rk_lE is finitely generated. D 
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If E = BP<n>, P(n), BPJ or k(n) and X = E A E, then 2.13 shows 
E?(E A E) is Hausdorff so we get 

2.14. COROLLARY. BP<n>, P(n), BPJ and K(n) are associative, 
commutative (if p > 2) ring spectra. 

2.15. LEMMA. Let E and X be as in 2.13. Then (v7-1E)0X is Haus- 

dorff. 

Proof. See Lemma 1.1 of Yosimura [52]. El 

In [52] an argument is given for a multiplication on v -'BP and E(n) 
which depends on the fact that their coefficient rings are flat BP*-modules 
in the sense of Landweber [26]. The argument applies to B(n) and K(n) 
since they are flat as modules over P(n), although the later may not be 
commutative at the prime 2. Hence we have 

2.16. COROLLARY (Yosimura [52]). E(n), vn1BP, K(n) and B(n) 
are all ring spectra. El 

3. Some Bousfield classes larger than <BP>. In this section we will 
construct for each prime p Thom spectra Xn for n 2 0 satisfying 

<S(P)> = (XO> > (X1> > (X2> > . > (BP>. 

In proving this result we will develop some Adams spectral sequence tech- 
niques which were needed for some proofs in the previous section. 

To construct the Xn recall that BU = QSU by Bott periodicity, where 
SU is the stable special unitary group. The map QSU(pn) -- BU defines a 
stable complex vector bundle over QSU(pn), and we define Xn to be the 
corresponding Thom spectrum localized at p. Since SU(1) is the trivial 
group, X0 is by definition the sphere localized at p. It can be shown that Xn 
splits into a wedge of suspensions of Tn where BP* Tn = BP* [t 1, . . . tn ] as 

BP*BP-comodules, but we will not pursue this matter here. The main 
result of this section is the following: 

3.1. THEOREM. Let Xn be as above. 

(a) (Xn> > (BP> for each n 2 0. 
(b) (Xn> > (Xn+1>foreachn ? 0. 
(c) Neither (Xn> nor (BP> are in BA, although both are in DL 

(1.21). 
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Proof. Since QSU(p') -+ BU is a double loop map, Xn is an associa- 
tive homotopy commutative ring spectrum. The inclusion SU(ph) -+ 

SU(pn+l) leads to an Xn-module structure on X,+1, while the inclusion 
SU(pV) -- SU leads to an X -module structure on MU(p) and hence on BP. 
We will show below (3.2) that [X+ 1 A M, X,] = 0 and [P(1), X ] = 0, 
where M is the mod (p) Moore spectrum (note that P(1) = M A BP). For 
p > 2, M and hence Xn A M are ring spectra so 2.6(d) implies <Xn A M > > 

<X+ 1 A M> and <X, A M> > <P(O)>; for p = 2 we can use the mod (4) 
Moore spectrum instead. (a) and (b) follow since (S(p) > = (M> v (SQ >. 

For (c) we have (cXv > < <H/(p)> < <X1+ I A M> by 2.6(a). By 
2.6(b) and 3.2 X1+I A M A cX, = pt. Hence if <X +1 > E BA, (cX, > < 

(X+ 1 A M> C. These two inequalities lead to the contradiction cX, = pt, 
so (Xn > cannot be in BA. The argument for (BP> is similar. The classes 
are in DL since they are represented by ring spectra. D 

We still need to prove 

3.2. LEMMA. With notation as above, 

(a) [Xn+l AM,Xn] - Oand 
(b) [P(1),Xn] = 0. E 

Multiplication by p in either Xn on Xn + 1 induces the same endomor- 
phism in [Xn + 1, Xn ], from which it follows that [M A Xn + 1 , Xn ] = [Xn + 1, 
E-'M AXn]. Similarly, [P(1), Xn] = [BP, E -'M A Xn]. We will show that 
[BP, M A Xn I and [Xn+ 1, M A Xn I vanish by means of the classical Adams 
spectra sequence (ASS) based on ordinary mod (p) cohomology (see [4]). 
Standard convergence results (3.3) on the ASS for [X, Y] require X to be a 
finite spectrum. We will prove convergence for X connective and of finite 
type provided Y is connective and each iri(Y) is a finite p-group (3.4). 
Then we will show that the relevant E2-terms vanish (3.9). 

We refer the reader to [4] for the construction of the ASS and the 
proof of the following result. 

3.3. THEOREM. LetXbe afinite spectrum and Ya connective spec- 
trum with each 7ri(Y) a finite p-group. Then there is a spectral sequence 
which is natural in X and Y with E't = Extjt(H*(Y), H*(X)) (where all 
cohomology groups have mod (p) coefficients), dr: Es,t ES+r,t+r- 1, and 
[X, Y]* has a decreasingfiltration [X, Y]* = F* D Fl D ... such thatfor 
each n F' = Ofor large s, and FS_s /S+l = Est n r>s Es,t. (The last 
defining equality makes sense because Est1 = ker dr C Esrt for s > r. The 
grading of [X, Y]* is defined by [X, Y]n = [EnX, Y].) D 
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The filtration above on [X, Y] is defined by saying thatf: X - Y is in 
FS if it can be written as the composite of s maps each of which is trivial in 
mod (p) cohomology. 

3.4. THEOREM. Let Y be as in 3.3 and let X be a connective spec- 
trum with H*X offinite type. Then the ASS for [X, Y] converges, i.e. 

(a) every element of E?** is represented by a map f: X -+ Y and 
(b) there are no nontrivial maps of infinite filtration. Moreover 
(c) E"'t = ExtA (H*Y, H*X) = lim ExtA(H*Y, H*Xf) where X' de- 

notes the n-skeleton of X. 

Proof. We will prove (a) after proving (b) and (c). There is a short 
exact sequence due to Milnor [36], 0 -+ lim1[Xn, Y]*+- [X, Y]* 
lim[Xm, Y]* 0. Our hypothesis on Yinsure that [Xn, Y]* is finite, so the 
liml above vanishes and we have 

(3.5) [X, Y]* = lim[Xn, Y]*, 

and similarly 

(3.6) H*X = lim H*Xn. 

(b) follows from 3.5 because a map X -+Y of infinite Adams filtration 
must restrict trivially to each Xn and therefore be trivial. 

For (c) it suffices by 3.6 to show that 

(3.7) ExtA(H*Y, lim H*Xn ) = lim ExtA(H*Y, H*Xn). 

In general Ext does not commute with lim in this way so some special argu- 
ment is required. We will use the finiteness of H*Xn and H*X to convert 
the Ext to a Tor and the inverse limit to a direct limit. 

First we claim that given left and right A-modules L and M, 

(3.8) ExtA (L, M*) = TorA(M, L)* 

where ( )* denotes the linear dual. To see this let 

0 L - Co +- C1 
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be a projective resolution of L. Then we have 

Hom(M A C A, Z/(p)) - HomA (C5, M*), 

so the corresponding complexes have isomorphic cohomologies. These co- 
homologies are respectively TorA(M, L)* and ExtA(L, M*). 

Since lim H*Xf has finite type, we have 

ExtA(H*Y, lim H*Xf) = ExtA(H*Y, (lim H*Xf)**) 

= TorA((lim H*Xn)*, H*Y)* by 3.8 

= TorA(lim(H*Xn)*, H*Y)* 

= (lim TorA (H*Xn, H*Y))* 

= lim TorA(H*Xn, H*Y)* 

= lim ExtA(H*Y, H*Xn) by 3.8. 

This proves 3.7 and hence (c). 
To prove (a) let {E** (n) } and {E** (oo) } denote the ASS for [X'1, Y] 

and [X, Y] respectively. We will need to know that E* *(oo) = limE,* *(n) 
for each r. We have just shown this for r = 2, so we can start an induction 
on r. Er+? is related to Er by a long exact sequence, and inverse limits 
preserve exactness when all of the terms are finite dimensional vector 
spaces, so we have the inductive step. 

Now suppose x E E5't(oo). It follows from the above that E't(oo) = 
lim Es(n). Let x be the projection of x in Est(n). By 3.3 xn is represented 
by each element of a suitable coset of the finite group [Xn, Y],-s. These 
cosets form an inverse system of nonempty finite sets and a standard argu- 
ment shows that such a system has a nonempty inverse limit. Hence we can 
choose a compatible set of maps fn XXn - Yrepresentingxn, so 3.5 gives a 
map f: X -+Y representing x. D 

The proof of 3.2 and 3.1 will be complete once we have proved 

3.9. THEOREM. With notation as above, 

(a) ExtA (H*M A Xnf H*Xn + 1) = 0 
(b) ExtA (H*M A Xn, H*BP) = 0. 
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Proof. Since H*Xn is concentrated in even dimensions, it is related 
to H*M A X,, by an obvious short exact sequence, from which it follows 
thatM A X,n can be replaced byXn in the statement of the theorem. We will 
simplify these Ext groups with a change of rings isomorphism and then use 
a result of Moore-Peterson [37] to show that they vanish. We will give the 
details for (a) only, as the proof of (b) is quite similar. 

It is convenient to dualize and work in homology rather than in coho- 
mology. We are trying to show 

ExtA*(H*Xn+1?, H*Xn) = 0. 

Obviously we will need to know how the dual Steenrod algebra A * coacts 
on H*Xn. To simplify notation we assume p is odd; the same argument 
works for p = 2 with the obvious changes in notation. Recall that 

H*SU(pn) = E(x3, x5, . .. X2pn1j) 

with dim X2i+l = 2i + 1. It follows by easy calculation that 

H*f2SU(pn) = P(hj - - . h . pn-1 ) 

with dim bi = 2i and bi maps to that standard generator of H*QSU = 
H*BU (see [4] page 47). Recalling that Xn is the Thom spectrum of the 
induced bundle over QSU(pn), it follows that H*Xn is the corresponding 
subringof H*MU. Recall alsothatA* = E(rO, Tr1, * * *) P(P1, 2' ***) 
with dim (n = dimrn - 1 = 2(pn -1). H*Xn is actually a comodule over 
the sub-Hopf algebra Pn = P( 1, ... n) since it is concentrated in even 
dimensions and has no generators in dimensions greater than that of n. 

The vanishing of the Ext group in question will follow from that of 

ExtPn+1 (H*Xn+1, H*Xn) 

by an appropriate Cartan-Eilenberg ([15] page 349) spectral sequence. 
To calculate this group we claim H*Xn is free over Pn. It is known 

that the compositeXn -+ MU -+ H/(p) sends bpi-1 to (i for i < n ([4] page 
76). It follows that in each even dimension 2j ? 2(pi - 1) there is a primi- 
tive generator equal to bj modulo decomposables. Let Rn be the ring gener- 
ated by these primitives, so H*Xn = Rn ?,Pn as a comodule over Pn or over 
Pn+j. It follows that 

Extp 1 (H*Xn+1, H*Xn) = ExtPn+1(Pn+?, Pn) (0 Hom(Rn+l, Rn). 
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Using the Cartan-Eilenberg spectral sequence one can show 

Extp + (Pn +1 Pn ) = Extp( n+1)(P(Qn +i), Z/(p)) ? Hom(Pn, Z/(p)). 

(Both of the above Hom's are over Z/(p).) 
At this point it is convenient to convert back to cohomology. Let Kn be 

the algebra dual to P(Q09), so we want to show 

ExtK?+1(Z/(p), Kn,+1) = 0. 

If we were proving (b) instead of (a) we would have P(Qn +, 1n+2 9 *.) 
instead of P(Q+?1). In either case the dual algebra is injective over itself by 
Theorem 2.7 of Moore-Peterson [37]. Hence we have 

EXtkn + 1(Z/(p), Kn+l) = HomKn+l(Z/(p), Kn,+1). 

This group is trivial because Kn + 1 (being a divided power algebra) has infi- 
nitely many generators almost all of which act nontrivially on any given 
basis element. This completes the proof of 3.9, 3.2 and 3.1. D 

3.10. Remark. In the proofs of 2.2 and 2.10 we need to know 
[H/(p), P(1)] = 0 and [H/(p), BPJ] = 0 for J * (p, vl, v2, ... ). Similar 
arguments to those above can be used; one ends up with Ext(E, Z/(p)) 
where E = E(Qrn, r,n+1, ... ) where n the largest integer with In C J. The 
fact that E is dual to an infinitely generated Hopf algebra insures the trivi- 
ality of this group. 

4. Harmonic spectra. 

4.1. Definition. For each prime p let Ep = Vn ,0 K(n) and letE = 

Vp Ep. A spectrum is harmonic if it is E*-local (1.3) and dissonant if it is 
E*-acyclic (1.1). 

This terminology will be discussed in the next section. In the first edi- 
tion of this paper we gave a different definition which proved later to be 
unworkable. The present definition was suggested by Z. Yosimura. 

In this section we will show that many spectra are harmonic, including 
finite spectra (4.5) and connective spectra with torsion free homology 
(4.6). On the other hand H/(p), the mod (p) Eilenberg-MacLane spec- 
trum, is dissonant. First we show that BP is harmonic. We are indebted to 
Dave Johnson for the proof; see Theorem 1.3 of [20]. 
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4.2. THEOREM. BP is harmonic. 

Proof. It follows from the definitions that it suffices to show 
BP*X = [X, BP] = 0 whenever K(n)*X = 0 for all n 2 0. By 2.1(d) and 
(b), the latter condition is equivalent to v,-TBP*X = 0 for all n 2 0. 

According to Theorem 13.6 (page 285) of [4], BP*X may be computed 
from BP*X by means of a universal coefficient spectral sequence with 

E2 = ExtBp*(BP*X, BP*), 

so it suffices to show that this Ext group vanishes. In [34] we considered the 
chromatic resolution, a certain long exact sequence of modules over BP*, 

O - BP* -+MO? Ml _ M2 .. . 

These modules are defined by Mn = V,- Nn where the Nn are defined in- 
ductively by the short exact sequences 

0 Nn Mn Nn+l 0, 

where No = BP* and vo = p. The long exact sequence above is obtained 
by splicing together all of these short exact sequences. 

There is an easily constructed spectral sequence, analogous to the 
chromatic spectral sequence of [34], converging to our Ext group with 

Ens = Ext'p (BP*X, Mn), 

so it suffices to show that these Ext groups vanish. 
Each Mn is uniquely vn-divisible, i.e. multiplication by vn is an iso- 

morphism, so we can write Mn = lim YIMn-. Hence we have 
vn 

ExtBp*(BP*X, Mn) = ExtBP*(BP*X, lim Mn) 

= ExtBp*(lim BP*X, M ) 

= ExtBp (V- 'BP*X, Mn). 

This group vanishes since we are assuming v -'BP*X = 0. D 
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4.3. Definition. For a graded BP*-module M, hom dimBp*M is the 
minimal length of a resolution of M by projective graded BP*-modules. 
For M an MU*-module, hom dimMu*M is similarly defined. 

It is known ([18] 3.2) that every projective graded bounded below 
BP*-module is free. The usefulness of this invariant for M = BP*X 
(known sometimes as the ugliness number of X) has been amply demon- 
strated by Johnson-Wilson [21]. 

4.4. THEOREM. (a) If X is a connective spectrum offinite type with 
hom dimMu*MU*Xfinite then X is harmonic. 

(b) If X is a p-local connective spectrum with -riX finitely generated 
over Z(p)for each i and hom dimBp*BP*X is finite, then X is harmonic. 

(c) If -riX is a vector space over Q for each i, then X is harmonic. 

Proof. We will first prove (b), the local form, as the proof of (a) is 
analogous. Suppose we know BP A X is harmonic. Consider a BP*-Adams 
resolution forX (1.14). It displaysX = BPAX (1.16) as a homotopy inverse 
limit of a tower of spectra in which the successive fibres are X A BP A 

IS(BP) where I(BP) is the fibre of the unit So -? BP and IS(BP) is its s-fold 
smash product. BP A IS(BP) is a wedge of suspensions of BP (see Lemma 
11.1, page 88 of [4] of increasing connectivity so each X A BP A IS(X) is 
harmonic by assumption. Hence 1.7 implies that X is harmonic. 

We still have to show that BP A X is harmonic. Let d = 

hom dimBp*BP*X. If d = 0, BP*X is a free BP*-module so BP A X is a 
wedge of suspensions of BP and is harmonic by 4.2. Now we argue by in- 
duction on d. Assume hom dimBp*BP*X > 0 and pick a BP*-basis of 
BP*X and consider the corresponding map W -+ BP A X where W is an 
appropriate wedge of spheres. Smashing with BP and using its ring struc- 
ture we get a map BP A W -+ BP A X which is surjective in homotopy and 
in BP-homology. BP A W is harmonic by 4.2, so it suffices to show that the 
fibre F of this map is harmonic. The short exact sequence 

0 -BP*F -BP*BP A W-- BP*BP A X - 0 

is the start of a projective BP*-resolution of BP*BP A X, so 
hom dimBp*BP*F = d - 1. Hence BP A F and therefore F are harmonic 
by the inductive hypothesis and the previous paragraph. 

For (c) we know that such an X is a wedge of rational spheres SQ. To 
show SQ = E(O) is harmonic, suppose X is dissonant. Then X A SQ is 
contractible by assumption so [X, SQ] = 0. O 
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4.5. COROLLARY. If X is finite then it is harmonic. 

Proof. Conner-Smith ([18] Theorem 1.6) have shown that 
hom dimMu.MU*X is finite. O 

4.6. COROLLARY. If X is connective and H*(X, Z) is free abelian 
and offinite type then X is harmonic. The same holds if X is connective, 
p-local and H*(X; Z) is free and offinite type over Z(p). 

Proof. In Corollary 3.10 of [18] it is shown that MU*X is a free 
MU*-module. For the local analogue see [21]. D 

Now we turn our attention to some dissonant spectra. 

4.7. THEOREM. The mod (p) Eilenberg-MacLane spectrum H/(p) 
is dissonant. 

Proof. From the definition 4.1 and 2.1 it suffices to show 
vn71BP*H/(p) = 0 for all n 2 0. Since H/(p) is a BP-module spectrum we 
have 

BP*H/(p) = BP*BP (BP*Z/(p) 

= BP*BP/(qR (vo), 71R(V1), * 

where as usual v0 = p. One knows 'qR (Vn) Vn mod(v0, v1 v-1)(see 
[25] or 3.14 of [41]), so multiplication by vn is trivial in BP*H/(p) and 
vn71BP*H/(p) = 0 as desired. D 

4.8. THEOREM. Let X be a spectrum (not necessarily connective) 
such that ir*X is all torsion and is bounded above, i.e. ir*X = O for i > k 
for some finite k. Then X is dissonant. 

Proof. We will show that X is a direct limit of a system in which 
successive cofibres are wedges of suspensions of H/(p) for various p. Since 
generalized homology commutes with direct limits, X is E*-acyclic and 
therefore dissonant. To construct the directed system, choose a prime p 
and a basis for the subgroup of lrkX of exponent p. The corresponding 
map to X from a wedge of spheres extends to one from a wedge Ko of 
H/(p)'s. Let X1 be the cofibre of this map. It satisfies the same hypothesis 
as X so the procedure can be repeated, giving a sequence 

X = Xo Xl + X2 * * 
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with 1rk (lim Xi)(p) = 0. This construction can be repeated for all p and for 
all descending values of k. The resulting direct limit is contractible. Tak- 
ing the fibres of the map from X to each spectrum in the system gives a 
system of dissonant spectra whose limit is X. D 

The next result follows immediately from the definitions. 

4.9. PROPOSITION. There are no essential maps from a dissonant 
spectrum to a harmonic spectrum. 

Combining this with 4.2 and 4.7 we get 

4.10. COROLLARY. BP*H/(p) = 0. O 

Combining 4.9, 4.7 and 4.5 we get 

4.11. COROLLARY (MARGOLIS [31], LIN [29]). There are no essen- 
tial maps from H/(p) to a finite spectrum. O 

In [16] Joel Cohen proved that a nontrivial suspension spectrum of 
finite type has infinitely many nontrivial homotopy groups. The following 
result overlaps with his. 

4.12. THEOREM. If X is a nontrivial harmonic spectrum of finite 
type then X has infinitely many nontrivial homotopy groups. The same is 
true if X is p-local and -r*X is offinite type over Z(p). 

Proof. If XQ denotes the E(O) localization of X and TX is the fibre 
of X -- XQ then ir* TX is the direct sum of the torsion subgroup of -r*X 
and the desuspension of -r*X (0 Q/Z (note that tensoring with Q/Z kills 
torsion). Hence if X has only finitely many nontrivial homotopy groups 
then TX satisfies the hypothesis of 4.8 and is therefore dissonant. Since X 
and XQ are harmonic, TX is also harmonic and therefore contractible, so 
X = XQ, i.e. -r*X is a vector space over Q. Since -r*X has finite type, the 
assumption that X has only finitely many nontrivial homotopy groups 
leads to the conclusion that X is contractible. O 

This result would imply Cohen's if we could answer the following 
affirmatively. 

4.13. Question. Are all suspension spectra harmonic? 

5. The chromatic filtration. In this section all spectra are assumed 
to be p-local. 

5.1. Definition. LnX is the E(n)*-localization (1.4 and 2.1) of X 
and Lo,X is the E*-localization where E is the spectrum of 4.1. CnX is the 
fibre of X -- LnX. 
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1.22 and 2.1 give compatible natural transformations Lo, L-4 and 

Ln+- Ln . We do not know whether L00X = limLnX = Lo,X in general. 

5.2. Definition. The chromatic filtration of the stable homotopy 
category S (localized at p) is the tower of categories and functors LOS 
L1S +-L2S +_ * * L,S +-S. 

The categories Ln S for 0 < n < oo are closed under cofibre sequences 
(1.6) and homotopy inverse limits (1.7). We conjecture (10.6) that for 
n < ooLnS is also closed under direct limits. LOS is the rational stable 
homotopy category, which is well known to be equivalent to the cate- 
gory of graded vector spaces over Q. In section 8 we will analyze the cate- 
gory L1 S. 

5.3. THEOREM. (a) Cn is an idempotent exact functor and Cn S is 
the category of E(n)*-acyclic spectra for n < oo, and Co, S is the category 
of dissonant spectra. Both are closed under direct limits. 

(b) For m < n, CmCn = CnCm = Cn, LmCn = CnLm = 0 (i.e. the 

trivialfunctor) and Ln Cm = CmLn . 

Proof. (a) For the functoriality of Cn letf: X -Ybe any map. Then 
we have 

CnX X 3i LnX 

I Cnf f Lnf 

Cn Y Y 'MW Ln Y 

The possible choices of CJ are in one-to-one correspondence with the 
group [CnX, Ln Y] I. Since CnX is E(n)*-acyclic and Ln Y is E(n)* -local, 
this group is trivial, so CJ is well defined and Cn is a functor. 

Since Ln is exact and idempotent, Cm is also 

(b) If we apply Lm to CnX -+ X -+ LnX we get the diagram 

Cn =CmCnX =CmX CmLnX 

(5.4) CnX aw-X a LnX 

* = LmCnX m LmX LmLnX = LmX 

where LmLnX = LmX by 1.22 and 2.1. 
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If we apply Ln to CmX X LmX (written vertically) we get the 
diagram 

CnX = CnCmX CmX LnCmX 

(5.5) CnX X LnX 

* = CnLmX LmX LnMX = LmX 

Equating 5.4 and 5.5 gives the desired result. O 

Note that Cn is not a localization functor because CnS is not closed 
under inverse limits, although it is closed under direct limits. 

We will now explain our use of the words 'chromatic' and 'harmonic' 
in this context. Recall ([34] section 3 or [41] section 8) that the chromatic 
spectral sequence for the- sphere is based on the short exact sequences of 

BP*BP-comodules 

(5.6) 0 -Nn Mn- Nn+1 0 

defined inductively by No = BP* and Mn = v - 1Nn. In a similar spirit, we 
define cofibrations 

(5.7) N,, N~M,X .7) N~~~~~nX _+MnX Nn+lX 

inductively by setting NOX = X and MnX = LnNnX. Then we have 

5.8. Localization Conjecture for SO. For X = SO, the cofibrations 
5.7 realize (in BP*-homology) the exact sequences 5.6. O 

In Proposition 8.28 of [41], we showed that for n > 0 Mn is a direct 
limit of comodules with periodic Novikov Ext groups, with the maps in the 
directed system being themselves periodic. This leads us to 

5.9. Periodicity Conjecture. For each finite spectrum X and posi- 
tive integer n there is a directed system {Xa } of finite K(n - 1)*-acyclic 
spectra such that 

(i) MnX = limMnXa, 

(ii) for each X. there is a homotopy equivalence MnXa 

(pn-1)MnX, for some i depending on a, and 
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(iii) suitable iterates of these equivalences commute with the maps in 
the directed system. D 

The status of 5.8 will be discussed in section 10. In section 8, we will 
prove 5.9 for n = 1. If 5.8 is true, then the chromatic filtration of 5.2 is 
analogous to the chromatic filtration of the Adams-Novikov E2-term dis- 
cussed in section 8 of [41]. If 5.9 is true, 5.10 below implies that each fibre 
in the harmonic tower 5.2 has a weak form of periodicity. Hence the har- 
monic tower separates X into its weakly periodic components and a har- 
monic spectrum is one which can be described completely in terms of its 
weakly periodic pieces. The word dissonant is intended to be the opposite 
of harmonic. 

5.10. THEOREM. N,X = E2C -1X and thefibre of L"X -L, -X 
is E-nMnX. 

Proof. We argue by induction on n, both statements being obvious 
for n = 0 (C_1X = X and L_ 1X = pt. ) Diagram 5.4 or 5.5 with m = 
n - 1 yields a cofibration (the top row) C_X -- C__X -- LnC1-,X, and 

_1X = EnNnX by assumption, soLnCn1X = EC7nMnX and CCX = 

E-1-'Nn+,X by definition. The right hand column is E-LMnX = 
LnCn_lX LnX- Ln-lX D 

5.11. Definition. MnX is the nth monochromatic component of X 
and Mn S is the nth monochromatic subcategory of S. 

This explains our choice of the letter M. 
Using standard arguments, we can get an Adams-type spectral se- 

quence out of the harmonic tower, i.e. 

5.12. PROPOSITION. There is a spectral sequence converging to 
7r*L AX with ESj't = irtMsX. D 

If 5.8 is true, then forX = SO, En,* is closely related to the nth column 
of the chromatic spectral sequence described in section 3 of [34] and 
section 8 of [41]. 

6. The E(n)*-localization of BP. In this section, we describe LnBP 
and compute ir*(X A LnBP) in terms of BP*X. We will state our main 
results first and then give the proofs. 

6.1. THEOREM. The spectra NnBP and MnBP (5.7) are BP-module 
spectra (and the canonical maps between them are BP-module maps) with 
-r*NnBP = Nn and -r*MnBP = Mn (5.6). 0 
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From 5.7, we get maps E2-N,+,BP -+ N,,BP which can be composed 
to give a map i: E - -nN +nBP -+ NOBP = BP. 

6.2. THEOREM. L BP is the cofibre of E-.'"N1l+BP 4BP -P 

LnBP, so 7r*LoBP = p-'BP* and -r*LnBP = BP* i) E-nN'+n for 
n ? 1. O 

The short exact sequences 5.6 give connecting homomorphisms 
TorBnP* (BP*X, N n+?1) Tor'P*(BP*X, Nn) which can be composed to 
give a homomorphism i*: TornBP * (BP*X, Nn+l) TorBP*(BP*X, 
NO) = BP*X. 

6.3. THEOREM. (a) ir*(X A NnBP) can be computed by means of a 
spectral sequence with E"* Tor BP* (BP*X, Nn) and ir*(X A MnBP) 
can be similarly computed, 

(b) Tors,*(BP*X, Nn) 0 for s > n so there is an upper 
edge homomorphism -r*(X A NnBP) --' " Tor BP*(BP*X, N") and 
-r*(X A MnBP) admits a similar edge homomorphism. 

6.4. THEOREM. In the cofibration X A E- 1 
-nN+nBP -i+ X A BP 

X A LnBP, the map ir*i is the composite 

ir*(X A 71-N1+- BP) 
-nTorBP* (BP*X, Nl+n )ABP*X 

where i* is the map described above and the first map is the edge homo- 
morphism given by 6.3(b). D 

To prove 6.1, we will inductively construct module spectra NnBP and 
MnBP having the desired homotopy groups and then show that they coin- 
cide with NnBP and MnBP respectively. The spectrum MnBP will be the 
representing spectrum for the functor (NnBP)* (BBP* vn -BP*. 

6.5. LEMMA. (a) Let E*( * ) be a covariantfunctorfrom finite spec- 
tra to graded abelian groups which converts cofibrations into long exact 
sequences in the usualfashion. Then E*( ) is a generalized homology the- 
ory represented by a spectrum E. 

(b) Let F*( * ) be another such functor and let 0*: E*( * F*(* ) be 
a natural transformation. Then 0 * is represented by a map 0 E -+ F whose 
composition with any map from a finite complex to E is unique up to ho- 
motopy. 

Proof. (a) is proved by Adams in [5] as the cohomological analogue 
of (b). Since we are working with finite complexes, we can freely inter- 
change homology and cohomology via Spanier-Whitehead duality. E 
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6.6. LEMMA. Let E be a BP-module spectrum and M a flat 
BP*-module. Then thefunctor F*( * ) = M OBP* E*( * ) is a homology the- 
ory represented by a spectrum F which is a retract of BP A F. 

Proof. The flatness of M insures that F*( * ) is a homology theory 
and that F exists. The BP-module structure of E gives a natural transfor- 
mation ae: (BP A E)*( ) - E*( * ) having appropriate properties. By 
6.5(b), a similar natural transformation A: (BP A F)*( * F*() will 
give a retraction of BP A F to F. E 

Proof of 6.1. Assume inductively that NnBP has the desired proper- 
ties. v -'BP* is a flat BP*-module since it is a direct limit of desuspensions 
of BP*, so (NnBP)* ?BP* v -'BP is represented by a spectrum MnBP by 
6.5(a). By 6.5(b) the inclusion BP* -+ v -1BP* induces a map (not neces- 
sarily unique) X: NnBP -+ MnBP which is a v -1BP*-equivalence. 

We will prove the theorem by showing 

(i) MnBP is E(n)*-local, so X is an E(n)* -localization and therefore 
unique, and MnBP = MnBP; 

(ii) MnBP is a BP-module spectrum; 
(iii) Nn+1BP is a BP-module spectrum. 

For (i), 6.6 shows MnBP is a retract of BP A M,BP, so it suffices 
to show that the latter is E(n)*-local, i.e. that [X, BP A M,BP] = 0 for 
any E(n)*-acyclic spectrum X. The triviality of this group follows by an 
argument similar to that of 4.2. 

Now we will prove (ii). Let IAN: BP A NJ,BP -+ NBP be the module 
structure map and consider 

I'N 

BP A NnBP - l- N BP 

BPAX X 

BP A MnBP -M- M BP. 

X' * N is a map to an E(n)*-local spectrum and BP A X is an E(n)*- 
equivalence, so by 1.4 I'M can be chosen to make the diagram commute. 
The unit and associativity conditions on I'M follow by similar arguments. 

To prove (iii) consider the diagram 
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BP A MBP - ~ BP A N,BP - BP A EN,BP 

AM I m BPA2IiN 

MnBP -n+BP EN,BP 

where the rows are cofibre sequences. The map m exists by standard argu- 
ments and we claim it is unique: two choices of m differ by an element in 
[BP A Nn+lBP, MnBP], but BP A Nn+1BP is E(n)*-acyclic and MnBP is 
E(n)*-local so this group is trivial. The unit and associativity conditions on 
m follow by similar arguments. O 

Proof of 6.2. We argue by induction on n. By 5.10 we have the dia- 
gram 

LnBP 31- Nj+nBP E 5BP 

Ln +1lBP -l-N2+nBP iE 5BP t 1 1~~~~~~~~~~P 

+nBP= 7'1 +nBP - -pt. 

in which rows and columns are cofibrations. Since N1 ?nBP is a BP- module 
spectrum the map Nl+n = -x*Nl+nBp +nBP * is a BP*-module 
homomorphism and therefore is trivial. Hence the fibration in the top row 
above gives a short exact sequence 

0 -O BP* -+ 7r*LnBP ,- N O 

which we need to show is split for n 2 1. Since 7r*Ln+iBP maps to 
ir*LnBP, it suffices to find a splitting for n = 1, but in that case E N+ 
is concentrated in odd dimensions while BP* is even dimensional. D 

Proof of 6.3(a). This has been shown by Adams [2], Lecture 1, pro- 
vided one knows in advance that BP*X = 0 implies ir*(X A NnBP) = 0. 
This implication follows easily from the construction of NnBP. O 

Proof of 6.3(b). We will show that for any BP*-module M, 

Tor. *(M, N') = 0 for s > n by induction on n. The statement is true for 
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n = 0 since No = BP*. Since Mn = Nn (gBP* vn 'BP* and v- 'BP* is flat, 
we have 

TorBP*(M, Mn) = TorBP*(M, Nn) ?BP* v -'BP*. 

Examining the long exact sequence in Tor(M, -) induced by the short 
exact sequence 5.6 completes the induction. D 

Proof of 6.4. It follows from 5.3 and 5.10 that the map 
E 

- 1 
-nN1 +nBP BP can be factored 

E-1-n E - 
NNnBP S-EN_BP E1-nN * NoBP = BP 

7-nMnBP E 'nMn-IBP MoBP 

where each horizontal map followed by a vertical one is a cofibre sequence. 
Smashing each of these cofibrations with X, taking homotopy and apply- 
ing the edge homomorphism of 6.3(b) we get 

7r*(X A E N, +nBP) ir*(X A 5Y N7BP) ir*(X A S7nM, BP) 

Tor 1 +n,*(BP*X, N' + Torn,t* (BP*X, N Tor* M) 

where the lower left-hand horizontal map is the connecting homo- 
morphism. p 

7. Torsion E(1)*E(1)-comodules. This section consists of some al- 
gebraic preliminaries to our study in section 8 of E(1)*-localization. Let 
E(1)*E(1) = E(1)* OBP* BP*BP OBP* E(1). 

7.1. PROPOSITION. For any spectrum X, E(1)*Xis a comodule over 

E(1)*E(1). D 

We wish to study the category TE of torsion E(1)*E(1) comodules, 
i.e. comodules in which each element is annihilated by some power of p. If 
X is a spectrum in C0S, i.e. a spectrum with trivial rational homotopy type, 
then E(1)*X is an object in TE. Our main result 7.6 is that for p > 2, TE 
is equivalent to a certain category of modules. This result is used by Bous- 
field [54] to give an algebraic description of the category L1 S for an odd 
prime. 
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A heuristic argument, which we will not try to make precise, can be 
given for 7.6. We know (section 2) that E(1)* is intimately related to com- 
plex K-theory and that the latter has Adams operations Ak. If p K k, these 
can be made into stable operations since we have localized at p. Since the 
spectra we are dealing with have p-torsion homotopy groups, they are 
p-adically complete and in the spirit of Sullivan [46], [47] we can define 
Adams operations Ak for k any unit in the p-adic integers Zp . Our restric- 
tion from K* to its summand E(1)* (section 2) corresponds to requiring 
that k 1 mod p. Hence for X E C0 S, E(1)*X admits a continuous action 
of r, the group of units in Zp congruent to 1 mod p, via Adams operations, 
and this action is functorial. The fact thatr Zp for p > 2 but r 
Z/2 (3 Z2 for p = 2 accounts for our restriction to p > 2. 

To be more precise, let r, denote the multiplicative group of units 
congruent to 1 mod p in Z/(p' + 1), let Zp [rF] denote the group algebra of 
rn over the p-adic integers Zp, and let A = lim ZP [rnF] 

nP 

7.2. LEMMA. For p > 2, A = Zp [[t]] and the isomorphism can be 
chosen so that each of the maps A-+ Zp [rn] sends t + 1 to a generator 
of rn. (Note that the generator and therefore the isomorphism are not 
canonical. ) 

Proof. First notice that rn- Z/(pn), so the statement makes sense. 
Let r = lim rF-Zp and let -y EFrbe a generator. Then we have A= 

limn Z [,]/(,pn _ 1). The statement is now that of Lemma 1.6 of [30], to 
which we refer the reader for the rest of the argument. E 

7.3. Remark. Note that for p = 2, rn is not cyclic, so 7.2 is false in 
that case. 

7.4. Definition. A torsion A-module is a discrete p-torsion group on 
which A acts continuously (with respect to the inverse limit topology on A). 

7.5. LEMMA. Let M be a torsion A-module. Then for each element 
m E M there is an integer n such that tnm = 0. 

Proof. The sequence { t, t2, . . .} converges to 0 in A, so by continu- 
ity the sequence { tm, t2m, ... } must converge to 0 in M. Since M is dis- 
crete tnm = 0 for some n. E 

Our main goal in this section is to prove 

7.6. THEOREM. For p > 2 the category TE of p-torsion E(1)*E(1) 
comodules is equivalent to that of Z/(q)-graded torsion A-modules where 
q = 2p -2. 0l 
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Amusingly enough, these same modules have been studied extensively 
by Iwasawa [19] in connection with the class number of cyclotomic fields. 
He has classified such modules (with a certain finiteness condition) up to 
isogeny, a certain equivalence relation weaker than isomorphism. A con- 
cise, readable account of his work has been given by Manin [30] section 1. 
We will not make use of this classification here, but is gratifying to know 
that it exists. 

To prove 7.6, note that if M is an E(1)*E(1)-comodule concentrated 
in dimensions divisible by q, then Mo is a comodule over E(1)OE(1) with 
M = Mo (0 E(1)*. Let ToE denote the category of nongraded torsion 
E(1)OE(1)-comodules. Then 7.6 is clearly equivalent to 

7.7. THEOREM. The category ToE is equivalent to the category TA 
of Torsion A-modules. 

To prove 7.7, it is convenient to replace E(1)* byE(1)* = E(1)* 0Zp 
and E(1)*E(1) by E(1)*E(1) = lim, E(1)* /pi BP* BP*BP 0BP* E(1)*. 
An important difference between E(1)*E(1) and E(1)*E(1) is that v7 - 

7R V 1 is divisible by p in the former but not in the latter. The convenience 
of having v7 '-RVj7t mod p will become apparent below. 

7.8. PROPOSITION. If M is a torsion E(1)*E(1)-comodule then it is 
an E(1)*-module and M OE(1)* E(1)*E(1) = M E(1)A E(1) AE(1). D 

Now let K(1)* = E(1)*/(p) and K(1)*K(1) = K(1)* OBP* 

BP*BP OgBP* K(1)* = K(1)* (?BP* BP*BP OBP* E(1)*. This object was 
studied extensively in [42], [40)] and [35]. In section 2 of [42] we showed (in 
slightly different language). 

7.9. THEOREM. As Hopf algebras over Fp, K(1)OK(1) = Hom,(A, 
Fp) where Hom,( , ) denotes the group of continuous homomorphisms 
(the topology on A is that induced by the ideal (p, t)) and coproduct on A is 
given by A(t) = 1 0 t + t 0 1 + t 0) t, i.e. the coproduct it has as a 
completed group ring. O 

Corollaries of this result are mod (p) analogues of 7.7 and 7.6. 7.7 and 
7.6 themselves are corollaries of 

7.10. THEOREM. LetA = E(1)AE(1). As coalgebras over Zp, A 
Homc(A, Zp). 

Before we can prove 7.10, we need 

7.11. LEMMA. 

(a) A is a Hopf algebra over Zp which is free as a Zp -module. 
(b) There is a short exact sequence of A-comodules 
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(7.12) 0 -Zp A4A A -O 

(c) A = lim, ker p . 

Proof. (a) Since E(1)'E(1) is a Hopf algebroid over E(1)', A is a 
Hopf algebroid over E(1)' = Zp and hence a Hopf algebra. To see that it is 
free over Zp, observe that BP*BP OBp*E(l)* = BP*E(1) which is a sum- 
mand of the flat BP* module BP*v, 'BP = lim- v BP*BP and is there- 
fore torsion free. Hence E(1)* /(pi) ?BP* BP*BP ?BP* E(1)* is a free 
Z/(p')-module for each i and A is free over Zp 

(b) From 7.9, we get a sequence 

(7.13) 0 Fp 4 K(1)0K(1) -P* K(1)0K(1) -+ 0 

where p is dual to multiplication by t. 
Let C = coker p in 7.12. 7.13 is the mod (p) form of 7.12 so we have a 

diagram 

O ->- C -> - C --> C/p - 

O A A - AK(1)oK(1) al O 

If we can lift i to anA-comodule map i, a form of Nakayama's Lemma will 
imply that i is a comodule isomorphism. The obstruction to constructing i 
lies in the group Ext? (C, A) = Extz (C, Zp) which is trivial since C is a 
free Zp-module. 

(c) The mod (p) analogue of this follows from 7.9, so the statement 
itself follows from Nakayama's Lemma. D 

Proof of 7.10. LetA* Homz (A, Zp). Letx EA*be the composite 
A - A Zp where c is the augmentation. Then Homz (ker p', Zp) = 

Zp[x]/(x1) as an algebra, so by 6.11(c) 

A* = Hom(lim ker p, Zp) 

= lim Hom(ker pi, Zp) 

=7 rr 
x] 

-- 
A. 

rm 
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7.14. COROLLARY. Every comodule in TE can be constructed asfol- 
lows. Let N* be a graded torsion A-module with Ni * 0 only if 0 < i < 
2p- 2. Make N0z E(1)*E(1) into a comodule by setting b(n (ge) = 

n (O A(e) forn E N and e E E(1)'*E(1). Then let M be the kernel in 

(7.15) 0 -+ M - NO(E(1)*E(1) -4 N (E(1)*E(1) -O 0 

where gt(n O e) = n O p(e) - tn 0 e and the tensor products are over ZP 
Moreover, M - N ( 1 E 1)* as E(1)* -modules. 

Proof. LetO i <2p-2. 
In dimension i 7.15 becomes 

(7.16) 0 -Ml-*Ni(AAN0(A -0 

It follows from 7.10 that A is a A-module isomorphic to 4b, the cokernel in 
0 -O A - t'1A -+ -D 0 so 7.16 can be rewritten as 

(7.17) 0 Ml4Ni(g)zp -AN,0zp ? 0, 
p p 

a short exact sequence of torsion A-modules with it(n (0 t -i) = n (0 t' -j - 

tn (8 ti. It follows from 7.5 that any torsion A module Mi can arise in this 
manner, so 7.6 implies that M can be any torsion E(1)*E(1)-comodule. 

It is evident that Mi- Ni as Zp-modules for 0 c i < 2p -2, so M- 
NOz E(1)A as E(1)* -modules. O 

8. Localization with respect to K-theory. The main object of this 
section is to prove the Smash Product Theorem (8.1), identifying the func- 
torL1, localization with respect to p-local complex K-theory, with smash- 
ing withL1S0, which is described in 8.10 and 8.15. 

8.1. SMASH PRODUCT THEOREM. For p > 2, L1X = X A L15. 
We will describe L1SO below (8.10). We will need several lemmas in 

order to prove 8.1. First we derive some corollaries. 
From now on in this section assume p > 2 unless otherwise indicated. 

8.2. COROLLARY. The functor L1 commutes with direct limits and 
the category L 1 S is closed under direct limits. O 

8.3. COROLLARY. BPAL,X=XAL,BP. 
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8.4. COROLLARY. If BP*X 0 Q = 0 (i.e. if E(O)*X = 0) then 
BP*L1X = v1'BP*X. 

Proof. We have a cofibration L1BP- LOBP- M1BP and by as- 
sumptionX ALOBP = pt, soBP AL,X = X AL1BP = X A S-'M1BP 
and 7r*(E -'MBP AX) = v1'BP*X. E 

Now we proceed to prove 8.1. 

8.5. Definition. Let M(p') denote the Moore spectrum for Z/(p'), i.e. 
the cofibre in 

s0 o 50 
so 

and let M(p) = lim M(pi). 

8.6. LEMMA. M1E(1) = E(1) A M(p'). 

Proof. From 5.7, we have a cofibration E(1) -+ LOE(1) -+ N1E(1). 
Since LOE(1) = E(1) A L0S, N1E(1) = E(1) A M(p ). By 1.17(a) then 

MiE(M) = L,N,E(l) = NlE(M). O 

8.7. LEMMA. For p > 2 there is a cofibration 

(8.8) M1S -+ MlE(1) 
r 

MlE(1) 

Proof. The map r corresponds to the map p of 7.11(b). Its fibre is 
E(1)*-local by 1.6 and has the same E(1)-homology as M(p ). Moreover, 
the composite M(p ) -- M(p ) A E(1) = M1E(l) rM1E(1) is trivial so 
there is an E(1)* -equivalence from M(p ) to the fibre of r. O 

8.9. LEMMA. For any spectra X, Y, L1X A C1 Y = pt. for p > 2. 

Proof. C1 Y A E(O) = pt., and LOX = E(O) A X, so the cofibration 
L X -LoX -M1X gives L X A C1 Y = EM1X A C1 Y. If we smash M1X 
with 8.8, we get 

M1X - M1X A E(1) MlX A E(1) 

so M1X A C1 Y = pt. since C1 Y A E(1) pt. O 

Proof of 8.1. By 8.9 the mapsL1X = L1X AS 5- L1X AL15, and 
X A L15? -f L1X A L15 are both equivalences. O 
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Next we investigate L 1 S, the K-theoretic localization of the sphere. I 
understand that some results on this topic were obtained earlier by Frank 
Adams and David Baird. (see [3] I). 

8.10. THEOREM. For p > 2 

(a) L1S0 is a ring spectrum with L1S? A L1S? = L1S? 
(b) 

Z(p) for i = 0 

Q/Z(p) for i = -2 
iriL1S? = Z/(pi) for i = spkq - 1 with p t s 

q = 2p-2, and i -1. 

0 otherwise 

(c) The positive dimensional summand of -r*L1So is the isomorphic 
image of the subgroup of 7r*S0 detected by Extip*1p(BP*, BP*) in the 
Adams-Novikov spectral sequence (see section 5 of [41] or section 4 of 
[34]). 

(d) The multiplication map 7riL1S0 0 5 ? ir -2_iL5? 7r-2L1S5 is 
injective. 

Proof. (a) By 8.1, the map So A L1S? L1S? A LIS is an 
equivalence. 

(b) We have the fibration L1S0 -+ LoS4 M1S0 and we know 
LoS? = E(O), so we need to compute ir*MiSo. From 8.6, we see that this 
amounts to computing EXtE(l*E(1)(E(l)*, E(1)*/(p )). By [35] this is iso- 
morphic to ExtBp,Bp(BP*, Ml) which was computed in section 4 of [34]. 
The result is that 7r0M1S0 = 7r_1M1S0 = Q/Z(p) and irjqMlS is the 
stated value of ir lLlS? for j * 0. It is easy to see that iro(j) is the 
standard map Q -+ Q/Z(p), which gives the indicated value of ir*L 1S0. 

(c) and (d). It is evident from the above discussion that ir*LlS0 is in 
effect computed by the first two columns of the chromatic spectral se- 
quence (see section 8 of [41] or section 3 of [33]) for the Novikov E2-term 
ExtBp*Bp(BP*, BP*). Hence (c) is obvious and (d) is an easy computation 
for anyone familiar with [34]. O 

8.11. Remark. The methods used in the proof of 8.10 could be used 
to compute ExtE(1)*E(1)(E(l)*, E(1)*). One finds that Exto = Z(p) and 
Ext2 = Q/Z(p), both concentrated in dimension zero. Ext' gives the re- 
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maining homotopy groups of 8. 10(b) and Ext1 = 0 for i > 3. This accounts 
for the theorem stated in [3] I. 

8.12. Remark. With similar techniques, one can compute 
7r*LK(l)S0, where K(1)* = E(1)*/(p) and LK(l) is localization with respect 
to mod (p) K-theory. In this case, one finds that -r0 = x - 1 = Zp, 7r -2 0 

and the remaining groups are as in 8.10(b). The behavior of ir-1 and xr-2 

can best be understood by taking the local arithmetic square 

Z(p) > Zp 

(8.13) 

Q QP 

where Qp is the field of p-adic numbers, and considering the fibre square 
of localizations of So with respect to K-theory with coefficients in the four 
rings in 8.13. For Qp, we get wro = -1 = Qp and i= 0 fori ? 0, -1. 

We now sketch the situation for p = 2 without giving detailed proofs. 
The Smash Product Theorem (8.1) is true for p = 2 and we will state an 
analogue of 8.10. The main ingredient of the proof of 8.1 is 8.7, which is 
false as stated for p = 2. However, we get a true statement if we replace 
E(1) byKO(2), where KO is the spectrum representing real K-theory. Then 
to proceed further, one needs 

8.14. THEOREM. Let K and KO be the spectra representing com- 
plex and real K-theory respectively. Then K A X = pt. iff KO A X = pt so 
(by 1.8) the functors LK and LKO are the same and <K> = (KO >. 

Proof. We use the fact ([4] p. 206) thatK = KO A CP2, i.e. there is 
a cofibration 

EKO KOA-- KO > K 

where -j is the generator of 7r1S0. Hence KO A X = pt. implies 
K A X = pt. Conversely, if K A X = pt., then -1 induces an automor- 
phism of KO*X. But -j is nilpotent (in fact -14 = 0), SO this implies 
KO*X = 0. II 

To compute 7r*MiS0 and thereby xr*L1S0, one must compute 

ExtBP*BP(BP*, M') for p = 2, which was done in section 4 of [33]. The 
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Novikov spectral sequence for -r*L 1SU at p = 2 does converge but it has a 
pattern of differentials and nontrivial group extensions closely related to 
that described in section 5 of [41]. The result of these calculations is 

8.15. THEOREM. For p = 2 

(a) L1So is a ring spectrum with L1So A L1So = L1So. 
(b) 

Q/Z(2) for i =-2 

Z(2)?)Z/(2) for i - 0 

Z(2)/(2s) for i = 8s-1, s * O 

Z/(2) for i = 8s, s * 0 

Z/(2)?3Z/(2) for i = 8s + 1 

Z/(2) for i = 8s + 2 

Z/(8) for i = 8s + 3 

O otherwise 

(c) The 'first order part' of -r*SO (i.e. Im J and related elements; see 
section 5 of [41]) maps injectively into ir*L 1S0. The map -x*5 ir*Lt S0 
has a cokernel of Z/(2) in dimensions 1 and 2. 

(d) Let Ps, a4s+l and a4s+2/2 denote the generators of 7r8s-1 (S 0), 
2 2 

7r8s+l and lr8s+3 respectively. Then alp, 0 and ala4s+1 = 
4a4s+2/2 ? 0. There are relations a4s+lPt = alPs+t, Ca4s+lta4t+1 = 

al14s+4t+1, a4s+la4t+2/2 = O, Psa4t+2/2 = 0. The maP 7r8s-1 (0 7-8s-1 
-k i-2 iS injective and 7r8,+3 0 7-8s-5 '_ r-2 has kernel Z/2. The ele- 

ment of order 2 in ir0 is Ptal-4t (t * 0) and ir1 is generated by a, and 
t1 CZ-3P1 * DG 

We conclude this section with an amusing example, namely p-adic 
suspensions of L 1M(p ). We have E(1)* M(p ) = E(1)* /(p ). Under 
the equivalence of 7.6, this comodule corresponds to the A-module Qp /Zp 
with t(x) = 0. It is not hard to show that E(1)* EkqM(p 0) corresponds to 

Qp/Zp with t(x) = (_Yk - 1)x where ye zx is the chosen generator. It is 
also easy to construct an E(1)*-local spectrum Xk with E(1)*Xk = 

E(1)*/(p') and such that the corresponding A-module is as before, but 
now k need not be an integer in Z. We can think of Xk as the qk-th suspen- 
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sion ofL1M(p) fork eZp. However, if k OZ, [LoS0,Xk] = O so there is 
no corresponding qk-th suspension L 1SO. 

Section 9. L1RP' andL1CP'. In this section, we will describe the 
K-theoretic localizations of RP' and CP' (regarded as suspension spec- 
tra, not as spaces). We include this material primarily in hopes of stimulat- 
ing other such calculations. The proofs are very computational in nature 
and will probably be of interest only to those who want to apply those tech- 
niques to other spectra. 

9.1. THEOREM. L1RP0 = E'MlS0 . 

Proof. We use the map f: RP - So considered by Kahn-Priddy 
[24]. Since E(O)*RP' = E(O)*RP - 0, f lifts uniquely to a map 

f :RPcO -X CoS0 = S-1M(20). It suffices to show thatf is K(1)* equiva- 
lence (where K(1)*( ) is (E(1)/2)*( * )) and hence an E(1)* -equivalence. 
Since C0S0 -? So is a K(1)*-equivalence, it suffices to show f is a 
K(1)*-equivalence. 

K(1)*RPX was computed (certainly not for the first time) in [44], 
where we showed that it was a one-dimensional K(1)*-module concen- 
trated in even dimensions such that the skeletal inclusion EM(2) -~ RPO 
induces a surjection in K(1)* -homology. f 

We also know that the composite S 1 - RP -f S is 'q, the generator of 
ir1?S. From this fact, it is elementary to show that the composite 

EM(2) -~ RP - S? 

induces an isomorphism in the even dimensional part of K(1)*(*). D 

We now describe L1 CPO . Our main result is 

9.2. THEOREM. Let bu be the spectrum representing connective 
complex K-theory, let f: CPX -S E22bu be the map induced by the stan- 
dard map of spaces CPX -~ BU, and letFdenote thefiberoff. ThenLo(f) 
is an equivalence and L1 F is a wedge of odd dimensional suspensions of 

M1E(1) (8.9). L1bu will be described below (9.21). DG 

As a step toward proving 9.2 we will describe M1 CPO. 

9.3. THEOREM. (a) M1 CP' is a wedge of even dimensional suspen- 
sions of M1E(1)'s. 
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(b) Ext? (l)*(l)(K(1)*, K(1)* CP??) has basis 

?gkp, O?i<n (bpi -vI ): O < < p,n > 0. 

(See 9.6(a)for the definition of bpi.) 

9.4. LEMMA. If K(1)*X is concentrated in even dimensions and 

ExtK(1)*K(l)(K(1)*, K(1)*X) = 0 for i > 0, then M1X is equivalent to a 
wedge of odd dimensional suspensions of M1E(1). 

Proof. The map CoX -- X is as K(1)*-equivalence and E(1)* COX 
can be computed from K(1)* C0X via a Bockstein spectral sequence. This 
spectral sequence collapses because K(1)* C0X is concentrated in even di- 
mensions. Since E(1)* COX is all torsion, it must be divisible. 

Hence there is a short exact sequence 

0 -~ K(1)* COX -+ E(1)* CoX P E(1)* COX -- 0 

and there is a Bockstein spectral sequence going from ExtE(1)*E(l)(E(l)*, 
K(1)*X) = EXtK(1)*K(1)(K(1)*, K(1)*X) to EXtE(t)*E(1)(E(l)*, E(1)* CoX). 
Since the input is concentrated in degree zero, the spectral sequence col- 
lapses and ExtE(1)*E(l)(E(1)*, E()* COX) = 0 for i > 0. 

We can compute [COX, M1E(M)J = [-7'MIX, M1E(l)] with the Ad- 
ams Universal Coefficient Theorem ([41 III 13.6) which says it can be com- 
puted with a spectral sequence whose E2-term is Ext )*(E(1)* CoX, 
-r*MtE(1)). Since both variables are direct sums of E(1)* X Q/Z, this Ext 
vanishes for i > 0 and we have 

[E -M1MX, M1E(l)] = HomE(M)*(E(1)* COX, E(1)* /(p 0)) 

and there is no obstruction to constructing the desired equivalence. D 

We shall need the following facts about K(1)*K(1) = K(1)* (BP* 

BP*BP ( K(1)*, which are proved in [40] and [42]. 

9.5. THEOREM. (a) As an algebra K(1)*K(1) = K(1)* [ti: i > 0] 
/(tf -vV-1)ti). 

(b) For p > 2, EXtK(1)*K(l)(K(l), K(1)*) = E(h1O) where E(* ) de- 
notes an exterior algebra over K(1)* and h1,0 E Ext1 is represented by tI . 
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(c) Forp=2, ExtK(l).K(l)(K(1)*, K(1)*) =E(h2,0)(?P(hl,o)where 
P( * ) denotes a polynomial algebra over K(1)* and h2,0 E Ext' is repre- 
sented by t2 El 

The following facts about K(1)* CP? can be found in [43] and [44]. 

9.6. THEOREM. (a) K(1)*CP? has basis {bi:i > O} with bi E 

K(1)2i CP . 

(b) The coaction ,(b) = b(c(tF)) where b = Ei>o bi, b(x) 

Ei20 Xix1 bi, tF = E2F0 ti E K(1)*K(l) (where EF denotes the sum in the 
sense of the formal group law, and to = 0), and c is the canonical anti- 
automorphism of K(1)*K(l). (This formula comes from an identicalfor- 
mula for the coaction of BP*BP on BP*CP'. In that case, the formula 
gives a finite sum in each dimension, and the formula for the K(1)*K(1) 
coaction is to be interpreted in the same way.) In particular Ahpn = 1 (0 
bhn + vpl n1 t I03 b n-i modulo the ideal generated by all bi with pn-l / i. 

(c) In the multiplication on K(1)* CP? induced by the H-space struc- 
ture on CP', biP = v bi and bibj (=i+j)bi+j modulo lower b's. Hence if 
we write n = E aipi with 0 < ak < p we have (up to multiplication by a 
nonzero scalar) Hi bp = bbn modulo lower b's. El 

Proof of 9.3. Certainly K(1)*CP? = BP*CP'? BP* K(1)* is con- 
centrated in even dimensions, so by 9.4, it suffices to show that 

ExtK(l)*K(l)(K(1)*, K(1)* CP?) = 0 for i > 0. This Ext group is the target 
of a first quadrant homology spectral sequence, obtained by filtering CP? 
by skeleta, with 

2 (9.7) E =t,* HSCPX 0( Ext tK)*K(t)(K(l)*, K(1)*). 

ExtK(0)*fK()(K(1)*, K(1)*) is described in 9.5 and the differentials in the 
spectral sequence are determined by the comodule structure of K(1)* CP?, 
which is described in 9.6. 

We now analyze the spectral sequence for p > 2. In order to avoid the 
nuisance of having to keep track of powers of v1, we pass to the corre- 
sponding Z/(q)-graded object by setting v1 = 1. Then we claim 

(9.8) E2 = Eq and dqbi+pl = +ih1,ob. 

(9.9n ) E2P n- = E2pn+1 -2 
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with basis 

{bpkj-l :0 < j < p - 1, 0 C k < n} U {bip nhh0, bipn-: i > 0} 

(9.10n) d2P+l -2bipn+pn+lt1 = ?ih1,0bipn for n > 0. 

Together these imply that E' has basis { bjpn-l 1 0 < n, 2 c j c p }. 
Hence Ext' = 0 and (a) follows. An easy calculation based on 9.6 shows 
that the elements listed in (b) are in Exto, and the calculation of E' shows 
that they span Ext0. 

Now 9.8 follows easily from 9.6(b), and 9.91 follows by dimensional 
reasons, i.e. the structure of E2P-1 is such that no nontrivial differentials 
dW can occur for r < 2p2 - 2. Similarly, 9 9n+1 follows from 9%9n and 
9.10n, so it suffices to prove the latter. 

Let xn = HO<i<n (bpi-1 - 1), so biXn = 0 if pn t i by 9.6(c). The 
spectral sequence element biP1?+p11+1_? is represented in K(1)*CP' by 
b(i+p-l)pnXn by 9.6(c). To compute the desired differentials it suffices to 
compute the coaction in K(1)*(CP'/CPP -') = K(1)*CPOO,,. We let 
A(u) = ;(u) - lOu. Then we have 

(9.11) Vb(j+p_j)pnXn ?+it, tbipnXn K(1)*K(1)0K(1)*CPipn. 

We can write 

(9.12) xn = (-1)l+tbPnTtx-t + (-1)n where xo = 1. 
O<t?n 

From 9.6, we can also deduce that 

(9.13) lbipn+pn+1-tbpPn-tXnt 

= t1 0$) bipnbp1n2txn-t e K(1)*K(1) K(1)* CPp . 

for 0 < t c n. 

Combining 9.11, 9.12 and 9.13, we get 

(9.14) )P(b(j+plj)pnXn + i (-)tbipn+pn-t+1bpn 2tX) =<t<n K 

i ?t1 0 binE K(1)* K(1)?K(1)* CP O'. 
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Then 9.9 and 9.10 follow from 9.14. 
We now treat the case p = 2. We claim 

(9.15) d2 = hl,ob2 for i > 0, 

and 

(9.16) E3 = E8 with basis {b2i+ 1, b2i+lh2,0: i 2 0} 

(9.17n) for n 2 0, El?+2n+2 = E2n+3 

with basis 

{b2k.l 0 < k < n} U {b2n+li+2n+l-l, b2n+li+2n+l-lh2,0 i 2 0}, 

(9.18n) 
for i, n 2 0, 

d2nb2n+2i+3 

2n+l-1l 

h2,ob2n+2i+2n+1-l and 

d2n3 b2n+2i+21l+2-1 = 0. 

As in the odd primary case, the result follows from these four state- 
ments. 9.15 and the structure of E3 follow from 9.6(b) and 9.5(c). In this 
case h 1,0 is a polynomial rather than an exterior generator, so h 1,0b2i is not 
a cycle. The spectral sequence is concentrated in even dimensions so 
E2i-l = -2i. 

E E21 

In K(1)*K(1) 0 K(l)*CP' we have ^2b4i+4 = t2 0 b4i+2x1 + 

it, 0 b4i by direct calculation. It follows that 

(9.19) &(blb4i+4 + ib4i+2) = t2gb4i+l 

inK(1)*K(1) (8 K(1)* CPb4i+1, sod = h2,0b4i+ 1. It also follows that 
= Oin K(1)*K(1)?K(1)* CP~4i, sob4i+3 is a cycle in E8 and we 

have proved 9.180. 
To prove 9.18n for n > 0 we take 9.19 and multiply the subscripts on 

the left by 2n. The right hand side will then have some terms involving 
some bj's with 2n t j. These can be eliminated by multiplying by the primi- 
tive element xn, so we get 

(9.20) knfl(b2nb2n(4i+4) + ib2n(4i+2)) = t2( b201(4i+l) 
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in K(1)* K(1) ?D K(1)* CP3 2(4i+ 1). Then modifying the argument for 9.180 
we get 9.18. D 

Now as a prelude to the proof of 9.2, we describe L1 bu. 

9.21. THEOREM. Lobu = Vi:>o 2 2iE(O), 

Mlbu = V0?jmp_l ,2iMlE(1) 

and thefibration LIbu -- Lobu - Mlhbu is such that 

(Z(p) if i 2 0 and iis even 

7riLlbu = Q/Z(p) if i c -3 and i is odd 

0 otherwise. 

Proof. The homotopy type of Lobu is obvious. There is a map hbu 
vo<<_ 1 S21E(1) and we claim thatf :N1bu -- voj5p-1 N1 T2iE(1) is 
an E(1)*-equivalence. The p-component of the cofibre of f has torsion ho- 
motopy groups which are trivial in positive dimensions, so it is 
E(1)*-acyclic by 4.8. N1E(1) is E(1)*-local so Mlbu is as described. The 
behavior of the map Lobu M1 bu in homotopy can be read off from the 
diagram 

bu Lobu Nlbu 

V 2) r21) EjL0 V N V 2iE(1). 
o<i<P-1 Oci<p-1 O<i<p-1 

Proof of 9.2. First we show that f is a rational equivalence. Since 
BU = QSU by Bott periodicity, we have a map g: ECPX -+ SU, giving a 
diagram 

SU(n)1 - - SU(n . S2n++ 

SU(n) SU(n +1) S2nI 
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where the top row is a cofibre sequence and the bottom row is a fibre se- 
quence. E CP and SU are rationally equivalent to a wedge and product of 
odd dimensional spheres respectively, and g is the obvious map between 
them. Hence stabilizing (i.e. suspending the source and delooping the tar- 
get) gives a stable rational equivalence. 

It follows that L1F = E-2M1F. Both M1CP' and M1E2 bu are 
wedges of even suspensions of M1E(1), and we will show that Mlf is a 
retraction. It suffices to show that the map 

Mlf *: Ext?K(1)*K(1) (K(1)* , K(1)* CP') -+Ext?K(1)*K(l) (K(1)* , K(l1)* , bu) 

is onto. The latter group has a K(1)*-basis with (p - 1) elements which 
can be chosen to span (over Fp) the image of the Hurewicz map to 
K(1)* E 2bu, which is isomorphic under suspension to the Hurewicz image 
in K(1)*BU, which is easily seen to be spanned by the image from 
K(1)*CPX of b for0 < i p - 1. 

10. Some conjectures. In this section we get to the heart of the mat- 
ter. In hopes of stimulating further work in this area we list some conjec- 
tures with possible lines of proof suggested by the results of this paper. We 
list them in what appears to be descending order of difficulty. The first 
concerns nilpotence and consists of three statements, one of which has 
Nishida's Theorem as a special case, which we believe are related or per- 
haps special cases of some more general statement. 10.2 enables one to 
construct generalizations of Toda's V(n)-spectra, while 10.4 and 10.5 con- 
cerns their localization properties. 10.6 asserts that E(n) is smashing (1.28) 
and 10.7 determines the BP*-homology of an E(n)*-localization. We de- 
scribe how the localization (5.8) and periodicity (5.9) conjectures of section 
5 may follow from the above. Finally, 10.8 describes the Boolean algebra 
BA (1.21); although this is our last conjecture it is probably not the easiest. 
At the end of the section we summarize the relations between and partial 
proofs of these conjectures. 

10.1. Nilpotence conjecture. Let W, X and Y be finite spectra. 

(a) Any map f :X -S EkX with MU*(f) = 0 is nilpotent, i.e. some 
iterate of f is inessential. 

(b) Let W -~ X -~ Y -4 E W be a cofibre sequence with MU*(f 0. 
Then (X> <(W> v <Y>. 

(c) (H. R. Miller) Let X be p-adically complete such that 
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K(n)*X * 0 and K(n - 1)*X = 0 for some n > 0. Then there is a 
K(n)*-equivalence g :X E kX with H*(f) = 0, where He is ordinary 
mod(p) homology. Moreover if X is a ring spectrum, g can be chosen so 
that the cofibre of any of its iterates is also a ring spectrum. D 

Note that Nishida's Theorem [39] which states that any positive di- 
mensional element of -,r*S is nilpotent, is a special case of 10.1(a). 10.1(b) 
says the map f behaves (in terms of the Bousfield classes of the spectra 
involved) as if it were inessential. Bousfield ([11], 2.11) has shown that the 
same is true if f is smash nilpotent, i.e. if some smash power of it is inessen- 
tial. However the f in 10. 1(b) need not be smash nilpotent, e.g. it is not in 
the sequenceSo PSo -- SS/(p) f S1 

10.1(a) and (b) are false for infinite spectra. Consider the cofibre se- 
quence 

so -+ MU -+ MU f s1 

where the first map is the inclusion of the bottom cell. Then MU*(f) = 0 
but (MU> ? (<S> by the results of section 3 so the analogue of (b) fails 
here. Next we claim (MU> = (So>. Since MU A MU is a wedge of suspen- 
sions of MU, (MU> 2 (MU>. The above cofibration and 1.23 imply 
(so> ' (MU> v (MU>, so (MU> = (So> as claimed. In particular 
(MU> E DL, so the above result of Bousfield (which applies to maps be- 
tween spectra representing classes in DL) implies that f is not smash nilpo- 
tent. This fact enables us to construct a counterexample to the infinite ana- 
logue of 10. l(a) as follows. Let X = vs 0 E -s MU(S) and let g: X -+ X be 
defined by g = VS 0 E S -SMU(S) A f Then MU*(g) = 0 but g is not nilpo- 
tent. 

In 10.1(c) the assumption of p-adic completeness is included merely 
for simplicity. A finite spectrum is p-adically complete if its homotopy is 
all p-torsion. Any spectrum whose homotopy is all torsion (i.e. whose ra- 
tional homotopy type is trivial) is equivalent to the wedge of its p-adic com- 
pletions for various primes p. If X has nontrivial rational homotopy type 
then the obvious analogue of 10.1(c) is true; multiplication by p gives a 
rational equivalence which vanishes in mod(p) homology. 

Also note that if X is not contractible, then for some n K(n)*X ? 0 by 
4.5. Also by 2.11, K(n - 1)*X = 0 implies K(i)*X = 0 for all i < n and 
K(n)*X ? 0 implies K(i)*X ? 0 for all i > n. 

One may ask why 10.1(c) is included here at all since it concerns the 
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existence of maps which are not nilpotent. In a moment we will discuss a 
possible derivation of (c) from (a), but first consider the following. Let BP 
be the cofibre of the inclusion of the bottom cell in BP. Consider the com- 
posite 

k 

s0 o BP -dBp > -dp- 

where d = 2k(pn - 1). It can be shown that if X is as in 10.1(c) and k = pi 
for i sufficiently large, then smashing this map with X gives a map which is 
trivial in BP*-homology. Now suppose we know that for k = p +j for some 
j, the resulting map is null homotopic. (This is a sort of nilpotence condi- 
tion). Then we can lift the map X - E -dBP A X to E -dX and this lifting is 
the desired g. 

Now we give a possible derivation of 10.1(c) from 10.1(a). Consider 
the Adams spectral sequence (based on ordinary mod(p) homology) for 
[X, X]. It will have a pairing based on composition and there will be a class 

x E k'd+k with xi ? 0 for all i > 0 and such that if it were a permanent 
cycle it would be represented by the map g. No power of x can be the target 
of a differential because the corresponding class in the BP*-Adams spec- 
tral sequence for [X, X] would have filtration zero. 

The difficulty is that x and conceivably all of its powers could support 
nontrivial differentials. However, there are only finitely many multiplica- 
tive generators in E2st with t < s(2ppn - 1) (we assume the bottom cell or 
cells of X are in dimension 0), i.e. lying above the line where x and its 
powers lie. Any products of these generators which are permanent cycles 
will correspond to self-maps of X which are nilpotent in BP* homology and 
therefore nilpotent by 10.1(a). From this fact it should be possible to de- 
duce that for some finite r and j, Erst = O for t < s(2p" -1)-j, i.e. Er 
has a vanishing line of slope l/2(pn - 1). Since x E E2, x P survives at least 
to E2+j and for i large enough any nontrivial differential supported by x P 
would have its target above our vanishing line. Therefore this x P is a per- 
manent cycle corresponding to the desired K(n)* -equivalence of X. 

10. l(c) is useful for constructing complexes realizing cyclic BP*-mod- 
ules, specifically quotients of BP* by invariant regular ideals. Such ideals 
are studied by Landweber [27] and Johnson-Yosimura [23]. Such com- 
plexes are known to be useful for constructing elements in i-X* S; see [41] 
pp. 445-447, 451-458 for a discussion of this topic. At present such com- 
plexes are known to exist only for certain ideals with few ( c 4) generators. 
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There are no known examples of nontrivial finite K(n)* -acyclic spectra for 
large n. (If the ideal has n generators then the corresponding spectrum is 
K(n - 1)* acyclic but not K(n)* -acyclic.) Such spectra can be obtained by 
induction on n starting with S using 10.1(c); the cofibre of the K(n)*- 
equivalence on the K(n - 1)*-acyclic complex is K(n)* acyclic. In this way 
we get 

10.2. Realizability conjecture. Given an invariant regular ideal 
I C BP* with n generators, I contains a similar ideal J such that there 
is a finite ring spectrum X with BP*X = BP*/J and this X supports a 
K(n)*-equivalence as in 10.1(c). O 

10.3. PROPOSITION. If 10.1(a) and 10.2 are true, so is 10.1(c). 

Proof. Our strategy is to show that a finite K(n - 1)*-acyclic spec- 
trum Y is a module over some X as in 10.2. Then the composite 

Y-fXA Y XA YXA Y 

is a K(n)* -equivalence f on Y if g is a K(n)*-equivalence on X. Suppose 
inductively that Y is a module over a K(n - 2)*-acyclic X' given by 10.2 
with K(n - 1)*-equivalence g'. Using g' as above we get a K(n -1)*- 
equivalence f' on Y. Y is K(n - 1)*-acyclic and therefore E(n- 1)*- 
acyclic by 2.11 and 2.1. From [27] we know that some iterate of g' induces 
multiplication by a power of vn-1 in BP*-homology, so BP*(g' A Y) is 
nilpotent. Then by 10. 1(a) (g i)k A Y is null homotopic for some k. This k 
can be chosen so that the cofibre X of (g )k iS a ring spectrum. Then X A Y 
has X' A Y as a retract, so the X'-module structure on Y gives the desired 
X-module structure. D 

Now we consider the Bousfield class (1.19) of a finite complex. For 
this we will need 10.1(b) as well as (a) and (c). We have 

10.4. Class invariance conjecture. Let X be a finite spectrum. If 
-r*X is not all torsion then (X> = (S>. If 7r*X is all p-torsion, then (X> 
depends only on p and the smallest n such that K(n)*X ? 0. D 

The case when (X> = (S> can be derived from 10.1(b) as follows. 
Using standard methods one constructs an E(0)*- (i.e. rational) equiva- 
lence W -+ X from a wedge of spheres W. The fibre F of this map has 
torsion homotopy and MU*-homology, so the map F -- W is trivial in 

MU*-homology, so 10.1(b) gives (X> = (W> v (F> = (S>. 
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One might prove 10.4 for p-adically complete X as follows. First it will 
be necessary to prove it for the ring spectra provided by 10.2. For these an 
argument similar to that of 2.1(g) may be possible after proving certain 
lemmas about invariant regular ideals. If I and J are realizable in the sense 
of 10.2, show that their intersection contains an invariant regular ideal K 
which is also realizable. Then show it is possible to interpolate between I 
and K as we interpolated in the proof of 2. l(g) between I,, and J. 

Once 10.4 has been proved for spectra X given by 10.2, one shows as 
in the proof of 10.3 that any finite p-adically complete Y is a module over 
someX, so (X> 2 ( Y> by 1.24. Then one constructs a K(n)* -equivalence 
W -- Ywhere Wis a wedge of suspensions of X. As above, the inclusion of 
the fibre F in W is trivial in MU*-homology, so (Y> = (W> V (F> by 
10.1(b), so (Y> = (X>. 

Now we turn to the problem of identifying the Bousfield classes given 
by 10.4. Let X be a p-adically complete finite K(n - 1)* -acyclic spectrum 
with K(n)*X * 0, let g: X E -kX be a K(n)*-equivalence given by 
10. l(c) let Y be its cofibre and X = lim_ _ E-kiX. 

g 

10.5. Telescope conjecture. Let X be as above. Then <X> depends 
only on n and (X> = (K(n)>. O 

Before discussing a possible proof we give some consequences. Even 
without 10.5 we have (X> = (X> V (Y> by 1.34. Hence 10.5 and 2.1(d) 
give (S(p)> = (E(n)> V (Y>. Y is K(n)*-acyclic by construction and 
therefore E(n)*-acyclic by 2.11, so 1.32 gives 

10.6. Smashing conjecture. For each n and p, E(n) is smashing 
(1.28), i.e. LnX = X A LnS and the category of E(n)*-local spectra is 
closed under direct limits. 

This conjecture gives BP A LnX = BP A X A LnS = X A LnBP, i.e. 

10.7. Localization conjecture. For any spectrum X, BP A LnX = 
X A LnBP. In particular if X is E(n - 1)*-acyclic, then BP*LnX = 

Vn 1BP*X. O 

The two statements in 10.7 are actually equivalent. If E(n -1)*X = 0 
then Ln_1X = pt., C,-,X = X and L,,X = L,E-"N,,X = -"M,,X 
(5.10). We also can showX AL,-1BP =pt. soX ABP = X A C,,-1BP = 

X A 7-nNnBP and v,-'BP* = -r*X A E-nM,, BP. Hence the second part 
of 10.7 is equivalent to 

BP A MnX = X A M,,BP 
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To show this equivalent to the first part of 10.7 we compare the cofibre 
sequences 

BP A NX BP AM MX BP A N,+,X 

and 

X A NBP X A MBP X A N,+,BP 

If the first part of 10.7 is true, then X A CnBP = BP A CQX and by 5.10 
X A NnBP = BP A NnX, so BP A M,X = X A MnBP. If the second part is 
true, then BP A Nn+1X = X A Nn+ 1BP by induction on n so BP A QX = 

X A CnBP by 5.10 and the first part follows. 
The localization conjecture 5.8 is a special case of 10.7, and we have a 

program for deriving the periodicity conjecture 5.9 from the above state- 
ments. First note that if a finite p-adically complete spectrum X is 
K(n - 1)*-acyclic then MnX is the telescope X by 10.5, which is a suspen- 
sion of LnX, so the K(n)*-equivalence on X given by 10.1(c) induces an 
equivalence on MnX, so it is periodic. Now we wish to derive 5.9 for 
K(n - i - 1)*-acyclic spectra by induction on i. Consider the 
K(n - i)*-equivalence g: X -- EkX given by 10.1(c). Let Yj be the cofibre 
of gJ. Each YJ is K(n - i)*-acyclic so Mn Yj satisfies 5.9 by the inductive 
hypothesis. We have a cofibration X -- X -+ lim Yj. Since (X> = 

(K(n - 1)> (10.5) and K(n) A K(n - 1) = pt., we have MnX = E- Mn 
lim Yj, Mn commutes with direct limits by 10.6, so we have shown that M,X 
is a direct limit of spectra which are periodic. 

We still need to show the periodicity equivalences commute with the 
maps in the directed system. Suppose X,, -b X: is such a map. Extending 
the argument of 10.3, show this is a map of E-module spectra, where E is a 
K(n - 1)*-acyclic finite p-adically complete ring spectrum given by 10.2. 
As in the proof of 10.3, the K(n)*-equivalences of X. and Xo can be de- 
rived from that on E. Applying Mn gives the periodicity equivalences and 
this construction commutes with the map. 

Next we consider the structure of the Boolean algebra of spectra BA 
(1.21). 10.4 and 10.5 determine the Bousfield class of any finite spectrum 
and therefore give a subalgebra FBA of BA which we will describe below. 
We are tempted to conjecture that FBA is all of BA, but have not the 
slightest idea of a proof. Note that 1.32 asserts that an infinite wedge of 
finite spectra also gives a class in BA, but in general a Boolean algebra 
need not have infinite A or V products. For example it follows from 10.4 
and 10.5 that <K(n) > E BA for each n and p, but (Vi, 0 K(i) > 0 BA by 2.2. 
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10.8. Boolean algebra conjecture. (a) Let FBA C BA be the Bool- 
ean subalgebra generated by finite spectra and their complements. Let 
FBA(p) C FBA denote the subalgebra of p-local spectra and their comple- 
ments in (S(P) >. FBA(P) is the free (under finite union and intersection) 
Boolean algebra generated by the (K(n) > for n 2 0 (2.1) and (E(n) > c = 
Ai7+ (K(i)> C is represented by a finite spectrum. In other words FBA(p) is 
isomorphic to the Boolean algebra of finite and cofinite sets of natural 
numbers, with (K(n)> corresponding to the set { n. 

(b) A class (X> E FBA is determined by the value of (X> A (S(p) > E 

FBA(p) for all primes p. Any sequence of values may occur provided that 
if (K(O)> < (X A S(p)> for some prime then the same holds for all 
primes. OI 

We will show that (b) follows from (a), which is equivalent to showing 
that (X> E FBA if (X A S(p)> E FBA(p) for all p. We have (X> = 

Vp <X A S(p) >, so (X> c = Ap (X A S(p) > c and we need to show that this 
infinite smash product is defined. Let <YYp > be the complement of 
(X A S(p) > in (S(p) >. Then we have (X AS (p) > c = (yp > V Vq*p (S/(q)> . 
We can use the distributivity law for v and A to smash these together for all 
p and get VP < Yp >>. 

The smashing and localization conjectures (10.6 and 10.7) both follow 
from the telescope conjecture 10.5. Preparatory to discussing a possible 
proof of 10.5 we have 

10.9. THEOREM. 10.6 is truefor n <p - 1. 

Proof. We will show 

(10.10) Exts) E(n)(E(n)*, E(n)*X) = 0 

for s > n2 + n and X any finite spectrum. Then the result will follow from 
Bousfield's Convergence Theorem 1.18. One can show that for finite X, 
E(n)*X has a Landweber filtration (see [28]) i.e. a finite filtration in which 
each subquotient has the form E(n)* "Ik for 0 s k < n, where Ik = (p, v1, 

. Vk1) C E(n)*. Then a routine exact sequence argument shows that 
10.10 follows from 

(10.11) ExtE(n)*E(n) (E(n)*, E(n)* /Ik) = 0 

for s > n2 + N and 0 c k ' n. 10.11 for general k follows from the case 
k = 0. For EXtE(n)*E(n)(E(n)*, E(n)*) one can set up a chromatic spectral 
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sequence (see [41] section 8 or [34] section 3) in which the 0th through nth 
columns will be isomorphic to those in the chromatic spectral sequence for 

ExtBP*BP(BP*, BP*), and all columns to right of the nth will be trivial. 
The triviality of Exts for s > n2 + n will then follow from the Morava 
Vanishing Theorem (3.16 of [34] or 8.26 of [41]). 0 

Now consider the simplest case in which the above argument fails, i.e. 
n = 1, p = 2. Here it is known that the Ext group 10.10 for X = So 
contains an element a, E Ext '2 all of whose powers are nontrivial, so the 
E(1)*-Adams E2-term does not have the vanishing line required by 1.18. 
However it is known (Theorem 5.8 of [41]) that al4 is killed by a d3 in the 
spectral sequence. From this fact we can conclude that the E4-term for any 
finite X has the requisite vanishing property, so 10.6 follows in this case. 

More generally, Morava has shown that the ith column of the chro- 
matic spectral sequence (used in the proof of 10.9) has finite cohomologi- 
cal dimension whenever i is not divisible by p - 1. When (p - 1) I i, he 
has shown that EXtBp*Bp(BP*, vi 1BP*/Ii) is periodic in the cohomologi- 
cal sense, i.e. there is an elementx (such as a, above) such that multiplica- 
tion by it gives an isomorphism above some cohomological dimension. 
Conceivably this x or some power of it comes from an element in 2r* SO and 
is therefore nilpotent by Nishida's theorem, i.e. some higher power of x 
(after it is fed into the chromatic spectral sequence) is killed by a differen- 
tial. Then it would be possible to show that some Er-term for X = So has 
finite cohomological dimension and we can use 1.18 as in 10.9. 

Now consider the telescope conjecture 10.5. We have a finite 
K(n - 1)*-acyclic complex X with a K(n)*-equivalence g: X -+ E2-dX and 
K(n)*X * 0. We have X = lim-, -7idX and we wish to show <X> g 

<K(n)>. Suppose we know that the BP*-Adams spectral sequence for 2r*X 
converges; we will come back to this point below. We have BP*X = 

vnT1BP*X, and it has a finite Landweber filtration (see [28] 1.16) with all 
subquotients isomorphic to a suspension of v, 1BP*/In. Hence the E2- 
term ExtBp*Bp(BP*, BP*X) is related to ExtBp*Bp(BP*, vn 1BP*/In) by 
certain long exact sequences. It follows that it is finitely generated as a 
module over Ext?BPBP(BP, vn 1BP/I) for a suitable invariant regular ideal 
I with n generators. Moreover using 10.2 this I can be chosen so there is a 
finite ring spectrum Y with BP* Y = BP*/I and such that X and X are 
Y-module spectra. Using arguments similar to those sketched above, one 
might show that some Er-term in the spectral sequence has finite cohomo- 
logical dimension. This would mean that X can be constructed from K(n) 
by a finite number of cofibrations, i.e. X has a finite Postnikov tower if we 
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use K(n) instead of H/(p) as our basic building block. It follows that 
(X> ' (K(n)>. We have (K(n)> ' (X> by 2. 1(h) since K(n)*X ? 0. 

To show (K(n)> ' (X>, first show (X> = (Y> (where Y is the tele- 
scope associated with Y, the finite ring spectrum over which X is a module 
with BP* Y = BP*/I) using an argument similar to that given above for 
the class invariance conjecture 10.4. Then we have (X> 2 ( Y A BP> = 

(v 1BPI> and (vn- 1BPI> = (K(n)> by 2.1. Hence (X> = (K(n)> as as- 
serted in 10.5 if all goes well. 

The above argument depends on the convergence of the BP*-Adams 
spectral sequence for -r*X. We know the spectral sequence for 7r*X con- 
verges since X is finite, and we know 2-x*X = lim- lr*- * idX =g-r*X. 
If the spectral sequence for 7r*X fails to converge it is because there are 
some g*-torsion free elements in 7r*X not detected by the spectral se- 
quence, i.e. elements u such that the elements i-*(g')u are all nontrivial 
and have unbounded (with respect to i) BP*-Adams filtration. We will re- 
fer to such a sequence of elements as an exotic family. In order to prove 
such exotic families cannot exist one might use the classical Adams spec- 
tral sequence for i-*X as follows. 

At this point we must ask the reader to recall the discussion of a possi- 
ble derivation of 10. l(c) from 10. l(a). We had an element x in the classical 
Adams spectral sequence for [X, X] and we argued that some Er-term of 
this spectral sequence must have a vanishing line parallel to the line 
through the origin on which x lies. The same must be true of the classical 
Adams spectral sequence for i-*X. In [32] H. R. Miller developed machin- 
ery helpful for computing the localization of the classical Adams E2-term 
obtained by inverting x. In general this localization will be larger than the 
corresponding localization of the BP*-Adams E2-term. In [33] Miller dis- 
cusses the problem of computing certain differentials in the classical spec- 
tral sequence which will reduce the localization to something comparable 
to that of the BP* E2-term. In particular he proves the convergence for the 
case X = SO U e 1, the mod(p) Moore spectrum for p > 2. 

If an exotic family exists then the corresponding sequence of elements 
in the classical spectral sequence must contain an infinite subset of ele- 
ments annihilated by composition with x (since the corresponding compo- 
sition vanishes infinitely often in the BP*-Adams spectral sequence), i.e. 
the family contains infinitely many elements whose composition with g has 
higher Adams filtration than one would expect. However, the parallel van- 
ishing line in Er precludes this possibility. Thus we conclude, modulo 
many gaps in the argument, that the BP*-Adams spectral sequence for 
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-r*X converges and that the telescope conjecture is true. In any case we 
have 

10.12. THEOREM. The nilpotence conjecture 10.1(c) and the tele- 
scope, smashing and localization conjectures (10.5, 10.6 and 10.7) are true 
for n = 1. 

Proof. The proof of 10.1(c) in this case is due to J. F. Adams. The 
statement is that any finite spectrum X whose homotopy is all p-torsion 
has a self-map g: X -- E2-dX (d > 0) which is a K(1)*-equivalence. Any 
such X is a module spectrum over the mod (pm) Moore spectrum Ym = 

SOupme 1 for some m. It suffices to construct a K(1)* -equivalence h: Ym 
dy, because we can define g to be the composite 

X Ym AX dYm AX-27dX 

The map h was constructed for p > 2 by Adams in [1], Lemmas 12.4 and 
12.5. For p = 2 one needs the methods of [1] along with the knowledge 
that the e-invariant detects a direct summand of 1r8k-1; this follows either 
from the Adams Conjecture or the 'more delicate arguments' referred to on 
page 21 of [1]. These give elements x in -r*S with order 2 and e-invariant 
2-'. Adams' Lemma 12.5 requires in addition the triviality of the Toda 
bracket { 2i, x, 2 }. For i > 1 this is automatic given that 21x = 0; one can 
use the multiplication on the mod(21) Moore spectrum to construct the 
appropriate map. Then 12.5 gives the map h. 

For the telescope conjecture, let X and Ym be as above, let X and Yn 

be the corresponding telescopes, and assume K(1)*X * 0. Bousfield ([10], 
4.2) has shown that < Y1 > = <K(1)>. For < Ym > we have cofibre sequences 

Y, -Ym Ymiso<Ym> s <Y1> V <Ym-1> = <K(1)>byinductionon 
m. If we can show Ym is a ring spectrum over which Ym-1 is a module, we 
will have < Ym > 2 <K(1)> by 1.24. Since Ym is K(1)*-equivalent to Ym and 

< Ym > < <K(1)>, we have Ym A Ym = Ym A Ym so the Ym-module struc- 

ture on Ym makes Ym a ring spectrum. The Ym-module structure on Ym-, 

follows by a similar argument, so < Ym > = <K(1)> for all m. 
Similarly X is a module over some Ym so <X> c <K(1)> by 1.24. 

Since X and X are not K(1)* -acyclic, (X A K(1) > = (K(1) > by 2. 1(h), so 

(K(1)> c (X> and 10.5 follows for n = 1. We have already seen that 10.5 
implies 10.6 and 10.7. O 

Next we have 
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10.13. THEOREM. If the realizability conjecture (10.2) is true for 
n + 1 then so is the localization conjecture for n (10.7). 

Proof. Let J C BP* be an invariant regular ideal with n + 1 genera- 
tors such that there is a finite ring spectrum X with BP*X BP*/J. Then 
we claim BP A X = BPJ (see 2. 1(g)), and will verify this at the end of the 
proof. By smashing X with finite skeleta of BP, we see that BPJ is a direct 
limit of finite E(n)*-acyclic spectra. 

Using the methods of section 5 and section 6, one can show that 
LnBP A CnX = pt., which implies that LnBP A X = LnBP A LnX. If we 
can show that CnBP A LnX = pt., then we will have BP A LnX 
LnBP A LnX and 10.7 will follow. 

By 6.3 and 5.10, ir* CnBP = -n-lNn+l . Nn+1 can be written as a 
direct limit in which each subquotient is a suspension of BP*/J. It can be 
shown analogously that CnBP is a direct limit in which every cofibre is a 
suspension of BPJ. Hence it suffices to show BPJ A LnX = pt. 

We have seen above that BPJ = lim Yi with Yi finite and 
E(n)* Yi = 0. By Proposition 2.10 of [11], this implies E(n)* DYi = 0, 
where DYi is the Spanier-Whitehead dual of Yi. If we regard LnX as the 
representing spectrum of a generalized homology theory, we have 7r* Yi A 

LnX = (LnX)* Yi = (LnX)*DYi = [DYi, LnX]. This last group is trivial 
by Definition 1.3 since DYi is E(n)*-acyclic. 

Finally, we will verify our claim that BP A X = BPJby induction on n. 
Let J' be the invariant regular ideal generated by the first n generators of 
J, and assume there is a finite ring spectrum X' with BP A X' = BPJ'. By 
definition BPJ is the cofibre of composite h 

dA BPJ q n BP A BPJ - 0- BPJ 

where qn is the last generator of J. Similarly X is the cofibre of the 
composite g 

S X,qnAX' 
5d A X' -- X' A X' - - X 

where q E lrdX' maps to qn e BP*X' = BP*/J' under the Hurewicz 
homomorphism. We want to show that the equivalence X' A BP BPJ' 
sends g A BP to h. We get this from the commutativity of the following 
diagram 
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BP A BPJ 

Sd A BPJ BPJABPJ - 1- BPJ 

X A BPJ 

SdAXABP -XAXABP --XABP. O 

For the reader's convenience we summarize our conjectures, the pos- 
sible relation between them and the special cases known to be true. The 
conjectures are 

10.1. (a), (b) and (c) Nilpotence, 
10.2. Realizability, 
10.4. Class Invariance, 
10.5. Telescope, 
10.6. Smashing, 
10.7. Localization and 
10.8. Boolean Algebra. 

Possible arguments involving the Adams spectral sequence are given 
to show that 10.1(a) implies 10.1(c) and 10.5. Nishida's Theorem [39] is a 
special case of 10.1(a). In 10.3 it is shown that 10.1(a) and 10.2 together 
imply 10.1(c). The periodicity conjecture 5.9 is derived from 10.1(c) and 
10.5. A possible derivation of 10.4 from 10.1(b) is described. In 10.13 it is 
shown that 10.2 implies 10.7. It is easy to see that 10.5 implies 10.6 which 
in turn implies 10.7. 10.9 shows that 10.6 is true for n < p - 1, and 10.10 
shows that 10.1(c), 10.5, 10.6 and 10.7 are all true for n = 1. 

UNIVERSITY OF WASHINGTON 
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