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Abstract

We discuss the chromatic filtration in stable homotopy theory and
its connections with algebraic K-theory, specifically with some results of
Thomason, Mitchell, Waldhausen and McClure-Staffeldt. We offer a new
definition (suggested by the failure of the telescope conjecture) of the
chromatic filtration, in which all of the localization functors used are finite.

The telescope conjecture (2.2 below) was first announced by the author in
1977, published in [Rav84], and disproved in 1990 [Rav92b] [Rav]. It is a state-
ment about the chromatic filtration, which was originally devised to understand
the stable homotopy theory of finite complexes. Very briefly, for each prime
there is a series of localization functors Ln defined in the homotopy category
(both stably and unstably) so that for each spectrum X there is an inverse
system (called the chromatic tower)

L0X ←− L1X ←− L2X ←− · · · .
The chromatic filtration of π∗(X) defined in terms of the kernels of the maps

π∗(X) −→ π∗(LnX).

The chromatic convergence theorem (1.2) says that the inverse limit is X
when X is a p-local finitecomplex. L0X is the rational homotopy type of X
and L1X is its localization with respect to p-local complex K-theory. Both of
these functors are well understood. The other functors are less familiar but
manageable, and we have a good handle on the nth ‘layer’ of the chromatic
tower, i.e., the fibre of the map

LnX −→ Ln−1X.

∗Partially supported by the National Science Foundation
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Thomason’s theorem (3.1) says that when X is the K-theory spectrum for
a reasonable ring R, then for each positive i, πi(L1X) is precisely the value of
Ki(R) predicted by the Lichtenbaum-Quillen conjectures. Mitchell’s theorem
(3.2) says that in this case LnX = L1X for all n > 1, i.e., the higher layers of
the tower tell us nothing about conventional algebraic K-theory.

However, the chromatic filtration is of more interest in Waldhausen’s al-
gebraic K-theory of spaces as explained in [Wal84]. Very recently, McClure
and Staffeldt [MSb] have proved a convergence theorem for one Waldhausen’s
versions of the chromatic tower.

In Section 1 we will give a very expository account of the chromatic filtration;
a much fuller account can be found in [Rav92a].

In Section 2 we will define some new localization functors Lf
n (2.6), which

leads to a new chromatic filtration suggested by the failure of the telescope
conjecture. It has most of the desirable properties of the original one, with the
exception of the chromatic convergence theorem, which is still an open question.
We use the notation Lf

n (suggested by Miller) to emphasize the connection
with finite complexes; this functor is finite (see Definition 1.7) in the sense of
Waldhausen [Wal84]. The map X → LnX factors canonically through Lf

nX,
but the explicit relation between the two functors is still mystery.

The results of this section (and also Corollary 1.19) are new and we will
give detailed proofs. They do not depend logically on our disproof of the tele-
scope conjecture. These results have been obtained independently by Mahowald-
Sadofsky [MSa] and Miller [Mil].

In Section 3 we will describe some connections with algebraic K-theory,
namely the theorems of Thomason (Theorem 3.1) and Mitchell (Theorem 3.2),
Waldhausen’s program and the convergence theorem recently proved by McClure-
Staffeldt (Theorem 3.7). I am grateful to Mitchell, McClure, Staffeldt and
Waldhausen for helpful discussions on this material.

Throughout this paper all spectra will be assumed to be p-local for a fixed
prime p unless otherwise stated.

1 The chromatic filtration

Before giving the definitions needed for the chromatic filtration, we will discuss
why it is interesting. In the diagram

L0X ←− L1X ←− L2X ←− · · · , (1.1)

the functors Ln are Bousfield localizations, rather mysterious objects whose
existence and properties are guaranteed by a deep result of Bousfield (Theorem
1.5). The original motivation for studying them comes from the properties of
the Adams-Novikov spectral sequence described first in [MRW77], and later in
[Rav86] and [Rav92a]. Fortunately we need not discuss these computational
intricacies here. Suffice it to say the following:
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• Let MnX denote the fibre of the map LnX → Ln−1X, the ‘nth layer’ of
the chromatic filtration. There are effective methods for computing its
homotopy groups completely in some interesting cases.

• The graded group π∗(MnX) is always organized in a particular way. Its
elements fall into ‘vn-periodic families;’ for each nontrivial x ∈ πs(MnX)
there is a j such that there is a corresponding nontrivial element in
πt(MnX) for each t congruent to s modulo 2pj(pn − 1).

There is also the following convergence theorem, proved in [HRa] and in
[Rav92a, §8.6].

Theorem 1.2 (Chromatic convergence theorem) For a p-local finite com-
plex X,

X ' lim
←

LnX.

Localization

Now we need to discuss the localization functors Ln more precisely. In the
simplest sense, localization at a prime p means ‘ignoring torsion prime to p.’
In algebraic topology this translates into ignoring phenomena which can not be
detected by mod p homology. (We will make this more precise momentarily.)
In the 1960’s the concept of homology itself was generalized substantially. We
now associate a generalized homology theory to a spectrum E by defining

E∗(X) = π∗(E ∧X).

Here X can be either a space or a spectrum. In the case of ordinary homology,
the spectrum E is made of Eilenberg-MacLane spaces.

Localizing with respect to E means ignoring phenomena not detected by
E-homology. One could do this formally by taking the homotopy category and
formally inverting all maps inducing isomorphisms in E-homology; this is the
approach taken by Gabriel and Zisman in [GZ67]. One then has a ‘category of
fractions’ in which the objects are not spaces or spectra but equivalence classes
of same. Bousfield’s theorem says that this artificial category can in fact be
embedded as a full subcategory in the original category. Without proving the
theorem, it is easy to say what the objects in the embedded category should be.

Definition 1.3 (i) A space or spectrum X is E-local if for every map

W1
f−→W2

with E∗(f) an isomorphism, the map

[W1, X]
f∗←− [W2, X]

is an isomorphism.

3



(ii) An E-localization of an arbitrary space or spectrum X is a map

X
λ−→ LEX

with LEX local as above and E∗(λ) an isomorphism.

Thus LEX, if it exists, is the image of X under the composition of the
Gabriel-Zisman construction and Bousfield’s embedding. Once it has been con-
structed, we no longer need the Gabriel-Zisman construction.

The following properties of LEX are formal consequences of the definition.

Proposition 1.4 If the map λ of 1.3(ii) exists, then:

(i) It is unique up to homotopy.

(ii) Given any map f : X → X ′ with E∗(f) an isomorphism, there is a unique
(up to homotopy) map λ′ making the following diagram commute

X LEX

X ′

-λ

?

f

p p p
p p p

p p pµ

λ′

i.e., λ is terminal among all E∗-equivalences out of X.

(iii) Given any map g from X to an E-local spectrum Y , there is a unique (up
to homotopy) map g′ making the following diagram commute

X LEX

Y

-λ

?

g

pppppppppª g′

i.e., λ is initial among all maps to E-local targets from X.

This result suggests that LEX can be constructed as the direct limit of all
E∗-equivalences out of X. There are set theoretic difficulties with this, because
the collection of all such maps forms a class rather than a set. Bousfield found
a way around these problems and proved the following in [Bou75] and [Bou79].

Theorem 1.5 (Bousfield localization theorem) For any spectrum E and
any space or spectrum X, the localization LEX exists.

One can ask for additional properties of the functors LE .
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Definition 1.6 A spectrum E (or the functor LE) is smashing if it has any
of the following properties (which were shown to be equivalent in [Rav84, Prop.
1.27]).

(i) LE = LT where T = LES0.

(ii) LEX = X ∧ T .

(iii) LE commutes with direct limits.

(iv) Any direct limit of E-local spectra is E-local.

The functors Ln of 1.10 and Lf
n of 2.6 are both smashing. The latter state-

ment is easy, but the former is a deep theorem proved in [Rav92a, Chapter
8].

A still stronger condition on the functor LE is the following.

Definition 1.7 A localization functor LE is finite if there is a (possibly infi-
nite) collection of finite spectra M = {Xα} such that the class of E∗-acyclic spec-
tra is precisely the class of spectra obtainable from elements of M by homotopy
equivalences, direct limits, cofibres, desuspensions and (redundantly) retracts.

An equivalent definition was given by Waldhausen [Wal84, page 180]. We will
explain now why the retract condition is redundant. Let C be a class of spectra
closed under homotopy equivalence, mapping cones, (possibly infinite) wedges,
desuspension and (redundantly) suspensions. Now suppose that W = X ∨ Y is
in C. Let f : W →W be the composite

X ∨ Y → X → X ∨ Y.

Then X is the homotopy direct limit obtained by iterating f , i.,e., the cofibre
of a certain self map on the wedge of countably many copies of W . Hence X is
in C.

Bousfield proved that LE is smashing if it is finite, and he conjectured the
converse. The functors Lf

n are finite (almost by construction), but the statement
that Ln is finite is equivalent to the telescope conjecture, and therefore true for
n ≤ 1 but probably false for n ≥ 2. Hence Bousfield’s conjecture, like the
telescope conjecture, is false. However we can say that the Lf

n are the only
(modulo the usual complications of mixing primes) finite localization functors.
This is an easy consequence of the thick subcategory theorem. These assertions
will be proved below in Corollary 1.19.

BP and related theories

The functors Ln used in the chromatic filtration are Bousfield localizations
with respect to certain homology theories, which we need to discuss now. We
will be very brief, referring the curious reader to [Rav92a], [Rav86] or [Rav84]
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and the references therein for more details. For each prime p there is a ring
spectrum BP satisfying

π∗(BP ) = Z(p)[v1, v2, · · ·] where |vn| = 2pn − 2.

The details of its construction need not concern us here. The following re-
sult, due to Devinatz, Hopkins and J. Smith [DHS88], is an indication of the
importance of this homology theory.

Theorem 1.8 (Nilpotence theorem) Let X be a finite complex and suppose
we have a map f : ΣdX → X for some d ≥ 0. Then f is nilpotent in the sense
that some composite in the diagram

X
f←−−−−−− ΣdX

Σdf←−−−−−− Σ2dX
Σ2df←−−−−−− Σ3dX

Σ3df←−−−−−− · · ·

is null homotopic, if and only if the same is true of the homomorphism BP∗(f).

In order to define Ln for each n ≥ 0, we need the spectrum v−1
n BP , which

is the direct limit of the diagram

BP
vn−→ Σ−|vn|BP

vn−→ Σ−2|vn|BP
vn−→ · · · . (1.9)

(For n = 0, we use v0 = p.) The map we are calling vn is constructed from
vn ∈ π∗(BP ) as follows. The latter is a map from S|vn| to BP . We can smash
both source and target with BP and get a diagram

Σ|vn|BP
vn∧BP−−−−−−−−−→ BP ∧BP

m−→ BP

where m is the multiplication map for the ring spectrum BP . The resulting
composite is the map used in (1.9).

Definition 1.10 The functor Ln of (1.1) is Bousfield localization with respect
to v−1

n BP .

The maps used in (1.1) are not obvious from what has been said here, but
they are explained in [Rav84].

A closely related concept is the following.

Definition 1.11 For a spectrum X, L∞X denotes LEX for

E =
∨

n≤0

v−1
n BP.

X is harmonic if L∞X = X and dissonant if L∞X = pt.
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In general a spectrum need be neither harmonic nor dissonant. There is
always a cofibre sequence

D −→ X −→ L∞X

with D dissonant and L∞X harmonic.
In [Rav84, Theorem 4.4] it was shown that many spectra are harmonic.

These include all finite spectra and all connective spectra with torsion free
homology. On the other hand, the mod p Eilenberg-Mac Lane spectrum is known
to be dissonant. In [HRb] we showed that all suspension spectra are harmonic.

Note that L∞X is not necessarily the same as lim← LnX. There is a natural
map

L∞X −→ lim
←

LnX

and we have

v−1
m BP∗(X) = v−1

m BP∗(L∞X) = lim
←

v−1
m BP∗(LnX)

for each m. However, since homology need not commute with inverse limits, we
do not know in general that

lim
←

v−1
m BP∗(LnX) = v−1

m BP∗(lim← LnX).

The chromatic convergence theorem says that this equality does hold for finite
X.

Morava K-theory and periodicity

Closely related to BP are the Morava K-theories. These are ring spectra
(and BP -module spectra) K(n) for n ≥ 0 satisfying

π∗(K(n)) =
{

Q if n = 0
Z/(p)[vn, v−1

n ] if n > 0.

Each of these rings is a graded field in the sense that every graded module over
it is free. K(0)∗(X) is the same as the rational homology of X and K(1)∗(X)
is one of p − 1 isomorphic summands of the mod p classical complex K-theory
of X.

As we will see below, there is very little connection between the Morava K-
theories for n > 1 and algebraic K-theory. It is also known that in some sense
the Morava K-theories are independent of each other; there are no nontrivial
natural transformations between them. On the other hand, there is some linkage
between their values on a finite complex, as the following result illustrates.

Proposition 1.12 Let X be a finite complex.

(i) The rank of K(n)∗(X) (as a free module over π∗(K(n))) is no less than
that of K(n − 1)∗(X). In particular, if K(n)∗(X) = 0, then K(n −
1)∗(X) = 0.
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(ii) K(n)∗(X) = 0 if and only if v−1
n BP∗(X) = 0.

(iii) For large n, the rank of K(n)∗(X) is the same as that of H∗(X;Z/(p)).
In particular, if K(n)∗(X) = 0 for all n then X is contractible.

This suggests the following definition.

Definition 1.13 A finite complex X has type n if K(n − 1)∗(X) = 0 and
K(n)∗(X) 6= 0 (or equivalently if v−1

n−1BP∗(X) = 0 and v−1
n BP∗(X) 6= 0).

Note that X has type 0 unless H∗(X;Q) = 0, and one rarely encounters
complexes of type greater than 1. The existence of type n complexes for all n
and p was established by Mitchell in [Mit85].

Definition 1.14 A map f : ΣdX → X is a vn-map if K(n)∗(f) is an isomor-
phism and K(m)∗(f) = 0 for all m 6= n.

A major result in this area is the following, due to [HS]. A proof is also
given in [Rav92a, Chapter 6].

Theorem 1.15 (Periodicity theorem) (i) For each finite complex X of
type at least n there is a vn-map f : ΣdX → X.

(ii) Given two such complexes X1 and X2 with vn-maps f1 and f2 and any map
g : X1 → X2, there are positive integers i and j such that the following
diagram commutes up to homotopy

Σ?X1 Σ?X2

X1 X2

-g

?fi
1 ?f

j
2

-g

One might ask if there can be a vm-map on a type n complex for m 6= n.
For m < n, the trivial map is a vm-map so the question is uninteresting. For
m > n there are algebraic considerations (having to do with BP -theory) that
preclude the existence of such a map.

Note that (ii) above is a uniqueness statement. It says (when g is the identity
map) that some iterate of f1 is homotopic to some iterate of f2.

Definition 1.16 Let Y be a p-local finite complex of type n with vn-map f .
Then the vn-periodic homotopy with coefficients in Y , v−1

n π∗(X;Y ), of
an arbitrary space or spectrum X is the direct limit

[Y, X]∗
f∗−→ [ΣdY, X]∗

f∗−→ [Σ2dY, X]∗
f∗−→ · · · .

Note that 1.15(ii) implies that this group is independent of the choice of f .
Typically one studies this group when Y is as small as possible, i.e., when it is
a complex with 2n cells. For n = 0 and Y = S0, it is the rational homotopy of
X when X is p-local.
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For n = 1 and Y is a mod pi Moore space, these groups have been studied by
Mahowald [Mah82] and Thompson [Tho90] for X a sphere, and by Bendersky,
Davis , Mahowald and Mimura ([Ben92], [BD92], [BDM], [Dav91] and [DM92])
for X a Lie group.

The question of whether a map g : X1 → X2 induces an isomophism in vn-
periodic homotopy depends only on n and not on the choice of Y . If v−1

n π∗(g)
is an isomorphism, then so is K(n)∗(g). The converse of this statement (for all
X) is equivalent to the telescope conjecture, and is therefore true for n ≤ 1 and
probably false for all n ≥ 2.

There is one other result we should mention. First we need a definition.

Definition 1.17 A full subcategory C of the category of finite spectra is thick
if it satisfies the following two conditions.

(i) If
W −→ X −→ Y −→ ΣW

is a cofibre sequence and any two of W , X and Y are in C, then so is the
third.

(ii) If X ∨ Y is in C then so is X.

Examples of thick subcategories include the class Fp,n of p-local spectra
trivialized by v−1

n−1BP or equivalently K(n− 1). Without the second condition
of the definition, the class of spectra with vanishing Euler characteristic (however
it is defined) would also qualify.

For the proof of the following result, see [HS, Theorem 7] (the original
source), [Hop87], [Rav90, Theorem 2.19] or [Rav92a, Theorem 3.4.3].

Theorem 1.18 (Thick subcategory theorem) Let C be a nontrivial thick
subcategory of F(p), the category of p-local finite CW-spectra. Then C = Fp,n

for some n. (Note that Fp,0 is all of F(p).)

This result is extremely useful. For example the periodicity theorem is
proved by showing first that the collection of finite spectra admitting vn-maps
is thick. This means that it is either Fp,n or Fp,n+1. (If K(n)∗(X) is trivial for
a finite complex X, then the trival map on X is a vn-map.) Hence it suffices to
construct a single nontrivial example of a finite complex with a vn-map. This
was done by Jeff Smith in [Smi].

Corollary 1.19 (i) The functors Lf
n (to be defined below in 2.6) are finite in

the sense of 1.7.

(ii) The Lf
n are the only finite localization functors on the category of p-local

spectra.

(iii) The functor Ln is finite if and only if the telescope conjecture (2.2) is true
for the given values of p and n.
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Proof. (i) The Lf
n are finite because the class of p-local Lf

n-acyclics is generated
by a finite complex of type n + 1.

(ii) A finite p-local localization functor is determined by the class p-local
finite spectra which it trivializes. This class must be thick, so it must be Fp,n

for some n, and the functor must be Lf
n.

(iii) If Lf
n = Ln (as asserted by the telescope conjecture) then Ln is also

finite. Conversely, suppose that Ln is finite. Then it must be the same as Lf
n

by (ii), and the telescope conjecture follows.

2 An alternate definition of the chromatic filtra-
tion

In this section we will define functors Lf
n (Definition 2.6) which are finite in

the sense of 1.7. This construction was discovered independently by Mahowald-
Sadofsky [MSa] and Miller [Mil]. First we need a definition.

Definition 2.1 Given a type n complex X with vn-map f , the associated vn-
telescope X̂ is the homotopy direct limit of the diagram

X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · ·

It follows from 1.15(ii) that X̂ is independent of the choice of f . In fact the
directed system of 2.1 is cofinal in the set of all vn-maps out of X.

For the record we restate the following, even though it is no longer viable.

Conjecture 2.2 (Telescope conjecture) For X as in 2.1, the map X̂ →
LnX is an equivalence.

We now know that this is false for n = 2, and presumably for all n > 2. Our
new functor Lf

n will have the property (2.7(v)) that for X as above, X̂ = Lf
nX.

Now we can describe our method for constructing Lf
n. We will see below

(2.7) that it suffices to define Lf
nS0, which we do by induction on n. We start

with Lf
0S0 = Ŝ0, which is the direct limit of

S0 p−→ S0 p−→ S0 p−→ · · · .
Let Cf

0 denote the cofibre of the map S0 → Lf
0S0. It is the direct limit of finite

spectra of type 1, namely

S1/p −→ S1/p2 −→ S1/p3 −→ · · · .
There is a corresponding limit of v1-telescopes

Ŝ1/p −→ ̂S1/p2 −→ ̂S1/p3 −→ · · · ,

which we denote by Ĉf
0 .
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Now we define Lf
1S0 to be the fibre of the map Lf

0S0 → Ĉf
0 . Then we have

the following commutative diagram in which each row and column is a cofibre
sequence.

S0 Lf
0S0 Cf

0

Lf
1S0 Lf

0S0 Ĉf
0

Cf
1

pt. ΣCf
1

-

?

-

?= ?
-

?

-

? ?
- -

where Cf
1 is the evident cofibre. It is a direct limit of finite complexes of type

2.
Inductively, suppose that Lf

n−1S
0 and Cf

n−1 have been defined and that the
latter is a direct limit of finite complexes of type n. We will see below (Lemma
2.4) that there is a corresponding vn-telescope Ĉf

n−1 and a similar diagram

S0 Lf
n−1S

0 Cf
n−1

Lf
nS0 Lf

n−1S
0 Ĉf

n−1

Cf
n

pt. ΣCf
n

-

?

-

?= ?
-

?

-

? ?
- -

(2.3)

In order to make this work, we need the following lemma, which says roughly
that ‘telescoping commutes with direct limits.’

Lemma 2.4 (i) Given a map g : X1 → X2 of type n finite complexes, there
is a canonical map of vn-telescopes ĝ : X̂1 → X̂2.

(ii) For a type n finite complex X, let CX denote the cofibre of the map
X → X̂. Then CX is a direct limit lim→Xα of finite complexes of type
n + 1 that is locally finite, i.e., for each index β there are only finitely
many indices α with α < β.

(iii) Let lim→Xα denote a locally finite direct limit of finite complexes of type
n in which the indexing set has a cofinal subset isomorphic to the natural
numbers, and let C lim→Xα denote the cofibre of the map lim→Xα →
lim→ X̂α. Then C lim→ X̂α is a locally finite limit of finite complexes of
type n + 1 whose indexing set has the same property.

Proof. (i) It follows from 1.15(ii) that X1 and X2 have vn-maps f1 and f2 such
that gf1 = f2g, and the iterates of fj form a cofinal subset of all the vn-maps out
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of Xj for each j. Hence we get a commutative diagram (ignoring suspensions)

X1 X1 X1 · · ·

X2 X2 X2 · · ·
?

g

-f1

?
g

-f1

?
g

-f1

-f2 -f2 -f2

which gives the desired map ĝ.
(ii) Choose a vn-map f on X and consider the diagram (again ignoring

suspensions)

X X X · · ·

X X X · · ·

Cf Cf2 Cf3 · · ·

-1X

?
f

-1X

?
f2

-1X

?
f3

-f

?

-f

?

-f

?
- - -

where Cfi denotes the cofibre of f i. Then each complex in the bottom row is
finite of type n + 1, and the (locally finite) limit is CX.

(iii) We can use (i) to construct a map from lim→Xα to lim→ X̂α. We would
like to say that

C lim
→

X̂α = lim
→

CXα,

but the map Cgαβ : CXα → CXβ for α < β is not uniquely determined by gαβ

and ĝαβ . However, if we use the cofinal subset given by hypothesis, we can choose
maps Cgαβ without having to worry about any diagrams commuting. Hence we
can define lim→ CXα. It is equivalent to C lim→ X̂α because homotopy direct
limits preserve cofibre sequences, and therefore independent of the choice of
Cgαβ .

Now each CXα is a limit with the desired properties by (ii), so the same is
true of lim→ CXα and hence of C lim→ X̂α.

Corollary 2.5 The construction of Lf
nS0 of (2.3) is well defined.

We are now ready for our main definition.

Definition 2.6 The functor Lf
n is localization with respect to the spectrum

Lf
nS0 of (2.3).

These functors enjoy the following properties.

Theorem 2.7 (i) When the functor Lf
n is applied to S0, the spectrum ob-

tained is the one called in Lf
nS0 in (2.3).

(ii) (Smash product theorem) For any spectrum X, Lf
nX = X ∧ Lf

nS0.
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(iii) (Localization theorem) There is a natural transformation Lf
n → Ln,

with Lf
nX → LnX a BP∗-equivalence for any X.

(iv) (Telescope theorem) For a finite spectrum X of type n, X̂ = Lf
nX.

We do not have a proof of the analog of the chromatic convergence theorem
for the Lf

n; this is still an open question. Hal Sadofsky has pointed out that X
is a retract of the inverse limit since the identity map can be factored as

X −→ lim
←

Lf
nX −→ lim

←
LnX = X

for any finite X.
Thus the Lf

n have some of the nice properties of the Ln. One difference other
than the absence of a chromatic convergence theorem is that the Adams-Novikov
spectral sequence does not converge in general for Lf

nX, so π∗(Lf
nX) is harder

to compute. In view of the BP∗-equivalence of 2.7(iii), this spectral sequence
coincides with the one for LnX, which was shown to converge in [Rav87]. Hence
convergence of the Adams-Novikov spectral sequence for Lf

nX for X a type n
finite complex is equivalent to the telescope conjecture.

Before we can prove 2.7, we need the following.

Lemma 2.8 (i) Suppose X is a type m complex with vm-telescope X̂ as in
2.1, and Y is a complex of type n with m < n. Then X̂∧Y is contractible.

(ii) Lf
nS0 ∧ Lf

nS0 ∼= Lf
nS0.

Proof. (i) There are two evident vm-maps on X ∧ Y , namely f ∧ Y and the
trivial map. Hence 1.15(ii) implies that some iterate of f ∧ Y is null and it
follows that X̂ ∧ Y is contractible.

(ii) Consider the cofibre sequence

S0 −→ Lf
nS0 −→ Cf

n

Smashing it with Lf
nS0, we see that the result will follow if Lf

nS0 ∧ Cf
n is con-

tractible. By 2.4(iii), Cf
n is a direct limit of finite complexes of type n + 1. We

will show that Lf
mS0 ∧ Cf

n is contractible for m ≤ n by induction on m. For
m = 0 it follows from (i) since Lf

0S0 is a v0-telescope.
For the inductive step, by (2.3) we have a cofibre sequence

Lf
mS0 −→ Lf

m−1S
0 −→ Ĉf

m−1.

Then Lf
m−1S

0 ∧Cf
n is contractible by the inductive hypothesis and Ĉf

m−1 ∧Cf
n

is contractible by 2.4(iii) and (i).

Proof of Theorem 2.7. (i) To avoid confusion, let E denote the spectrum Lf
nS0

of (2.3). By Lemma 2.8(ii)), E ∧E = E. This means that E is a ring spectrum,
with the unit map η : S0 → E being given in (2.3). It follows that the unit map
η is an E∗-equivalence. Therefore if E is E∗-local then E = LES0 as claimed.
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However, any ring spectrum E is local with respect to itself [Rav84, 1.17]. To
see this, observe that any map f : X → E can be factored as follows.

X E

E ∧X E ∧ E

-f

?
η∧1X

-1E∧f

6m

where η and m are the unit and multiplication maps for E. Therefore if E∗(X) =
0, the map f is null homotopic, so E is local by definition (1.3). (A similar
argument shows that any E-module spectrum is E∗-local; this will be needed in
(ii) below.)

(ii) In [Rav84, 1.29] it was shown that LEX = X ∧ LES0 for any ring
spectrum E with E∧E = E. To see this, note that the map η∧1X :X → E∧X
is an E∗-equivalence whose target is an E∗-module spectrum and therefore E∗-
local.

(The proof of the original smash product theorem, which says that LnX =
X ∧ LnS0, can be found in [Rav92a, Chapter 8]. In contrast to the argument
just given, it is quite long. If the telescope conjecture, which says that Lf

n = Ln,
were true, then the smash product theorem would be an easy consequence.)

(iii) Given that both Lf
n and Ln satisfy the smash product theorem, it suffices

to construct a suitable map Lf
nS0 → LnS0 which is a BP∗-equivalence. In view

of (2.3) it suffices to construct a diagram

Cf
n−1 Ĉf

n−1 ΣCf
n

Cn−1 LnCn−1 ΣCn

-

?

-

? ?
- -

(where Cn is the cofibre of S0 → LnS0) in which each vertical map is a BP∗-
equivalence. It is understood that Cf

−1 = C−1 = S1. We will argue by induction
on n. For n = 0 the left hand vertical map is the identity, as is the middle one,
so the right hand one is also.

For the inductive step, assume that the left hand map is defined and is a
BP∗-equivalence. This means that LnCn−1 = LnCf

n−1. Now Cf
n−1 is a limit

of finite complexes of type n, so both maps out of it are v−1
n BP∗-equivalences.

This means there is a unique choice for the middle vertical map. We know by
the main result of [Rav87] that

BP∗(LnCn−1) = v−1
n BP∗(Cn−1)

It is straightforward that BP∗(Ĉ
f
n−1) has the same description and that the

middle map is a BP∗-equivalence. It follows that the same is true of the right
hand vertical map.

(iv) Let Cf
mX denote the cofibre of X → Lf

mX. Smashing X with the right
hand column of (2.3) gives us a cofibre sequence

Cf
m−1X −→ X ∧ Ĉf

m−1 −→ ΣCf
mX.

14



If X is a finite complex of type n, then by 2.4(iii) and 2.8(i), the middle term is
contractible for m < n. It follows that Cf

n−1X is ΣX and Lf
n−1X is contractible.

Thus smashing the middle row of (2.3) with X gives the desired cofibre sequence

Lf
nX −→ pt. −→ ΣX̂.

3 Connections with algebraic K-theory

In this section we shall recall some results of Thomason, Mitchell, Waldhausen
and McClure-Staffeldt which indicate the relevance of the chromatic filtration
to algebraic K-theory. For background on the first half of this material, we
recommend the paper of Mitchell [Mitb]. We begin with a rough statement of
the theorem of Thomason [Tho85], reinterpreted by Waldhausen in [Wal84] and
quoted as Theorems 7.10 and 11.4 in [Mitb].

Theorem 3.1 Let R be a nice ring. If p = 2, assume that
√−1 ∈ X. Then

for i sufficiently large (i ≥ 1 when R is the ring of integers in a number field),
πi(L1KR) is the value of KiR given by the Lichtenbaum-Quillen conjectures.

This statement is admittedly vague, and we refer the reader to [Mitb] for
the details. The precise meaning of ‘nice’ is given in [Tho85]; it is a very mild
condition on R. (One can replace rings by schemes throughout, but we leave
that to the cognescenti.) The point is that the Lichtenbaum-Quillen conjectures
can be reformulated in chromatic terms. They say that the spectrum KR differs
from a connective cover of L1KR by a finite Postnikov system, with homotopy
concentrated in dimension zero when R is a suitable ring of integers.

As explained by Mitchell in [Mitb, §11], a consequence of this reformulation
is the following result, which he proved in [Mit90]. It is Theorem 12.4 of [Mitb].

Theorem 3.2 For any ring R, K(n)∗(KR) = 0 for all n ≥ 2.

This means that LnKR = L1KR for all n ≥ 1. It also says that higher
Morava K-theory and higher algebraic K-theory (in the sense of Quillen) have
nothing to do with each other.

Corollary 3.3 ([Mita]) For any ring R, L∞KR (see 1.11) is the same as
L1KR. Moreover, L∞KR is the same as the inverse limit lim← LnKR.

In particular the Lichtenbaum-Quillen conjectures hold for L∞KR for nice
R, and the fibre of the map KR → L1KR (i.e., the error term) is dissonant
(Definition 1.11).

What Mitchell proved is actually stronger than Theorem 3.2. The following
is essentially [Mit90, Theorem 3.8].
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Theorem 3.4 For any ring R and all n ≥ 2, the vn-periodic homotopy (see
1.16) of KR is trivial.

This means that we can make similar statements about KR in terms of the
functors Lf

n defined in 2.6.

Corollary 3.5 For each ring R and each n ≥ 1, Lf
nKR = L1KR.

We now turn to Waldhausen’s program, described in [Wal84]. A brief de-
scription can also be found in [MSb]. He defines two spectra, Ã(∗) and A(∗)
(which are not p-local) and a natural map from the former to the latter, roughly
as follows. The former, Ã(∗) is a generalization of Quillen’s definition of KR to
the ‘brave new ring’ QS0. (The latter is known to be a ring object in the ho-
motopy category, with addition corresponding to the loop space structure, and
multiplication corresponding to composition of maps between spheres.) The
latter, A(∗), is the geometric realization of a certain bisimplicial set based on
the category of finite spectra, in which weak equivalences play a special role in
the construction.

Now fix a prime p, and define Ã(∗, p, n) and Ãf (∗, p, n) in a similar way
with the sphere spectrum replaced by LnS0 and Lf

nS0 respectively. (For n = 0,
Waldhausen deviates slightly from this. He replaces L0S

0 = Lf
0S0 = HQ,

the rational Eilenberg-Mac Lane spectrum, by HZ(p), the p-local integral one.
This means that Ãf (∗, p, 0) = Ã(∗, p, 0) = KZ(p), the algebraic K-theory of the
p-local integers.) This leads to a commutative diagram

Ãf (∗, 0, p) Ãf (∗, 1, p) Ãf (∗, 2, p) · · ·

Ã(∗, 0, p) Ã(∗, 1, p) Ã(∗, 2, p) · · ·
? ?

¾

?

¾ ¾

¾ ¾ ¾

in which each map is induced by a natural transformation of localization func-
tors. Waldhausen calls each row an integral localization tower. He does not
distinguish between the two of them because he assumes (on page 187) that
Ln = Lf

n, i.e., he assumes the telescope conjecture. We know that the vertical
maps are equivalences for n = 0 and n = 1, but not for n > 1.

One can also define spectra A(∗, p, n) in terms of the category of finite spec-
tra, with weak equivalences replaced by K(n)∗-equivalences. Waldhausen’s defi-
nition of the map Ã(∗)→ A(∗) leads to a diagram

Ãf (∗, p, n) A(∗, p, n)

Ã(∗, p, n)

-

?
(3.6)

16



for each n and p, but the horizontal map need not factor through Ã(∗, p, n).
The convergence theorem of McClure-Staffeldt [MSb], which is proved using

our chromatic convergence theorem (1.2), is the following.

Theorem 3.7 Let A(∗, p) denote the localization of A(∗) at p. Then with no-
tation as above,

A(∗, p) = lim
←

Ã(∗, p, n).

The convergence of the other two towers (obtained by varying n) in (3.6) is
still an open question.
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