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Browder’s theorem says that ¢, is detected in the classical
Adams spectral sequence by
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Browder’s theorem says that ¢, is detected in the classical Doug Ravenel
Adams spectral sequence by
> 272141
hi € Exty” (Z/2,2/2). %
This element is known to be the only one in its bidegree. 4
It is more convenient for us to work with the Adams-Novikov e
spectral sequence, which maps to the Adams spectral
sequence. It has a family of elements in filtration 2, namely Formal 4 7ed.es
75 (MU\*)) and Ry
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for certain values of of i and j. When j = 1, it is customary to
omit it from the notation.
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Browder’s theorem says that ¢, is detected in the classical Doug Ravenel
Adams spectral sequence by

P) 2721+1
hi € Exty” (Z/2,2/2). %
This element is known to be the only one in its bidegree. 4
It is more convenient for us to work with the Adams-Novikov e
spectral sequence, which maps to the Adams spectral
sequence. It has a family of elements in filtration 2, namely Formal 4 7ed.es
75 (MU\*)) and Ry
The proof of the Detection
i o Theorem
6’// c Extiﬂ’?f*(zu) (I\/’U*<7 MU*) The proof of the Lemma

for certain values of of i and j. When j = 1, it is customary to
omit it from the notation. The definition of these elements can
be found in Chapter 5 of the third author’s book Complex
Cobordism and Stable Homotopy Groups of Spheres.
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Here are the first few of these in the relevant bidegrees.
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Here are the first few of these in the relevant bidegrees.
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06 :  [Bie/16 B12/4 @and Biy
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08 :  [Beasear Bag/16, Baasa and Baz

and so on. In the bidegree of ;, only 351,51 has a nontrivial
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Here are the first few of these in the relevant bidegrees.

05:  [Bgsg and g2

06 :  [Bie/16 B12/4 @and Biy 4

07 : B32/32, B24/8 @and (222

Os:  Beasea Bag/16, Baaja @and [a3 The Detection

Theorem

and so on. In the bidegree of ;, only 351,51 has a nontrivial e
image (namely h?) in the Adams spectral sequence. There is e
an additional element in this bidegree, namely aqay;_1. EEE

The proof of the Lemma

We need to show that any element mapping to hj? in the
classical Adams spectral sequence has nontrivial image the
Adams-Novikov spectral sequence for M.
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Detection Theorem
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6; in the Adams-Novikov spectral sequence (continued)

Detection Theorem

Letx e Exti,ffz mu) (MU, MU,.)) be any element whose image in
j+1

22" (2/2,2/2) is 2 with j > 6. (Here A denotes the mod 2

Exty
Steenrod algebra.) Then the image of x in H22"' (Cg; ,(M)) is
nonzero.

We will prove this by showing the same is true after we map
the latter to a simpler object involving another algebraic tool,
the theory of formal A-modules, where A is the ring of integers
in a suitable field.
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Recall the a formal group law over a ring R is a power series
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Formal A-modules

Recall the a formal group law over a ring R is a power series

F(x,y)=x+y+>_ ax'y €Rlxyll
i,j>0

with certain properties.

For positive integers m one has power series [m](x) € R[[X]]
defined recursively by [1](x) = x and

[m](x) = F(x,[m —1](x)).

These satisfy
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Formal A-modules ArtKervaire mvariant
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Recall the a formal group law over a ring R is a power series Mike Hopkins

Doug Ravenel

F(x,y)=x+y+>_ ax'y €Rlxyll

ij>0

with certain properties. 4%

For positive integers m one has power series [m](x) € R[[x]] The Deteation

defined recursively by [1](x) = x and THET e _
9, in the Adams-Novikov
spectral sequence

[m](x) = F(x,[m —1](x)). D

;:Z ;veorz! of the Detection

These SatiSfy The proof of the Lemma

[m + n](x) = F([m](x), [n](x)) and [m]([n](x)) = [mn](x).

With these properties we can define [m](x) uniquely for all
integers m, and we get a homomorphism 7 from Z to End(F),
the endomorphism ring of F.
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Formal A-modules (continued)

If the ground ring R is an algebra over the p-local integers Z
or the p-adic integers Z,,, then we can make sense of [m](x) for
min Z, or Z,.
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If the ground ring R is an algebra over the p-local integers Z
or the p-adic integers Z,,, then we can make sense of [m](x) for

min Z, or Z,. %
Now suppose R is an algebra over a larger ring A, such as the 4
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If the ground ring R is an algebra over the p-local integers Z
or the p-adic integers Z,,, then we can make sense of [m](x) for

min Z, or Z,. %

Now suppose R is an algebra over a larger ring A, such as the
ring of integers in a number field or a finite extension of the The Deteation

: i Th
p-adic numbers. We say that the formal group law F is a formal /%0 .

spectral sequence

A-module if the homomorphism 7 extends to A in such a way
that EW (Mu!‘!) and Ry

The proof of the Detection

[a](x) = ax mod (x?) for a € A. e

The proof of the Lemma

The theory of formal A-modules is well developed. Lubin-Tate
used them to do local class field theory.
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Formal A-modules (continued) ArtKenvaine invariant
problem

Mike Hill
The example of interest to us is A = Z,[(g], where (g is a SOOI

Doug Ravenel
primitive 8th root of unity. The maximal ideal of A is generated
by 7 = (g — 1, and 7* is a unit multiple of 2. There is a formal
A-module G over R, = Alw*'] (with |w| = 2) satisfying

logg(G(x, ¥)) = logg(x) +logg(y) 4%
Where 2n 1 2n The Detection
wec ~'x Theorem ;
logg(x) = ——— e e
n>0
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The proof of the Detection
Theorem
The classifying map X : MU, — R, for G factors through BP,, Trepesieiietenne

where the logarithm is

|OgF(X) = Z an2n.
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A solution to the
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Recall that BP, = Z5)[v1, V2, ...] with |v,| = 2(2" —1). The v,
and the £, are related by Hazewinkel’s formula,

" o

oo V3
62 = - — The Detection
2 4 Theorem
6; in the Adams-Novikov
’ V3 N Vv + vavd v/ e
8 T 5 4 8 7 (MU0 ana
2 5 8 3.,4 9,,2 12 15 ;:e proof of the Detection
leorem
64 = E v V3 + V2 + Vs V1 V1 V2 + V1 V2 T Ve V1 V17 The proof of the Lemma
2 4 8 16
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The relation between MU® and formal A-modules

What does all this have to do with our spectrum
M = D~'MU®? Recall that D = A7 NE(AS)NS(A). We
saw earlier that inverting a product of this sort is needed to get

the Periodicity Theorem, but we did not explain the choice of
subscripts of A.
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M = D~'MU®? Recall that D = A7 NE(AS)NS(A). We
saw earlier that inverting a product of this sort is needed to get
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subscripts of A. They are the smallest ones that satisfy the
second part of the following.
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M = D~'MU®? Recall that D = A7 NE(AS)NS(A). We
saw earlier that inverting a product of this sort is needed to get
the Periodicity Theorem, but we did not explain the choice of k

subscripts of A. They are the smallest ones that satisfy the
second part of the following.

Lemma The Detection
Theorem
The classifying homomorphism X\ : m,.(MU) — R, for G factors 8y iniho Adams Novr
through 7. (MU®)) in such a way that Formal Amocis
e the homomorphism A¥) : =, (MU®)) — R, is equivariant, Th oot of e Dstction

where Cg acts on m,(MU®) as before, it acts trivially on A~ Tepeietetems
and yw = (gw for a generator ~ of Cg.
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saw earlier that inverting a product of this sort is needed to get

the Periodicity Theorem, but we did not explain the choice of k

subscripts of A. They are the smallest ones that satisfy the
second part of the following.

Lemma The Detection
Theorem
The classifying homomorphism X\ : m,.(MU) — R, for G factors 8y iniho Adams Novr
through 7. (MU®)) in such a way that Formal Amocis
e the homomorphism A¥) : =, (MU®)) — R, is equivariant, Th oot of e Dstction

where Cg acts on m,(MU®) as before, it acts trivially on A~ Tepeietetems
and yw = (gw for a generator ~ of Cg.

e The element D c w,(MU™) that we invert to get M goes
to a unit in R,.
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The relation between MU and formal A-modules

What does all this have to do with our spectrum

M = D~'MU®? Recall that D = A7 NE(AS)NS(A). We
saw earlier that inverting a product of this sort is needed to get
the Periodicity Theorem, but we did not explain the choice of

subscripts of A. They are the smallest ones that satisfy the
second part of the following.

Lemma

The classifying homomorphism X\ : m,.(MU) — R, for G factors
through 7. (MU®)) in such a way that
e the homomorphism A¥) : =, (MU®)) — R, is equivariant,
where Cg acts on t.(MU®) as before, it acts trivially on A
and yw = (gw for a generator ~ of Cs.

e The element D c w,(MU™) that we invert to get M goes
to a unit in R,.

We will prove this later.
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The proof of the Detection Theorem

It follows that we have a map

H*(Cg; . (D~ MU™)) = H*(Cg; m.(M)) — H*(Cs; R.).
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The proof of the Detection Theorem

It follows that we have a map

H*(Cg; . (D~ MU™)) = H*(Cg; m.(M)) — H*(Cs; R.).

The source here is the E>-term of the homotopy fixed point

spectral sequence for M, and the target is easy to calculate.
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It follows that we have a map

H*(Cg; . (D~ MU™)) = H*(Cg; m.(M)) — H*(Cs; R.).

The source here is the E>-term of the homotopy fixed point

spectral sequence for M, and the target is easy to calculate.

We will use it to prove the Detection Theorem, namely
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The proof of the Detection Theorem

It follows that we have a map
H*(Cg; . (D~ MU™)) = H*(Cg; m.(M)) — H*(Cs; R.).

The source here is the E>-term of the homotopy fixed point
spectral sequence for M, and the target is easy to calculate.
We will use it to prove the Detection Theorem, namely

Detection Theorem

Letx e Exti,ffz mu) (MU, MU..)) be any element whose image in
j+1

Ext3® (Z/2,2/2) is ? with j > 6. (Here A denotes the mod 2

Steenrod algebra.) Then the image of x in H22"' (Cg; ,(M)) is
nonzero.
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The proof of the Detection Theorem

It follows that we have a map
H*(Cg; . (D~ MU™)) = H*(Cg; m.(M)) — H*(Cs; R.).

The source here is the E>-term of the homotopy fixed point

spectral sequence for M, and the target is easy to calculate.

We will use it to prove the Detection Theorem, namely

Detection Theprem

Letx e Exti,ffg mu) (MU, MU..)) be any element whose image in
j+1

22" (2/2,2/2) is 2 with j > 6. (Here A denotes the mod 2

Exty
Steenrod algebra.) Then the image of x in H22"' (Cg; ,(M)) is
nonzero.

We will prove this by showing that the image of x in
H22""(Cg; R,) is nonzero.

A solution to the
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problem
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The proof of the Detection Theorem (continued)

We will calculate with BP-theory.
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The proof of the Detection Theorem (continued)

We will calculate with BP-theory. Recall that

BP,(BP) = BP,[t, t,

]

where |t,| =2(2" —1).
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The proof of the Detection Theorem (continued)

We will calculate with BP-theory. Recall that

BP,(BP) = BP,[t, t,...] where |t,| = 2(2" — 1).

We will abbreviate Extgp . (BP., BP.) by Ext>'.
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The proof of the Detection Theorem (continued)

We will calculate with BP-theory. Recall that
BP.(BP) = BP.[t;,t>,...] where |t;| =2(2" —1).

We will abbreviate Extgp_ ., (BP., BP.) by Ext*'.

There is a map from this Hopf algebroid to one associated with
H*(Cs; R.) in which t, maps to an R,-valued function on Cg
(regarded as the group of 8th roots of unity) determined by

F

[0) =t X"

n>0
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The proof of the Detection Theorem (continued)

We will calculate with BP-theory. Recall that
BP.(BP) = BP.[t;,t>,...] where |t;| =2(2" —1).

We will abbreviate Extgp_ ., (BP., BP.) by Ext*'.

There is a map from this Hopf algebroid to one associated with
H*(Cs; R.) in which t, maps to an R,-valued function on Cg
(regarded as the group of 8th roots of unity) determined by

F

K100 = S (ta. X2,

n>0

An easy calculation shows that the function t; sends a primitive
root in Cg to a unitin R,.
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The proof of the Detection Theorem (continued)

Let

bij-1=

1
2

o<i<2i

< ) {ﬁ tzj"] c Ext2?"
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The proof of the Detection Theorem (continued)

Let

order 2.

Itis is known to be cohomologous to 351 ,5-+ and to have

by ;1 :% Z

0<i<2

2
§

) 18] € Bx?"
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The proof of the Detection Theorem (continued)

Let y
1 2 142/ i 2 oi+l
b1,j—1:§ Z(I) {tﬂl} '] € Ext®
0<i<2

Itis is known to be cohomologous to 351 ,5-+ and to have

order 2. We will show that its image in H22"'(Cg; R, ) is
nontrivial for j > 2.
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The proof of the Detection Theorem (continued)

Let

1 2/ i Lof j+1
b1,j_1 = E Z <I) {t”tf I} EEXtZ’2

o<i<2i
Itis is known to be cohomologous to 351 ,5-+ and to have
order 2. We will show that its image in H22"'(Cg; R, ) is
nontrivial for j > 2.

H*(Cs; R.) is the cohomology of the cochain complex

R.[Cs] 2= R.[Cs] T2 R, [Co] 1> -

where Trace is multiplication by 1 + v + --- + 7.
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The proof of the Detection Theorem (continued)

The cohomology groups H3(Cs; R.) for s > 0 are periodic in s

with period 2.
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The proof of the Detection Theorem (continued)

The cohomology groups H3(Cs; R.) for s > 0 are periodic in s
with period 2. We have

H'(Cs; Rom) = ker(1+ ¢+ -+ ™) /im (¢ 1)

A solution to the
Arf-Kervaire invariant
problem

Mike Hill

Mike Hopkins
Doug Ravenel

i

The Detection
Theorem

6; in the Adams-Novikov
spectral sequence

Formal A-modules
T (Mu(“)) and R

The proof of the Lemma



The proof of the Detection Theorem (continued) S

Arf-Kervaire invariant
problem
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The cohomology groups H3(Cs; R.) for s > 0 are periodic in s
with period 2. We have
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Arf-Kervaire invariant
problem
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The cohomology groups H3(Cs; R.) for s > 0 are periodic in s
with period 2. We have
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The proof of the Detection Theorem (continued) S

Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Doug Ravenel

The cohomology groups H3(Cs; R.) for s > 0 are periodic in s
with period 2. We have

H'(Coi Fem) = ker(1 G+ + G™)im (G — 1) %
wmA/(r)  for modd {
B wmA/(r2) for m=2mod 4
= ) w"A/(2) form=4mod 8 The Deteton
0 for m=0mod 8 Rt
H2(Cg; Rom) = ker(¢f —1)/im(1+ T+ -+ Q™) e ) o

The proof of the Lemma
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0 otherwise



The proof of the Detection Theorem (continued) S

Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Doug Ravenel

The cohomology groups H3(Cs; R.) for s > 0 are periodic in s
with period 2. We have

H'(Coi Rom) = Ker(1+ G 4+ G™)/im (¢ — 1) %
wmA/(r)  for modd {
B wmA/(r2) for m=2mod 4 _
=\ w"A/(2) form=4mod8 Eobe
0 for m=0mod 8 Rt
H2(Cg; Rom) = ker(¢f —1)/im(1+ T+ -+ Q™) e ) o
— WmA/(8) for m = 0 mOd 8 The proof of the Lemma
n 0 otherwise

An easy calculation shows that by ;_y maps to 4w21, which is
the element of order 2 in H?(Cg; Ryji1).



The proof of the Detection Theorem (continued)

To finish the proof we need to show that the other s in the
same bidegree map to zero. We will do this for j > 6.
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The proof of the Detection Theorem (continued)

To finish the proof we need to show that the other s in the
same bidegree map to zero. We will do this for j > 6. The set

of these is

{ﬁc(j,k)/2j71—2k: 0<k <]/2}

where c(j, k) = 2/~ 172k(1 + 22k+1) /3.
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The proof of the Detection Theorem (continued)

To finish the proof we need to show that the other s in the
same bidegree map to zero. We will do this for j > 6. The set

of these is

where c(j, k) = 2/~1-2k(1 + 22k+1) /3. Note that
Be(j,0)/2~1 = Boi-1/2-1, SO We need to show that the elements

{ﬂc(j,k)/2j71—2k: 0<k <]/2}

with k > 0 map to zero.
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The proof of the Detection Theorem (continued)

To finish the proof we need to show that the other s in the
same bidegree map to zero. We will do this for j > 6. The set
of these is

{ﬂc(j,k)/2j7172k: 0<k <]/2}

where c(j, k) = 2/~1-2k(1 + 22k+1) /3. Note that

Be(j,0)/2~1 = Boi-1/2-1, SO We need to show that the elements
with k > 0 map to zero.

We will see in the proof of the Lemma below that vy and v» map
to unit multiples of 73w and 72 w? respectively.

A solution to the
Arf-Kervaire invariant
problem
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Doug Ravenel
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The proof of the Detection Theorem (continued)

To finish the proof we need to show that the other s in the
same bidegree map to zero. We will do this for j > 6. The set
of these is

{ﬂc(j,k)/2j7172k: 0<k <]/2}

where c(j, k) = 2/~1-2k(1 + 22k+1) /3. Note that
Be(j,0)/2~1 = Boi-1/2-1, SO We need to show that the elements
with k > 0 map to zero.

We will see in the proof of the Lemma below that vy and v» map
to unit multiples of 73w and 72 w? respectively. This means we
can define a valuation on BP, compatible with the one on Ain
which [2]] =1, [[«|| = 1/4, |[v4]| = 3/4 and ||vz|| = 1/2.
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The proof of the Detection Theorem (continued)

To finish the proof we need to show that the other s in the
same bidegree map to zero. We will do this for j > 6. The set
of these is

{ﬂc(j,k)/2j7172k: 0<k <]/2}

where c(j, k) = 2/~1-2k(1 + 22k+1) /3. Note that
Be(j,0)/2~1 = Boi-1/2-1, SO We need to show that the elements
with k > 0 map to zero.

We will see in the proof of the Lemma below that vy and v» map
to unit multiples of 73w and 72 w? respectively. This means we
can define a valuation on BP, compatible with the one on Ain
which [[2]| = 1, [||| = 1/4, [|w1]| = 3/4 and ||vz|| = 1/2. We
extend the valuation on A to R, by setting ||w|| = 0.
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The proof of the Detection Theorem (continued)

A solution to the
Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Hence for k > 1 and j > 6 we have

Doug Ravenel
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The proof of the Detection Theorem (continued)

A solution to the
Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Hence for k > 1 and j > 6 we have

Doug Ravenel

V20
|1Bc( k) j2i-1-2«| =

3" »

The Detection
Theorem

6; in the Adams-Novikov
spectral sequence
Formal A-modules

Tk (Mu(“)) and Ry

The proof of the Lemma



The proof of the Detection Theorem (continued)

Hence for k > 1 and j > 6 we have

c(j,k)
Vo
|1Bc( k) j2i-1-2«| = W
o(jik) 3212

2 4

1
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The proof of the Detection Theorem (continued)

Hence for k > 1 and j > 6 we have

VZCU,k)
Hﬂc(/,k)/Zl*PZkH 2V12/'—1—2k
c(j,k) 3-2-1-2 1
2 4
2l yoi-1-2k 3. oj—1-2k
- 6 T4
= (21 -7.2732k)/3 1

Y

5.

—1
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The proof of the Detection Theorem (continued)

Hence for k > 1 and j > 6 we have

c(j,k)
Va
Hﬂc(j,k)/Z/*FZkH W
_ ck) 3.2
B 2 4
2/' + 2j7172k 3. 2j7172k ]
= 6 — ) _

= (@71 -7.27%2%)/3 1
> 5.

This means (¢ x))/2-1-2« Mmaps to an element that is divisible
by 8 and therefore zero.
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The proof of the Detection Theorem (continued)

We have to make a similar computation with the element
Q1Qj_1-
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The proof of the Detection Theorem (continued)

A solution to the
Arf-Kervaire invariant

problem
Mike Hill
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Doug Ravenel
We have to make a similar computation with the element
aqapi_1. We have

2/ _1 %
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The proof of the Detection Theorem (continued)

We have to make a similar computation with the element

aqapi_1. We have

This completes the proof of the Detection Theorem modulo the

Lemma.

Hazf—1 H

2/ _1

Vi
2

3(2-1)

4
21

4

— —1>4 forj>3.
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The proof of the Lemma
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Here it is again.

Lemma %
The classifying homomorphism X\ : m,.(MU) — R, for G factors 4
through 7. (MU®)) in such a way that
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The prOOf of the Lemma A solution to the
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Here it is again.

Lemma %

The classifying homomorphism X\ : m,.(MU) — R, for G factors 4

through 7. (MU®)) in such a way that S
e the homomorphism A®) : =, (MU®) — R, is equivariant, Theorerm

9/ in the Adams-Novikov
where Cg acts on w,(MU®) as before, it acts trivially on A spectalseavence
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The prOOf of the Lemma A solution to the

Arf-Kervaire invariant
problem

Mike Hill

Mike Hopkins
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Here it is again.

Lemma %
The classifying homomorphism X\ : m,.(MU) — R, for G factors 4
through 7. (MU®)) in such a way that S
e the homomorphism A®) : =, (MU®) — R, is equivariant, e e oton
where Cg acts on w,(MU®) as before, it acts trivially on A spectalsequence
and yw = (gw for a generator y of Cg. i ,f,"fi(jli"ieiim
e The element D ¢ w,(MU™) that we invert to get M goes s

to a unit in R..



The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant
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To prove the first part, consider the following diagram for an Povo Ravene!
arbitrary ring K.
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The proof of the Lemma (continued)

To prove the first part, consider the following diagram for an
arbitrary ring K.

MU..(MU)
V I W

MU(2)

N
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant

problem
Mike Hill
Mike Hopkins
To prove the first part, consider the following diagram for an Povo Ravene!
arbitrary ring K.
MU, (MU)
MU<2>
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The maps A1 and X, classify two formal group laws F; and F»
over K.



The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant

problem
Mike Hill
Mike Hopkins
To prove the first part, consider the following diagram for an poo Ravenel
arbitrary ring K.
MU, (MU)
U(2)
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The proof of the Detection
Theorem
The maps A1 and X, classify two formal group laws F; and F»
over K. The Hopf algebroid MU, (MU) represents strict
isomorphisms between formal group laws.



The proof of the Lemma (continued)

To prove the first part, consider the following diagram for an
arbitrary ring K.

MU..(MU)

VHW

U(2)

TN

The maps A1 and X, classify two formal group laws F; and F»
over K. The Hopf algebroid MU, (MU) represents strict
isomorphisms between formal group laws. Hence the
existence of () is equivalent to that of a compatible strict
isomorphism between F; and Fo.
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant
problem
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Doug Ravenel
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The proof of the Lemma (continued)

A solution to the
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problem

Mike Hill
Mike Hopkins
Doug Ravenel

Similarly consider the diagram

/ ) \ 4%

(M L(MU) @ MU)
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Theorem
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spectral sequence
Formal A-modules

Tk (MU(A)) and Ry
The proof of the Detection
Theorem
The existence of \(*) is equivalent to that of compatible strict || The proof o the Lemma

isomorphisms between the formal group laws F; classified by
the )‘j-



The proof of the Lemma (continued) ArtKervaire mvariant
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The proof of the Lemma (continued)

MU(“))

(M
Now suppose that K has a Cg-action and that A\(4) is
equivariant with respect to the previously defined Cs-action on
MU@ . Then the isomorphism induced by the fourth power of a

generator v € Cg is the isomorphism sending x to its formal
inverse on each of the F;.

//7

(M . (MU) )
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The proof of the Lemma (continued)

MU(“))

(M
Now suppose that K has a Cg-action and that A\(4) is
equivariant with respect to the previously defined Cs-action on
MU@ . Then the isomorphism induced by the fourth power of a

generator v € Cg is the isomorphism sending x to its formal
inverse on each of the F;.

//7

(M . (MU) )

This means that the existence of an equivariant \(4) is
equivalent to that of a formal Z[(s]-module structure on each of
the F;, which are all isomorphic.
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The proof of the Lemma (continued)

MU(“))

(M
Now suppose that K has a Cg-action and that A\(4) is
equivariant with respect to the previously defined Cs-action on
MU@ . Then the isomorphism induced by the fourth power of a

generator v € Cg is the isomorphism sending x to its formal
inverse on each of the F;.

//7

(M . (MU) )

This means that the existence of an equivariant A(*) is
equivalent to that of a formal Z[(s]-module structure on each of
the F;, which are all isomorphic. This proves the first part of the
Lemma.
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The proof of the Lemma (continued)

For the second part, recall that D = A NS(A(4)) (Af)),
where

A(g) Xok __1 forg=2
N (r_y) otherwise.
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant

problem
For the second part, recall that D = A NB(A(4) )NS(Z&Q)), EE%::;
where
A(g) Xok __1 forg=2
N (r_y) otherwise.
Since our formal A-module is 2-typical we can do the 4%

calculations using BP in place of MU.
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant

problem
For the second part, recall that D = A NB(A(4) )NS(Z&Z)), “EE,EZQ:‘H"V'S:;
where

A(g) Xok __1 forg=2
N (r_y) otherwise.

Since our formal A-module is 2-typical we can do the 4%
calculations using BP in place of MU. Hence we can replace
Xox_1 by vk and rx_4 by t. Theorem "
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The proof of the Lemma (continued) S

Arf-Kervaire invariant

problem
For the second part, recall that D = A NB(A(4) )NS(Z&Z)), EE%EPV'S:;
where

A(g) Xok __1 forg=2
N (r_y) otherwise.

Since our formal A-module is 2-typical we can do the 4%
calculations using BP in place of MU. Hence we can replace
Xor_1 by Vi and rye_y by t. We have A = vi. Using Theoem
Hazewinkel’s formula we find that N

spectral sequence
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T (MU(A)) and R
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The proof of the Lemma (continued)

For the second part, recall that D = A NS(A(4))N28(ZE;2)),
where
A9 _ ] Xorq forg=2
K71 NJ(ra_y) otherwise.

Since our formal A-module is 2-typical we can do the
calculations using BP in place of MU. Hence we can replace
Xox_1 by vk and rx«_4 by tx. We have A( ) = v,. Using
Hazewinkel's formula we find that

Vi = (=7 —4n® — 6 — 4w

vo — (47 +117% 4671 —6)w?

vs +— (407° + 16672 4 2377 + 100)w’

vs — (—157547% — 5663172 — 634957 — 9707)w'®
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The proof of the Lemma (continued)

For the second part, recall that D = A NB(A(4))N28(ZE;2)),
where
A9 _ ] Xorq forg=2
K71 NJ(ra_y) otherwise.

Since our formal A-module is 2-typical we can do the
calculations using BP in place of MU. Hence we can replace
Xox_1 by vk and rx«_4 by tx. We have A( ) = v,. Using
Hazewinkel's formula we find that

Vi = (=7 —4n® — 6 — 4w

vo — (47 +117% 4671 —6)w?

vs +— (407° + 16672 4 2377 + 100)w’

vs — (—157547% — 5663172 — 634957 — 9707)w'®

s0 v4 (but not v, for n < 4) and therefore N§(A, AY )) maps to a
unit.

A solution to the
Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Doug Ravenel
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The proof of the Lemma (continued) ArtKervaire mvariant
problem

Mike Hill
Mike Hopkins
~(2)

Doug Ravenel
We have A, = tx. We consider the equivariant composite
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The proof of the Lemma (continued)
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We have Af( ) t.. We consider the equivariant composite
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Doug Ravenel
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We have Af( ) t.. We consider the equivariant composite

8P — BPY — R,

under which 4 %
Cé? W2”—1

an (gn) — ’]'('n The Detection

Theorem
Using the right unit formula we find that
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t — (7°+572+971+5)wd.

This means t, (but not t;) and therefore fo(Zg‘)) maps to a
unit.



The proof of the Lemma (continued) ArtKervaire mvariant
problem

e e
Finally, we have A" = t,(1) € BP¥,

Doug Ravenel
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant
problem

Mike Hill
Mike Hopkins
Finally, we have 35,8) = t,(1) € BP, where t,(1) is the analog Poug Ravenel
of ron_j (1 )
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant

problem
Mike Hill
—(8) (4) . gqif ';,m:;
Finally, we have A, = t,(1) € BP;’, where t,(1) is the analog o
of ron_1(1). Then we find
w2 1
£n(1
e n
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The proof of the Lemma (continued)

A solution to the
Arf-Kervaire invariant

problem
MikeHiII _
. ~(8) 4) . Doug Raven!
Finally, we have A, = t,(1) € BP;’, where t,(1) is the analog
of ron_1(1). Then we find
271
(1) — =
mn 4
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The proof of the Lemma (continued) e L

Arf-Kervaire invariant

problem
MikeHiII _
. ~(8) 4) . Doug Raven!
Finally, we have A, = t,(1) € BP;’, where t,(1) is the analog
of ron_1(1). Then we find
w2 1
(1) —
mn 4
(Gw)?' !
gn(2) ’_) 7'('” ’ The Detection
Theorem
This implies &;2,:2;2;’32;2‘“‘*"”
&Y = 14(2) - t4(1) — w. ()
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Thus we have shown that each factor of
—~(8) —~(4) —~(2)
D =AY NGBy )NS (D7)

and hence D itself maps to a unit in R,, thus proving the
lemma.
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