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Our strategy

Recall our goal is to prove
Main Theorem. The Arf-Kervaire elements 0; € Tyj:1_,(S°) do not exist for j > 7.

Our strategy is to find a map S° — M to a nonconnective spectrum M with the following proper-
ties.

(i) It has an Adams-Novikov spectral sequence in which the image of each 6; is nontrivial.
(i) It is 256-periodic, meaning X>5°M = M.
(iii) m_o(M)=0.

Our strategy (continued)
Our spectrum M will be derived from MU ) regarded as a Cg-spectrum.

Let y € Cg be a generator and let z; be a point in MU. Then the action of Cg on MU ) is given by
}’(Z1 N2 NZ3 /\Z4) =N N2 N\Z3,

where z4 is the complex conjugate of z4.

We need to describe the homotopy of the underlying nonequivariant spectrum, which we denote
T (MU@W).

1 m(MUW)

T(MUW)
Recall that H,(MU;Z) = Z[b; : i > 0] where |b;| = 2i. b; is the image of a suitable generator of
H,;(CP*) under the map
r272CP” =X MU (1) — MU.
It follows that H,(MU (4)) is the 4-fold tensor power of this polynomial algebra. We denote its
generators by b;(j) for 1 < j <4.

The action of 7y on these generators is given by

, bi(j+1) for1<j<3
Y(bi(f)):{ (—{)ib,-(l) fgrjzéjl.
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T (MU™) (continued)

T (MU (4)) is also a polynomial algebra with 4 generators in every positive even dimension. We
will denote the generators in dimension 2i by ;(j) for 1 < j < 4. The action of G = Cg is similar to
that on the b;(j), namely

oy J (1) for1<j<3
Y(rl(J))_{ (_l)iri(l) fOI'j:4.

Earlier we said that . (MU) = Z[x;: i > 0] with |x;| = 2i. We are using different notation now

because r;(j) need not be the image of x; under any map MU — MU ),

T (MU™) (continued)
Here is some useful notation. For a subgroup H C G, let h = |H| and let pj, denote its regular real
representation and for m € Z, let
W(mpy) = G4+ An S,

The underlying spectrum here is a wedge of g/h (where g = |G|) copies of S,

We will explain how (MU®) is related to maps from the W (mp;,). Recall that in (MU, any

monomial in the polynomial generators in dimension 2m is represented by an equivariant map from
SmP2

T (MU@W) (continued)
In 74 (MU™) the 4 generators ri (j) are permuted up to sign by G, so there is a single equivariant
map W (p,) — MU™ whose restrictions to the 4 wedge summands are the 4 generators.

In 7y (MU (4)) there are 14 monomials that fall into 4 orbits under the action of G, each corre-
sponding to a map from a W (mpy,).

W(2p2) «— {n(1)* 27> nB)? n4)7}

W(2p2) «— {r(D)ri(2),n(2)r1(3), rn(3)r1(4), n(4)r (1)}
W(ps) «— {r(Dri(3),rn(2)r1(4)}

W(2p2) «— {r(1),72(2),r(3),r2(4)}

T (MU™) (continued)
It follows that all of 7} (MU <4)) is represented by an equivariant map from
Va=W(2p2) VW(2p2) VW (pa) VW (2p2).

A similar analysis can be made in any even dimension. G always permutes monomials up to sign.
The first case of a singleton orbit occurs in dimension 8, namely

W(ps) «— {rn()rn(2)n(B)r(4)}.

In general the generators of 7y, (MU (4)) can all be represented by a single equivariant map from
a wedge V,, of W(mpy,)s. Note that W (mp, ) never occurs as a wedge summand of V.

2 Postnikov towers

The classical Postnikov tower
We will now construct a new equivariant analog of the Postnikov tower. First we need to recall
some things about the classical Postnikov tower.

The nth Postnikov section P"X of a space or spectrum X is obtained by Kkilling all homotopy
groups of X above dimension n by attaching cells. The fiber of the map X — P"X is P,;1X, the
n-connected cover of X.

These two functors have some universal properties. Let . and .#~, denote the categories of
spectra and n-connected spectra.

3.5

3.6

3.7

3.8

3.9




The classical Postnikov tower (continued)
Then the functor P,y : .¥ — . satisfies

e For all spectra X, P, X € S.
e Forall A € ./, and X € ./, map of function spectra . (A,P,11X) — S (A,X) is a weak
equivalence.

In other words, the map P,;1X — X is universal among maps from n-connected spectra to X.
Similarly the map X — P"X is universal among maps from X to spectra which are .%,-null in
the sense that all maps to them from n-connected spectra are null. In other words,

e The spectrum P"X is .~ ,-null.
e For any .%%.,-null spectrum Z, the map . (P"X,Z) — .#(X,Z) is an equivalence.

Since ., C .%~,_1, there is a natural transformation P" — P"~!, whose fiber is denoted by
PIX.

3 An equivariant Postnikov tower

An equivariant Postnikov tower
In what follows G will be an arbitrary finite cyclic 2-group, and g = |G|. The statements made
earlier about MU *) have obvious generalizations to MU (¢/2),

Let .75 denote the category of G-equivariant spectra. We need an equivariant analog of .7%,,.
Our choice for this is somewhat novel.

Recall that .., is the category of spectra built up out of spheres of dimension > n using arbitrary
wedges and mapping cones.

An equivariant Postnikov tower (continued)
We will replace the set of sphere spectra by

o = {W(mpy), " 'W(mpp): HC G,me Z, h=|H|}.

We will refer to the elements in this set as slice cells or simply as cells. Note that =>W (mpp)
(and larger desuspensions) are not cells. A free cell is one of the form W (mp;) or Z~'W (mpy), a
wedge of g spheres permuted by G.

In order to define .#’%,, we need to assign a dimension to each element in .27, We do this in terms
of the underlying wedge summands, namely

dim W(mpy) =mh and  dim ~'W (mpy) = mh — 1.

An equivariant Postnikov tower (continued)
Then .S, is the category built up out of elements in .« of dimension > n using arbitrary wedges,
mapping cones and smash products with equivariant suspension spectra.

With this definition it is possible to construct functors PnG+l and Pf; with the same formal properties
as in the classical case. Thus we get a tower

o —— prtly PLX PEX ——
A 4 A
G pn+1 Gpn—1
PrX Gprx PI= X

in which the inverse limit is X and the direct limit is contractible.
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4 The slice spectral sequence

The slice spectral sequence

We call this the slice tower. ®PX is the nth slice and the decreasing sequence of subgroups of
7, (X) is the slice filtration. We also get slice filtrations of the RO(G)-graded homotopy 7, (X) and
the homotopy groups of fixed point sets 7, (X).

There is an important difference between this tower and the classical one. In the classical case
the map X — P"X does not change homotopy groups in dimensions < n. This is not true in this
equivariant case.

In the classical case, P)X is an Eilenberg-Mac Lane spectrum whose nth homotopy group is that
of X. In our case, 7. (“P"X) need not be concentrated in dimension 7.

The slice spectral sequence (continued)
This means the slice filtration leads to a slice spectral sequence converging to m.(X) and its
variants.

One variant has the form
By = 70, (OBX) = 78,(X).
Recall that £(X) is by definition 7, (X %), the homotopy of the fixed point set.

This is the spectral sequence we will use to study MU®) and its relatives.

The slice spectral sequence (continued)
A large portion of our paper is devoted to proving that the slice spectral sequence has the desired
properties. From now on we will drop the symbol G from the functors P", P, and P'.

Slice Theorem . In the slice tower for MU'$/?), every odd slice is contractible and P22r}l1 =V, \NHLZ,
where V,, is the wedge of W (mpy,)s indicated above and HZ is the integer Eilenberg-Mac Lane spec-
trum. V, never has any free summands.

Computing %W (mpy,) AHZ)
Thus we need to find the groups

x8(W (mpy) NHZ) = nH (S"Ph AHZ).

We need this for all integers m because eventually we will invert a certain element in 7% (MU (¢/2) ).

Here is what we will learn.

Vanishing Theorem . o Form >0, il (S"Pn AHZ) = 0 for k < m and for k > mh.
e Form<0andh> 1, xfl (S NHZ) = 0 for k < hm, and for k > m — 3 except in the case
(h,m) = (2,—2) when nl,(S™2P> N\HZ) = Z.

Gap Corollary. For h > 1 and all integers m, w/ (S"Pn NHZ) =0 for —4 < k < 0.

Computing ¢ (W (mp;,) A HZ) (continued)
Gap Corollary. For h > 1 and all integers m, T (S"P» NHZ) =0 for —4 < k < 0.

This will lead directly to one of the three conditions we are looking for in M, namely the vanishing
of T_).

It is our main motivation for using equivariant stable homotopy theory and developing the slice
spectral sequence.
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Computing ¢ (W (mp;,) A HZ) (continued)
Here is a picture of some slices S"P8 A HZ.

28 . . © .
[ o o o o
“ o ® <><>
‘. o A o
[ o [ ) <>
& o
14 2l te 0 %
[ ) <> [ )
o [ ] <> [ )
A %s . ®s
[ O [ ) O
o o
° H ° £]
2 i
16 32

Computing 7% (W (mp;) A HZ) (continued)

e Note that all elements are in the first and third quadrants between certain black lines with slopes
0 and orchid lines with slope 7, and are concentrated on diagonals where # is divisible by 8.

e Bullets, circles and diamonds indicate cyclic groups of order 2, 4 and 8, and boxes indicate
copies of the integers.

e A similar picture for $”P* A HZ would be confined to the regions between the black lines and
blue lines with slope 3 and concentrated on diagonals where ¢ is divisible by 4.

e A similar picture for $”P2 A HZ would be confined to the regions between the black lines and

and concentrated on diagonals where ¢ is divisible by 2.

Computing ¢ (W (mp;,) A HZ) (continued)

e The slice spectral sequence for MU ™ is concentrated in the first quadrant and confined by the
same vanishing lines.
o Later we will invert elements in 71,5, (MU®)). The fact that

SPSAW (mpy) = W ((m —8/h)py).

means that the resulting slice spectral sequence is confined to the regions of the first and third
quadrants shown in the picture.

5 Proof of Vanishing Theorem

The proof of the Vanishing Theorem
The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex C, (mpg) for $"P¢, where m > 0.
In it the cells are permuted by the action of G. It is a complex of Z[G]-modules and is determined by
fixed point data of §""P¢. For H C G we have

(Smpg)H _ Smg/h

This means there is a G-CW-complex with one cell in dimension m, two cells in each dimension
from m+ 1 to 2m, four cells in each dimension from 2m + 1 to 4m, and so on.
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The proof of the Vanishing Theorem (continued)
In other words,

0 fork <m
C,’(npg =< Z[G/H] formg/2h <k <mg/h
0 for k > gm

Each of these is a cyclic Z[G]-module. The boundary operator is determined by the fact that
H, (C(mpy)) = H.(S5").

Then we have
7(S™: AHZ) = H,(Homgg) (Z,C(mpy))).

The proof of the Vanishing Theorem (continued)
These groups are nontrivial only for m < k < gm, which gives the Vanishing Theorem for m > 0.

We will look at the bottom three groups in the complex Homgg (z,C.' Pe ). Since C,'(np % is acyclic
Z[G]-module, the Hom group is always Z.

We have
Cn(mpg)  Cuy1(mpg)  Cuia(mpy)

H
0 I~ 70 < 7Corcy) <7 .

1+y
The proof of the Vanishing Theorem (continued)
Applying Homg(Z,-) to this gives
2270 7270 4 .
so form > 0,
nl(S"Ps NHZ) = 72
78 (S"PsANHZ) = 0
0 form=1andg=2
78, (S"Pe NHZ) = Z form=2andg=2

Z/2 otherwise.

The proof of the Vanishing Theorem (continued)
For the negative multiples of p,, S™"P¢ is the equivariant Spanier-Whitehead dual of $"P¢.This
means that
70 (S"¢ \HZ) = H, (Homyg)(C(mpy), Z)).

Applying the functor Homgg)(-,Z) to our chain complex gives a cochain complex beginning
with
77 g g Oy
The critical fact here is the difference in behavior of the map € : Z[C;] — Z under the functors
Homy ) (Z,-) and Homg,g)(+,Z). They convert it to maps of degrees 2 and 1 respectively.
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The proof of the Vanishing Theorem (continued)
For m < 0 this gives

7G(S": NHZ) = 0
nE;l—‘rm(Smpg /\HZ) 0
Z for ( =(2,-2)
G mp o g7 ?
2y m(S"™ENHZ) = { otherw1se

7% (S"Ps NHZ) = {0 for (g,m) =2,—1or (2,-2)

Z/2 otherwise

This gives both the Vanishing Theorem for m < 0 and the Gap Corollary.

6 RO(G)-graded homotopy

6.1 Xv

The element xy € n_y (X)
For future reference we record some elements in the RO(G)-graded homotopy of a G-spectrum
X, m,(X). For any representation V of G with V¢ = 0, we have a map yy : S® — S,

Suppose X is a ring spectrum with unit map S — X. Smashing it with yy gives a map $° — VX
which is adjoint to a map S~V — X. We also denote this by xy € 7_y (X).

It has the multiplicative property Yyviw = XvXw-

If V is a representation of a subgroup H C G with V¥ =0 and V' is the induced representation of
G, the NS (xv) = xv'-

6.2 uy

The element uy € my|_w (HZ)
Let W be an oriented representation of G, meaning that it takes values in the special orthogonal
group. Then 7y (S AHZ) = Z and we denote its generator by uy € Tw|—w (HZ).

We have uyw = uyuw, and for a trivial representation n, u,, = 1.

If W is an oriented representation of a subgroup H C G with induced representation W' and
WH =0, then |W/| is even and the norm functor N g from H-spectra to G-spectra satisfies

N a2 =,

where pg/y denotes the representation of G induced up from the degree 1 trivial representation of H.

7 Two spectral sequences for KO

The Hopkins-Miller spectral sequence for KO

The simplest case of a finite subgroup of S,, acting on E, is that of C; acting on E; for p = 2.
It has been known since the 70s. E; is 2-adic complex K-theory and the group action is complex
conjugation. The homotopy fixed point set is 2-adic real K-theory.
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Here is the Hopkins-Miller spectral sequence for it.
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The slice spectral sequence for KO
Here is the slice spectral sequence for the actual fixed point set. It was originally studied by Dan
Dugger.
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Actual fixed points and homotopy fixed points
These two spectral sequences are computing different things.

e The Hopkins-Miller spectral sequence converges to T, (Efcz), the homotopy of the homotopy
fixed point set, F(EC,,E;) 2, the spectrum of equivariant maps from a contractible free C,-
spectrum EC; to Ej.

e The slice spectral sequence converges to n*(Elcz), the homotopy groups of the actual fixed
point set.

In general the homotopy and actual fixed point sets need not be equivalent, but in this case they
are.

In our case M is a Cg-spectrum related to MU®). In order to prove our main theorem, we will
need to show that its actual and homotopy fixed point sets are equivalent. We will do this at the end
of the next lecture.
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