
Lecture 3

A solution to the Arf-Kervaire
invariant problem

Instituto Superior Técnico
Lisbon
May 7, 2009

Mike Hill
University of Virginia

Mike Hopkins
Harvard University

Doug Ravenel
University of Rochester

3.1

Our strategy
Recall our goal is to prove

Main Theorem. The Arf-Kervaire elements θ j ∈ π2 j+1−2(S
0) do not exist for j ≥ 7.

Our strategy is to find a map S0→M to a nonconnective spectrum M with the following proper-
ties.

(i) It has an Adams-Novikov spectral sequence in which the image of each θ j is nontrivial.
(ii) It is 256-periodic, meaning Σ256M ∼= M.

(iii) π−2(M) = 0.
3.2

Our strategy (continued)
Our spectrum M will be derived from MU (4) regarded as a C8-spectrum.

Let γ ∈C8 be a generator and let zi be a point in MU . Then the action of C8 on MU (4) is given by

γ(z1∧ z2∧ z3∧ z4) = z4∧ z1∧ z2∧ z3,

where z4 is the complex conjugate of z4.

We need to describe the homotopy of the underlying nonequivariant spectrum, which we denote
πu
∗ (MU (4)). 3.3

1 πu
∗(MU (4))

πu
∗ (MU (4))

Recall that H∗(MU ;Z) = Z[bi : i > 0] where |bi| = 2i. bi is the image of a suitable generator of
H2i(CP∞) under the map

Σ
∞−2CP∞ = Σ

∞−2MU(1)→MU.

It follows that H∗(MU (4)) is the 4-fold tensor power of this polynomial algebra. We denote its
generators by bi( j) for 1≤ j ≤ 4.

The action of γ on these generators is given by

γ(bi( j)) =
{

bi( j +1) for 1≤ j ≤ 3
(−1)ibi(1) for j = 4.

3.4
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πu
∗ (MU (4)) (continued)

πu
∗ (MU (4)) is also a polynomial algebra with 4 generators in every positive even dimension. We

will denote the generators in dimension 2i by ri( j) for 1≤ j ≤ 4. The action of G = C8 is similar to
that on the bi( j), namely

γ(ri( j)) =
{

ri( j +1) for 1≤ j ≤ 3
(−1)iri(1) for j = 4.

Earlier we said that π∗(MU) = Z[xi : i > 0] with |xi| = 2i. We are using different notation now
because ri( j) need not be the image of xi under any map MU →MU (4). 3.5

πu
∗ (MU (4)) (continued)

Here is some useful notation. For a subgroup H ⊂G, let h = |H| and let ρh denote its regular real
representation and for m ∈ Z, let

W (mρh) = G+∧H Smρh .

The underlying spectrum here is a wedge of g/h (where g = |G|) copies of Smh.

We will explain how πu
∗ (MU (4)) is related to maps from the W (mρh). Recall that in πu

∗ (MU), any
monomial in the polynomial generators in dimension 2m is represented by an equivariant map from
Smρ2 . 3.6

πu
∗ (MU (4)) (continued)

In πu
2 (MU (4)) the 4 generators r1( j) are permuted up to sign by G, so there is a single equivariant

map W (ρ2)→MU (4) whose restrictions to the 4 wedge summands are the 4 generators.

In πu
4 (MU (4)) there are 14 monomials that fall into 4 orbits under the action of G, each corre-

sponding to a map from a W (mρh).

W (2ρ2) ←→
{

r1(1)2, r1(2)2, r1(3)2, r1(4)2}
W (2ρ2) ←→ {r1(1)r1(2), r1(2)r1(3), r1(3)r1(4), r1(4)r1(1)}

W (ρ4) ←→ {r1(1)r1(3), r1(2)r1(4)}
W (2ρ2) ←→ {r2(1), r2(2), r2(3), r2(4)}

3.7

πu
∗ (MU (4)) (continued)

It follows that all of πu
4 (MU (4)) is represented by an equivariant map from

V4 = W (2ρ2)∨W (2ρ2)∨W (ρ4)∨W (2ρ2).

A similar analysis can be made in any even dimension. G always permutes monomials up to sign.
The first case of a singleton orbit occurs in dimension 8, namely

W (ρ8) ←→ {r1(1)r1(2)r1(3)r1(4)} .

In general the generators of πu
2n(MU (4)) can all be represented by a single equivariant map from

a wedge Vn of W (mρh)s. Note that W (mρ1) never occurs as a wedge summand of Vn. 3.8

2 Postnikov towers

The classical Postnikov tower
We will now construct a new equivariant analog of the Postnikov tower. First we need to recall

some things about the classical Postnikov tower.

The nth Postnikov section PnX of a space or spectrum X is obtained by killing all homotopy
groups of X above dimension n by attaching cells. The fiber of the map X → PnX is Pn+1X , the
n-connected cover of X .

These two functors have some universal properties. Let S and S>n denote the categories of
spectra and n-connected spectra. 3.9
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The classical Postnikov tower (continued)
Then the functor Pn+1 : S →S satisfies

• For all spectra X , Pn+1X ∈S>n.
• For all A ∈ S>n and X ∈ S , map of function spectra S (A,Pn+1X)→ S (A,X) is a weak

equivalence.

In other words, the map Pn+1X → X is universal among maps from n-connected spectra to X .

Similarly the map X → PnX is universal among maps from X to spectra which are S>n-null in
the sense that all maps to them from n-connected spectra are null. In other words,

• The spectrum PnX is S>n-null.
• For any S>n-null spectrum Z, the map S (PnX ,Z)→S (X ,Z) is an equivalence.

Since S>n ⊂ S>n−1, there is a natural transformation Pn → Pn−1, whose fiber is denoted by
Pn

n X . 3.10

3 An equivariant Postnikov tower

An equivariant Postnikov tower
In what follows G will be an arbitrary finite cyclic 2-group, and g = |G|. The statements made

earlier about MU (4) have obvious generalizations to MU (g/2).

Let S G denote the category of G-equivariant spectra. We need an equivariant analog of S>n.
Our choice for this is somewhat novel.

Recall that S>n is the category of spectra built up out of spheres of dimension > n using arbitrary
wedges and mapping cones. 3.11

An equivariant Postnikov tower (continued)
We will replace the set of sphere spectra by

A =
{

W (mρh), Σ
−1W (mρh) : H ⊂ G, m ∈ Z, h = |H|

}
.

We will refer to the elements in this set as slice cells or simply as cells. Note that Σ−2W (mρH)
(and larger desuspensions) are not cells. A free cell is one of the form W (mρ1) or Σ−1W (mρ1), a
wedge of g spheres permuted by G.

In order to define S G
>n, we need to assign a dimension to each element in A . We do this in terms

of the underlying wedge summands, namely

dim W (mρH) = mh and dim Σ
−1W (mρH) = mh−1.

3.12

An equivariant Postnikov tower (continued)
Then S G

>n is the category built up out of elements in A of dimension > n using arbitrary wedges,
mapping cones and smash products with equivariant suspension spectra.

With this definition it is possible to construct functors PG
n+1 and Pn

G with the same formal properties
as in the classical case. Thus we get a tower

. . . // Pn+1
G X // Pn

GX // Pn−1
G X // . . .

GPn+1
n+1 X

OO

GPn
n X

OO

GPn−1
n−1 X

OO

in which the inverse limit is X and the direct limit is contractible. 3.13
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4 The slice spectral sequence

The slice spectral sequence
We call this the slice tower. GPn

n X is the nth slice and the decreasing sequence of subgroups of
π∗(X) is the slice filtration. We also get slice filtrations of the RO(G)-graded homotopy π?(X) and
the homotopy groups of fixed point sets π∗(XH).

There is an important difference between this tower and the classical one. In the classical case
the map X → PnX does not change homotopy groups in dimensions ≤ n. This is not true in this
equivariant case.

In the classical case, Pn
n X is an Eilenberg-Mac Lane spectrum whose nth homotopy group is that

of X . In our case, π∗(GPn
n X) need not be concentrated in dimension n. 3.14

The slice spectral sequence (continued)
This means the slice filtration leads to a slice spectral sequence converging to π∗(X) and its

variants.

One variant has the form

Es,t
2 = π

G
t−s(

GPt
t X) =⇒ π

G
t−s(X).

Recall that πG
∗ (X) is by definition π∗(XG), the homotopy of the fixed point set.

This is the spectral sequence we will use to study MU (4) and its relatives. 3.15

The slice spectral sequence (continued)
A large portion of our paper is devoted to proving that the slice spectral sequence has the desired

properties. From now on we will drop the symbol G from the functors Pn, Pn+1 and Pn
n .

Slice Theorem . In the slice tower for MU (g/2), every odd slice is contractible and P2n
2n = Vn∧HZ,

where Vn is the wedge of W (mρh)s indicated above and HZ is the integer Eilenberg-Mac Lane spec-
trum. Vn never has any free summands.

3.16

Computing πG
∗ (W (mρh)∧HZ)

Thus we need to find the groups

π
G
∗ (W (mρh)∧HZ) = π

H
∗ (Smρh ∧HZ).

We need this for all integers m because eventually we will invert a certain element in πG
∗ (MU (g/2)).

Here is what we will learn.

Vanishing Theorem . • For m≥ 0, πH
∗ (Smρh ∧HZ) = 0 for k < m and for k > mh.

• For m < 0 and h > 1, πH
∗ (Smρh ∧HZ) = 0 for k < hm, and for k > m− 3 except in the case

(h,m) = (2,−2) when πH
−4(S

−2ρ2 ∧HZ) = Z.

Gap Corollary. For h > 1 and all integers m, πH
k (Smρh ∧HZ) = 0 for −4 < k < 0.

3.17

Computing πG
∗ (W (mρh)∧HZ) (continued)

Gap Corollary. For h > 1 and all integers m, πH
k (Smρh ∧HZ) = 0 for −4 < k < 0.

This will lead directly to one of the three conditions we are looking for in M, namely the vanishing
of π−2.

It is our main motivation for using equivariant stable homotopy theory and developing the slice
spectral sequence. 3.18
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Computing πG
∗ (W (mρh)∧HZ) (continued)

Here is a picture of some slices Smρ8 ∧HZ.
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3.19

Computing πG
∗ (W (mρh)∧HZ) (continued)

• Note that all elements are in the first and third quadrants between certain black lines with slopes
0 and orchid lines with slope 7, and are concentrated on diagonals where t is divisible by 8.

• Bullets, circles and diamonds indicate cyclic groups of order 2, 4 and 8, and boxes indicate
copies of the integers.

• A similar picture for Smρ4 ∧HZ would be confined to the regions between the black lines and
blue lines with slope 3 and concentrated on diagonals where t is divisible by 4.

• A similar picture for Smρ2 ∧HZ would be confined to the regions between the black lines and
green lines with slope 1 and concentrated on diagonals where t is divisible by 2.

3.20

Computing πG
∗ (W (mρh)∧HZ) (continued)

• The slice spectral sequence for MU (4) is concentrated in the first quadrant and confined by the
same vanishing lines.

• Later we will invert elements in πmρ8(MU (4)). The fact that

S−ρ8 ∧W (mρh) = W ((m−8/h)ρh).

means that the resulting slice spectral sequence is confined to the regions of the first and third
quadrants shown in the picture.

3.21

5 Proof of Vanishing Theorem

The proof of the Vanishing Theorem
The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex C∗(mρg) for Smρg , where m≥ 0.
In it the cells are permuted by the action of G. It is a complex of Z[G]-modules and is determined by
fixed point data of Smρg . For H ⊂ G we have

(Smρg)H = Smg/h

This means there is a G-CW-complex with one cell in dimension m, two cells in each dimension
from m+1 to 2m, four cells in each dimension from 2m+1 to 4m, and so on. 3.22
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The proof of the Vanishing Theorem (continued)
In other words,

Cmρg
k =

 0 for k < m
Z[G/H] for mg/2h < k ≤ mg/h
0 for k > gm

Each of these is a cyclic Z[G]-module. The boundary operator is determined by the fact that
H∗(C(mρg)) = H∗(Sgm).

Then we have
π

G
∗ (Smρg ∧HZ) = H∗(HomZ[G](Z,C(mρg))).

3.23

The proof of the Vanishing Theorem (continued)
These groups are nontrivial only for m≤ k ≤ gm, which gives the Vanishing Theorem for m≥ 0.

We will look at the bottom three groups in the complex HomZ[G](Z,Cmρg
∗ ). Since Cmρg

k is a cyclic
Z[G]-module, the Hom group is always Z.

We have
Cm(mρg) Cm+1(mρg) Cm+2(mρg)

0 Zoo Z[C2]
εoo Z[C2 or C4]

1−γoo . . .
1+γoo

3.24

The proof of the Vanishing Theorem (continued)
Applying HomZ[G](Z, ·) to this gives

Z Z2oo Z0oo Z2oo Z0oo . . .oo

so for m > 0,

π
G
m (Smρg ∧HZ) = Z/2

π
G
m+1(S

mρg ∧HZ) = 0

π
G
m+2(S

mρg ∧HZ) =

 0 for m = 1 and g = 2
Z for m = 2 and g = 2
Z/2 otherwise.

3.25

The proof of the Vanishing Theorem (continued)
For the negative multiples of ρg, S−mρg is the equivariant Spanier-Whitehead dual of Smρg .This

means that
π

G
∗ (S−mρg ∧HZ) = H∗(HomZ[G](C(mρg),Z)).

Applying the functor HomZ[G](·,Z) to our chain complex gives a cochain complex beginning
with

Z 1 // Z 0 // Z 2 // Z 0 // Z // . . .

The critical fact here is the difference in behavior of the map ε : Z[C2]→ Z under the functors
HomZ[G](Z, ·) and HomZ[G](·,Z). They convert it to maps of degrees 2 and 1 respectively. 3.26
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The proof of the Vanishing Theorem (continued)
For m < 0 this gives

π
G
m (Smρg ∧HZ) = 0

π
G
−1+m(Smρg ∧HZ) = 0

π
G
−2+m(Smρg ∧HZ) =

{
Z for (g,m) = (2,−2)
0 otherwise

π
G
−3+m(Smρg ∧HZ) =

{
0 for (g,m) = 2,−1 or (2,−2)
Z/2 otherwise

This gives both the Vanishing Theorem for m < 0 and the Gap Corollary. 3.27

6 RO(G)-graded homotopy

6.1 χV

The element χV ∈ π−V (X)
For future reference we record some elements in the RO(G)-graded homotopy of a G-spectrum

X , π?(X). For any representation V of G with V G = 0, we have a map χV : S0→ SV .

Suppose X is a ring spectrum with unit map S0→ X . Smashing it with χV gives a map S0→ ΣV X
which is adjoint to a map S−V → X . We also denote this by χV ∈ π−V (X).

It has the multiplicative property χV+W = χV χW .

If V is a representation of a subgroup H ⊂G with V H = 0 and V ′ is the induced representation of
G, the NG

H (χV ) = χV ′ . 3.28

6.2 uW

The element uW ∈ π|W |−W (HZ)
Let W be an oriented representation of G, meaning that it takes values in the special orthogonal

group. Then π|W |(SW ∧HZ) = Z and we denote its generator by uW ∈ π|W |−W (HZ).

We have uV+W = uV uW , and for a trivial representation n, un = 1.

If W is an oriented representation of a subgroup H ⊂ G with induced representation W ′ and
W H = 0, then |W | is even and the norm functor NG

H from H-spectra to G-spectra satisfies

NG
H (uW )u|W |/2

2ρG/H
= uW ′ ,

where ρG/H denotes the representation of G induced up from the degree 1 trivial representation of H.
3.29

7 Two spectral sequences for KO

The Hopkins-Miller spectral sequence for KO
The simplest case of a finite subgroup of Sn acting on En is that of C2 acting on E1 for p = 2.

It has been known since the 70s. E1 is 2-adic complex K-theory and the group action is complex
conjugation. The homotopy fixed point set is 2-adic real K-theory.
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Here is the Hopkins-Miller spectral sequence for it.
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3.30

The slice spectral sequence for KO
Here is the slice spectral sequence for the actual fixed point set. It was originally studied by Dan

Dugger.
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3.31

Actual fixed points and homotopy fixed points
These two spectral sequences are computing different things.

• The Hopkins-Miller spectral sequence converges to π∗(E
hC2
1 ), the homotopy of the homotopy

fixed point set, F(EC2,E1)C2 , the spectrum of equivariant maps from a contractible free C2-
spectrum EC2 to E1.
• The slice spectral sequence converges to π∗(E

C2
1 ), the homotopy groups of the actual fixed

point set.

In general the homotopy and actual fixed point sets need not be equivalent, but in this case they
are.

In our case M̃ is a C8-spectrum related to MU (4). In order to prove our main theorem, we will
need to show that its actual and homotopy fixed point sets are equivalent. We will do this at the end
of the next lecture. 3.32
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