# Lecture 2

A solution to the Arf-Kervaire invariant problem Instituto Superior Técnico Lisbon May 6, 2009 Mike Hill University of Virginia Mike Hopkins Harvard University Doug Ravenel

University of Rochester

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Our goal is to prove

**Main Theorem** 

The Arf-Kervaire elements  $\theta_j \in \pi_{2^{j+1}-2}(S^0)$  do not exist for  $j \ge 7$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# Our goal is to prove

**Main Theorem** 

The Arf-Kervaire elements  $\theta_j \in \pi_{2^{j+1}-2}(S^0)$  do not exist for  $j \ge 7$ .

Our strategy is to find a map  $S^0 \rightarrow M$  to a nonconnective spectrum M with the following properties.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# Our goal is to prove

#### **Main Theorem**

The Arf-Kervaire elements  $\theta_j \in \pi_{2^{j+1}-2}(S^0)$  do not exist for  $j \ge 7$ .

Our strategy is to find a map  $S^0 \rightarrow M$  to a nonconnective spectrum M with the following properties.

(i) It has an Adams-Novikov spectral sequence in which the image of each  $\theta_j$  is nontrivial.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# Our goal is to prove

#### **Main Theorem**

The Arf-Kervaire elements  $\theta_j \in \pi_{2^{j+1}-2}(S^0)$  do not exist for  $j \ge 7$ .

Our strategy is to find a map  $S^0 \rightarrow M$  to a nonconnective spectrum M with the following properties.

- (i) It has an Adams-Novikov spectral sequence in which the image of each θ<sub>i</sub> is nontrivial.
- (ii) It is 256-periodic, meaning  $\Sigma^{256}M \cong M$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# Our goal is to prove

#### **Main Theorem**

The Arf-Kervaire elements  $\theta_j \in \pi_{2^{j+1}-2}(S^0)$  do not exist for  $j \ge 7$ .

Our strategy is to find a map  $S^0 \rightarrow M$  to a nonconnective spectrum M with the following properties.

- (i) It has an Adams-Novikov spectral sequence in which the image of each  $\theta_i$  is nontrivial.
- (ii) It is 256-periodic, meaning  $\Sigma^{256} M \cong M$ .

(iii) 
$$\pi_{-2}(M) = 0.$$

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We will construct an equivariant  $C_8$ -spectrum  $\tilde{M}$  and show that its homotopy fixed point set  $\tilde{M}^{hC_*}$  (to be defined below) and its actual fixed point set  $\tilde{M}^{C_8}$  are equivalent.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel





We will construct an equivariant  $C_8$ -spectrum  $\tilde{M}$  and show that its homotopy fixed point set  $\tilde{M}^{hC_*}$  (to be defined below) and its actual fixed point set  $\tilde{M}^{C_8}$  are equivalent.

The homotopy of *M*<sup>hC</sup><sup>\*</sup> can be computed using a spectral sequence similar to that of Hopkins-Miller.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We will construct an equivariant  $C_8$ -spectrum  $\tilde{M}$  and show that its homotopy fixed point set  $\tilde{M}^{hC_*}$  (to be defined below) and its actual fixed point set  $\tilde{M}^{C_8}$  are equivalent.

The homotopy of *M*<sup>hC</sup>\* can be computed using a spectral sequence similar to that of Hopkins-Miller. Twenty year old algebraic methods can be used to show that it detects the *θ<sub>j</sub>*s.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We will construct an equivariant  $C_8$ -spectrum  $\tilde{M}$  and show that its homotopy fixed point set  $\tilde{M}^{hC_*}$  (to be defined below) and its actual fixed point set  $\tilde{M}^{C_8}$  are equivalent.

- The homotopy of *M*<sup>hC</sup>\* can be computed using a spectral sequence similar to that of Hopkins-Miller. Twenty year old algebraic methods can be used to show that it detects the θ<sub>i</sub>s.
- In order to establish (ii) and (iii), we will use equivariant methods to construct a new spectral sequence (the *slice spectral sequence*) converging to the homotopy of the actual fixed point set *M*<sup>C<sub>8</sub></sup>.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

• *MU* has an action of the group *C*<sub>2</sub> via complex conjugation.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

МU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

• *MU* has an action of the group *C*<sub>2</sub> via complex conjugation. The fixed point set is *MO*, the Thom spectrum for the universal real vector bundle.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

NU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

- *MU* has an action of the group *C*<sub>2</sub> via complex conjugation. The fixed point set is *MO*, the Thom spectrum for the universal real vector bundle.
- $H_*(MU; \mathbf{Z}) = \mathbf{Z}[b_i : i > 0]$  where  $|b_i| = 2i$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

мU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

- *MU* has an action of the group *C*<sub>2</sub> via complex conjugation. The fixed point set is *MO*, the Thom spectrum for the universal real vector bundle.
- $H_*(MU; \mathbf{Z}) = \mathbf{Z}[b_i : i > 0]$  where  $|b_i| = 2i$ .
- $H_*(MO; \mathbf{Z}/2) = \mathbf{Z}/2[a_i : i > 0]$  where  $|a_i| = i$ .

The spectrum M Formal group laws MU's relatives The Hopkins-Miller theorem Our first guess at M Equivariant stable homotopy theory MU as a Co-spectrum

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

- *MU* has an action of the group *C*<sub>2</sub> via complex conjugation. The fixed point set is *MO*, the Thom spectrum for the universal real vector bundle.
- $H_*(MU; \mathbf{Z}) = \mathbf{Z}[b_i : i > 0]$  where  $|b_i| = 2i$ .
- $H_*(MO; \mathbf{Z}/2) = \mathbf{Z}/2[a_i : i > 0]$  where  $|a_i| = i$ .
- $\pi_*(MU) = \mathbb{Z}[x_i : i > 0]$  where  $|x_i| = 2i$ . This is the complex cobordism ring.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

*MU* is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, *BU*.

- *MU* has an action of the group *C*<sub>2</sub> via complex conjugation. The fixed point set is *MO*, the Thom spectrum for the universal real vector bundle.
- $H_*(MU; \mathbf{Z}) = \mathbf{Z}[b_i : i > 0]$  where  $|b_i| = 2i$ .
- $H_*(MO; \mathbf{Z}/2) = \mathbf{Z}/2[a_i : i > 0]$  where  $|a_i| = i$ .
- π<sub>\*</sub>(MU) = Z[x<sub>i</sub> : i > 0] where |x<sub>i</sub>| = 2i. This is the complex cobordism ring.
- $\pi_*(MO) = \mathbb{Z}/2[y_i : i > 0, i \neq 2^k 1]$  where  $|y_i| = i$ . This is the unoriented cobordism ring.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j \ge 0} a_{i,j} x^i y^j \in R[[x,y]]$$

satisfying

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j\geq 0} a_{i,j} x^i y^j \in R[[x,y]]$$

satisfying

(i) (Commutativity) 
$$F(y, x) = F(x, y)$$
.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j \ge 0} a_{i,j} x^i y^j \in R[[x,y]]$$

satisfying

(i) (Commutativity) F(y, x) = F(x, y). This implies  $a_{j,i} = a_{i,j}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j \ge 0} a_{i,j} x^i y^j \in R[[x,y]]$$

satisfying

- (i) (Commutativity) F(y, x) = F(x, y). This implies  $a_{j,i} = a_{i,j}$ .
- (ii) (Identity element) F(x, 0) = F(0, x) = x.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j\geq 0} a_{i,j}x^iy^j \in R[[x,y]]$$

satisfying

- (i) (Commutativity) F(y, x) = F(x, y). This implies  $a_{j,i} = a_{i,j}$ .
- (ii) (Identity element) F(x, 0) = F(0, x) = x. This implies  $a_{1,0} = a_{0,1} = 1$  and  $a_{i,0} = a_{0,i} = 0$  for  $i \neq 1$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j \ge 0} a_{i,j} x^i y^j \in R[[x,y]]$$

satisfying

(i) (Commutativity) F(y, x) = F(x, y). This implies  $a_{j,i} = a_{i,j}$ .

(ii) (Identity element) F(x,0) = F(0,x) = x. This implies  $a_{1,0} = a_{0,1} = 1$  and  $a_{i,0} = a_{0,i} = 0$  for  $i \neq 1$ .

(iii) (Associativity) F(x, F(y, z)) = F(F(x, y), z).

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The following algebraic structure plays a central role in complex cobordism theory.

A (1-dimensional commutative) formal group law over a ring R is a power series

$$F(x,y) = \sum_{i,j \ge 0} a_{i,j} x^i y^j \in R[[x,y]]$$

satisfying

- (i) (Commutativity) F(y, x) = F(x, y). This implies  $a_{j,i} = a_{i,j}$ .
- (ii) (Identity element) F(x, 0) = F(0, x) = x. This implies  $a_{1,0} = a_{0,1} = 1$  and  $a_{i,0} = a_{0,i} = 0$  for  $i \neq 1$ .
- (iii) (Associativity) F(x, F(y, z)) = F(F(x, y), z). This implies more complicated relations among the  $a_{i,j}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

• x + y, the additive formal group law.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law. Note here that 1 + F(x, y) = (1 + x)(1 + y).



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law. Note here that 1 + F(x, y) = (1 + x)(1 + y).
- (x + y)/(1 xy), the addition formula for the tangent function.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law. Note here that 1 + F(x, y) = (1 + x)(1 + y).
- (x + y)/(1 xy), the addition formula for the tangent function.

$$\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2},$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law. Note here that 1 + F(x, y) = (1 + x)(1 + y).
- (x + y)/(1 xy), the addition formula for the tangent function.

$$\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}$$

,

This formal group law is defined over Z[1/2].

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law. Note here that 1 + F(x, y) = (1 + x)(1 + y).
- (x + y)/(1 xy), the addition formula for the tangent function.

$$\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}$$

,

This formal group law is defined over Z[1/2]. It is the addition formula for the elliptic integral

$$\int_0^x \frac{dt}{\sqrt{1-t^4}}$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- x + y, the additive formal group law.
- x + y + xy, the multiplicative formal group law. Note here that 1 + F(x, y) = (1 + x)(1 + y).
- (x + y)/(1 xy), the addition formula for the tangent function.

$$\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}$$

,

This formal group law is defined over Z[1/2]. It is the addition formula for the elliptic integral

$$\int_0^x \frac{dt}{\sqrt{1-t^4}}$$

It is originally due to Euler, see *De integratione aequationis differentialis*  $(mdx)/\sqrt{1-x^4} = (ndy)/\sqrt{1-x^4}$ , 1753.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# The Lazard ring and the universal formal group law

Let

$$L = \mathbf{Z}[a_{i,j}]/(\text{relations})$$

where the relations are those implied by the definition of a formal group law.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# The Lazard ring and the universal formal group law

Let

 $L = \mathbf{Z}[a_{i,j}]/(\text{relations})$ 

where the relations are those implied by the definition of a formal group law. We give this ring a grading by  $|a_{i,j}| = 2(i + j - 1)$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# The Lazard ring and the universal formal group law

Let

 $L = \mathbf{Z}[a_{i,j}]/(\text{relations})$ 

where the relations are those implied by the definition of a formal group law. We give this ring a grading by  $|a_{i,j}| = 2(i + j - 1)$ .

There is formal group law G over L given by the formula in the definition.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### The Lazard ring and the universal formal group law

Let

 $L = \mathbf{Z}[a_{i,j}]/(\text{relations})$ 

where the relations are those implied by the definition of a formal group law. We give this ring a grading by  $|a_{i,j}| = 2(i + j - 1)$ .

There is formal group law G over L given by the formula in the definition. It is universal in the following sense.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### The Lazard ring and the universal formal group law

Let

 $L = \mathbf{Z}[a_{i,j}]/(\text{relations})$ 

where the relations are those implied by the definition of a formal group law. We give this ring a grading by  $|a_{i,j}| = 2(i + j - 1)$ .

There is formal group law G over L given by the formula in the definition. It is universal in the following sense.

Given any formal group law *F* over any ring *R*, there is a unique ring homomorphism  $\lambda : L \rightarrow R$  such that

$$F(x, y) = \lambda(G(x, y)),$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### The Lazard ring and the universal formal group law

Let

 $L = \mathbf{Z}[a_{i,j}]/(\text{relations})$ 

where the relations are those implied by the definition of a formal group law. We give this ring a grading by  $|a_{i,j}| = 2(i + j - 1)$ .

There is formal group law G over L given by the formula in the definition. It is universal in the following sense.

Given any formal group law *F* over any ring *R*, there is a unique ring homomorphism  $\lambda : L \rightarrow R$  such that

 $F(x,y) = \lambda(G(x,y)),$ 

where  $\lambda(G(x, y))$  is the formal group law over *R* obtained from *G* by applying  $\lambda$  to each of the  $a_{i,j}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Lazard showed that *L* and  $\pi_*(MU)$  are isomorphic as graded rings.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Lazard showed that *L* and  $\pi_*(MU)$  are isomorphic as graded rings. Quillen showed that this is not an accident.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Lazard showed that *L* and  $\pi_*(MU)$  are isomorphic as graded rings. Quillen showed that this is not an accident. The isomorphism is defined by a formal group law over  $\pi_*(MU)$  defined as follows.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Lazard showed that *L* and  $\pi_*(MU)$  are isomorphic as graded rings. Quillen showed that this is not an accident. The isomorphism is defined by a formal group law over  $\pi_*(MU)$  defined as follows.

There is a cohomology theory associated with MU under which

$$\begin{array}{lll} MU^*(\mathbf{C}P^{\infty}) &=& \pi_*(MU)[[x]]\\ \text{and} & MU^*(\mathbf{C}P^{\infty}\times\mathbf{C}P^{\infty}) &=& \pi_*(MU)[[x\otimes 1,1\otimes x]]. \end{array}$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Lazard showed that *L* and  $\pi_*(MU)$  are isomorphic as graded rings. Quillen showed that this is not an accident. The isomorphism is defined by a formal group law over  $\pi_*(MU)$  defined as follows.

There is a cohomology theory associated with MU under which

$$\begin{array}{lll} & MU^*(\mathbf{C}P^{\infty}) &=& \pi_*(MU)[[x]]\\ \text{and} & MU^*(\mathbf{C}P^{\infty}\times\mathbf{C}P^{\infty}) &=& \pi_*(MU)[[x\otimes 1,1\otimes x]]. \end{array}$$

The map  $CP^{\infty} \times CP^{\infty} \to CP^{\infty}$  (corresponding to tensor product of complex line bundles) induces a homomorphism

$$MU^*({f CP}^\infty) o MU^*({f CP}^\infty imes {f CP}^\infty)$$

that sends x to a power series in  $x \otimes 1$  and  $1 \otimes x$  which is a formal group law over  $\pi_*(MU)$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### Quillen's theorem (continued)

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

# Quillen's Theorem (1969)

The homomorphism  $\theta : L \to \pi_*(MU)$  induced by the formal group law over  $\pi_*(MU)$  defined above is an isomorphism.



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### Quillen's theorem (continued)

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

MU as a C2-spectrum

### Quillen's Theorem (1969)

The homomorphism  $\theta : L \to \pi_*(MU)$  induced by the formal group law over  $\pi_*(MU)$  defined above is an isomorphism.

This means that the internal structure of *MU*, and the associated homology and cohomology theories, is intimately related to the structure of formal group laws.

Here is an example of this connection.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Here is an example of this connection.

After localizing at a prime *p*, *MU* splits into a wedge of suspensions of smaller spectra (Brown-Peterson) *BP* with

$$\pi_*(BP) = \mathbf{Z}_{(p)}[v_n \colon n > 0] \qquad \text{where } |v_n| = 2p^n - 2.$$

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Here is an example of this connection.

After localizing at a prime *p*, *MU* splits into a wedge of suspensions of smaller spectra (Brown-Peterson) *BP* with

$$\pi_*(\textit{BP}) = \textbf{Z}_{(p)}[\textit{v}_n : n > 0] \qquad \text{where } |\textit{v}_n| = 2p^n - 2.$$

Brown and Peterson originally constructed it (in 1967) via its Postnikov tower.

### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Here is an example of this connection.

After localizing at a prime *p*, *MU* splits into a wedge of suspensions of smaller spectra (Brown-Peterson) *BP* with

$$\pi_*(BP) = \mathbf{Z}_{(p)}[v_n: n > 0]$$
 where  $|v_n| = 2p^n - 2$ .

Brown and Peterson originally constructed it (in 1967) via its Postnikov tower.

Quillen's 1969 paper gave a more elegant construction in terms of *p*-typical formal group laws.

### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Here is an example of this connection.

After localizing at a prime *p*, *MU* splits into a wedge of suspensions of smaller spectra (Brown-Peterson) *BP* with

 $\pi_*(BP) = \mathbf{Z}_{(p)}[v_n: n > 0]$  where  $|v_n| = 2p^n - 2$ .

Brown and Peterson originally constructed it (in 1967) via its Postnikov tower.

Quillen's 1969 paper gave a more elegant construction in terms of *p*-typical formal group laws. A theorem of Cartier says that any formal group law over a  $Z_{(p)}$ -algebra is canonically isomorphic to one with certain special properties.

### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Here is an example of this connection.

After localizing at a prime *p*, *MU* splits into a wedge of suspensions of smaller spectra (Brown-Peterson) *BP* with

 $\pi_*(BP) = \mathbf{Z}_{(p)}[v_n: n > 0]$  where  $|v_n| = 2p^n - 2$ .

Brown and Peterson originally constructed it (in 1967) via its Postnikov tower.

Quillen's 1969 paper gave a more elegant construction in terms of *p*-typical formal group laws. A theorem of Cartier says that any formal group law over a  $Z_{(p)}$ -algebra is canonically isomorphic to one with certain special properties.

The Brown-Peterson splitting is the topological analog of Cartier's theorem.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The *Morava spectrum*  $E_n$  (for a positive integer *n*) is an  $E_{\infty}$ -ring spectrum such that  $\pi_*(E_n)$  obtained from  $\pi_*(BP)$  as follows:

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

The spectrum M MU

Formal group laws

/U's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The *Morava spectrum*  $E_n$  (for a positive integer *n*) is an  $E_{\infty}$ -ring spectrum such that  $\pi_*(E_n)$  obtained from  $\pi_*(BP)$  as follows:

(i) Invert  $v_n$  and kill the higher generators.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The *Morava spectrum*  $E_n$  (for a positive integer *n*) is an  $E_{\infty}$ -ring spectrum such that  $\pi_*(E_n)$  obtained from  $\pi_*(BP)$  as follows:

- (i) Invert  $v_n$  and kill the higher generators.
- (ii) Complete with respect to the ideal  $I_n = (p, v_1, \dots, v_{n-1})$ .



A solution to the

The *Morava spectrum*  $E_n$  (for a positive integer *n*) is an  $E_{\infty}$ -ring spectrum such that  $\pi_*(E_n)$  obtained from  $\pi_*(BP)$  as follows:

- (i) Invert  $v_n$  and kill the higher generators.
- (ii) Complete with respect to the ideal  $I_n = (p, v_1, \dots, v_{n-1})$ .
- (iii) Tensor over Z<sub>p</sub> (the *p*-adic integers) with the Witt ring W(F<sub>p<sup>n</sup></sub>); this is equivalent to adjoining (p<sup>n</sup> 1)th roots of unity.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The *Morava spectrum*  $E_n$  (for a positive integer *n*) is an  $E_{\infty}$ -ring spectrum such that  $\pi_*(E_n)$  obtained from  $\pi_*(BP)$  as follows:

- (i) Invert  $v_n$  and kill the higher generators.
- (ii) Complete with respect to the ideal  $I_n = (p, v_1, \dots, v_{n-1})$ .
- (iii) Tensor over Z<sub>p</sub> (the *p*-adic integers) with the Witt ring W(F<sub>p<sup>n</sup></sub>); this is equivalent to adjoining (p<sup>n</sup> 1)th roots of unity.

The ring  $\pi_*(E_n)$  was studied by Lubin-Tate. They showed that it classifies liftings (to Artinian rings) of a certain formal group law  $F_n$  over  $\mathbf{F}_{p^n}$ , the Honda formal group law.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ .

### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ . It a crucial ingredient in chromatic stable homotopy theory.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ . It a crucial ingredient in chromatic stable homotopy theory.

Its action on  $F_n$  lifts to an action on  $\pi_*(E_n)$ , the Lubin-Tate ring.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ . It a crucial ingredient in chromatic stable homotopy theory.

Its action on  $F_n$  lifts to an action on  $\pi_*(E_n)$ , the Lubin-Tate ring. This action is defined by certain formulas but is mysterious in practice.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ . It a crucial ingredient in chromatic stable homotopy theory.

Its action on  $F_n$  lifts to an action on  $\pi_*(E_n)$ , the Lubin-Tate ring. This action is defined by certain formulas but is mysterious in practice.

It is a pro-*p*-group isomorphic to a group of units in a certain division algebra  $D_n$  of rank  $n^2$  over the *p*-adic numbers  $\mathbf{Q}_p$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ . It a crucial ingredient in chromatic stable homotopy theory.

Its action on  $F_n$  lifts to an action on  $\pi_*(E_n)$ , the Lubin-Tate ring. This action is defined by certain formulas but is mysterious in practice.

It is a pro-*p*-group isomorphic to a group of units in a certain division algebra  $D_n$  of rank  $n^2$  over the *p*-adic numbers  $\mathbf{Q}_p$ .

 $D_n$  contains each degree *n* field extension of  $\mathbf{Q}_p$ , including the cyclotomic ones.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

 $S_n$  is the automorphism group of the Honda formal group law  $F_n$ . It a crucial ingredient in chromatic stable homotopy theory.

Its action on  $F_n$  lifts to an action on  $\pi_*(E_n)$ , the Lubin-Tate ring. This action is defined by certain formulas but is mysterious in practice.

It is a pro-*p*-group isomorphic to a group of units in a certain division algebra  $D_n$  of rank  $n^2$  over the *p*-adic numbers  $\mathbf{Q}_p$ .

 $D_n$  contains each degree *n* field extension of  $\mathbf{Q}_p$ , including the cyclotomic ones.

We will be interested in some finite subgroups of  $S_n$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The algebraically defined action of  $S_n$  on  $\pi_*(E_n)$  leads to action on  $E_n$  itself, but it is defined only up to homotopy.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The algebraically defined action of  $S_n$  on  $\pi_*(E_n)$  leads to action on  $E_n$  itself, but it is defined only up to homotopy.

In the early 90s Hopkins and Miller showed that the action can be rigidified enough to construct homotopy fixed points sets  $E_n^{hG}$  for closed (e.g. finite) subgroups *G*.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The algebraically defined action of  $S_n$  on  $\pi_*(E_n)$  leads to action on  $E_n$  itself, but it is defined only up to homotopy.

In the early 90s Hopkins and Miller showed that the action can be rigidified enough to construct homotopy fixed points sets  $E_n^{hG}$  for closed (e.g. finite) subgroups *G*.

 $E_n^{hS_n}$  is  $L_{K(n)}S^0$ , the localization of the sphere spectrum with respect to the *n*th Morava *K*-theory.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The algebraically defined action of  $S_n$  on  $\pi_*(E_n)$  leads to action on  $E_n$  itself, but it is defined only up to homotopy.

In the early 90s Hopkins and Miller showed that the action can be rigidified enough to construct homotopy fixed points sets  $E_n^{hG}$  for closed (e.g. finite) subgroups *G*.

 $E_n^{hS_n}$  is  $L_{K(n)}S^0$ , the localization of the sphere spectrum with respect to the *n*th Morava *K*-theory.

Hopkins-Miller Theorem (1992?)

For each closed subgroup  $G \subset S_n$  there is a homotopy fixed point set  $E_n^{hG}$  and a spectral sequence

$$H^*(G; \pi_*(E_n)) \implies \pi_*(E_n^{hG}).$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The algebraically defined action of  $S_n$  on  $\pi_*(E_n)$  leads to action on  $E_n$  itself, but it is defined only up to homotopy.

In the early 90s Hopkins and Miller showed that the action can be rigidified enough to construct homotopy fixed points sets  $E_n^{hG}$  for closed (e.g. finite) subgroups *G*.

 $E_n^{hS_n}$  is  $L_{K(n)}S^0$ , the localization of the sphere spectrum with respect to the *n*th Morava *K*-theory.

Hopkins-Miller Theorem (1992?)

For each closed subgroup  $G \subset S_n$  there is a homotopy fixed point set  $E_n^{hG}$  and a spectral sequence

$$H^*(G; \pi_*(E_n)) \implies \pi_*(E_n^{hG})$$

It coincides with the Adams-Novikov spectral sequence for  $E_n^{hG}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

## Finite subgroups of S<sub>n</sub>

The finite subgroups of  $S_n$  have been completely classified by Hewett, but only three of them concern us here. The prime is always 2.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

## Finite subgroups of S<sub>n</sub>

The finite subgroups of  $S_n$  have been completely classified by Hewett, but only three of them concern us here. The prime is always 2.

C<sub>2</sub> = {±1} ⊂ S<sub>1</sub>, which is Z<sub>2</sub><sup>×</sup>, the units in the 2-adic integers.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

## Finite subgroups of S<sub>n</sub>

The finite subgroups of  $S_n$  have been completely classified by Hewett, but only three of them concern us here. The prime is always 2.

- C<sub>2</sub> = {±1} ⊂ S<sub>1</sub>, which is Z<sub>2</sub><sup>×</sup>, the units in the 2-adic integers.
- C<sub>4</sub> ⊂ S<sub>2</sub>. The group S<sub>2</sub> is in the division algebra D<sub>2</sub> which contains each quadratic extension of the 2-adic numbers. Hence it contains fourth roots of unity.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

# Finite subgroups of S<sub>n</sub>

The finite subgroups of  $S_n$  have been completely classified by Hewett, but only three of them concern us here. The prime is always 2.

- $C_2 = \{\pm 1\} \subset S_1$ , which is  $\mathbf{Z}_2^{\times}$ , the units in the 2-adic integers.
- C<sub>4</sub> ⊂ S<sub>2</sub>. The group S<sub>2</sub> is in the division algebra D<sub>2</sub> which contains each quadratic extension of the 2-adic numbers. Hence it contains fourth roots of unity.
- C<sub>8</sub> ⊂ S<sub>4</sub>. The division algebra D<sub>4</sub> contains eighth roots of unity for similar reasons.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

• The spectrum  $E_4^{hC_8}$  can be shown to satisfy the first condition required of *M*, namely its Adams-Novikov spectral sequence detects all of the  $\theta_j$ s.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

• The spectrum  $E_4^{hC_8}$  can be shown to satisfy the first condition required of *M*, namely its Adams-Novikov spectral sequence detects all of the  $\theta_j$ s.  $E_1^{hC_2}$  and  $E_2^{hC_4}$  do not have this property.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- The spectrum  $E_4^{hC_8}$  can be shown to satisfy the first condition required of *M*, namely its Adams-Novikov spectral sequence detects all of the  $\theta_j$ s.  $E_1^{hC_2}$  and  $E_2^{hC_4}$  do not have this property.
- The Hopkins-Miller spectral sequence for  $E_1^{hC_2}$  is very simple and we will describe it at the end of the third lecture.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- The spectrum  $E_4^{hC_8}$  can be shown to satisfy the first condition required of *M*, namely its Adams-Novikov spectral sequence detects all of the  $\theta_j$ s.  $E_1^{hC_2}$  and  $E_2^{hC_4}$  do not have this property.
- The Hopkins-Miller spectral sequence for  $E_1^{hC_2}$  is very simple and we will describe it at the end of the third lecture.
- The one for  $E_2^{hC_4}$  is very rich and is similar to the one for tmf (topological modular forms), whose K(2)-localization is the homotopy fixed point set for a certain subgroup of order 24.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

- The spectrum  $E_4^{hC_8}$  can be shown to satisfy the first condition required of *M*, namely its Adams-Novikov spectral sequence detects all of the  $\theta_j$ s.  $E_1^{hC_2}$  and  $E_2^{hC_4}$  do not have this property.
- The Hopkins-Miller spectral sequence for  $E_1^{hC_2}$  is very simple and we will describe it at the end of the third lecture.
- The one for  $E_2^{hC_4}$  is very rich and is similar to the one for tmf (topological modular forms), whose K(2)-localization is the homotopy fixed point set for a certain subgroup of order 24.
- The one for  $E_4^{hC_8}$  is too complicated for us to use it to prove that  $\pi_{-2} = 0$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum is more than a spectrum with an action of *G*. We will give the precise definitions shortly.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum is more than a spectrum with an action of *G*. We will give the precise definitions shortly.

After describing a  $C_8$ -equivariant substitute for  $E_4$ , we will present a new spectral sequence, the *slice spectral sequence*, for computing the homotopy of its fixed point set.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum is more than a spectrum with an action of *G*. We will give the precise definitions shortly.

After describing a  $C_8$ -equivariant substitute for  $E_4$ , we will present a new spectral sequence, the *slice spectral sequence*, for computing the homotopy of its fixed point set.

A convenient property of the slice spectral sequence is that  $\pi_{-2}$  vanishes at the  $E_2$ -level, making property (iii) immediate.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum is more than a spectrum with an action of *G*. We will give the precise definitions shortly.

After describing a  $C_8$ -equivariant substitute for  $E_4$ , we will present a new spectral sequence, the *slice spectral sequence*, for computing the homotopy of its fixed point set.

A convenient property of the slice spectral sequence is that  $\pi_{-2}$  vanishes at the  $E_2$ -level, making property (iii) immediate.

Property (ii) (periodicity) involves some differentials in the slice spectral sequence.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum is more than a spectrum with an action of *G*. We will give the precise definitions shortly.

After describing a  $C_8$ -equivariant substitute for  $E_4$ , we will present a new spectral sequence, the *slice spectral sequence*, for computing the homotopy of its fixed point set.

A convenient property of the slice spectral sequence is that  $\pi_{-2}$  vanishes at the  $E_2$ -level, making property (iii) immediate.

Property (ii) (periodicity) involves some differentials in the slice spectral sequence.

There is an analogous construction for  $E_{2^{k-1}}$  as a  $C_{2^k}$ -spectrum for any k. The slice spectral sequence for k = 1 was the subject of Dan Dugger's thesis, and we will illustrate at at the end of the third lecture.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before we can describe any of this, we need to introduce *equivariant stable homotopy theory.* 

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before we can describe any of this, we need to introduce equivariant stable homotopy theory.

Let *G* be a finite group.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before we can describe any of this, we need to introduce equivariant stable homotopy theory.

Let *G* be a finite group. A *G*-space is a topological space *X* with a continuous left action by *G*; a based *G*-space is a *G*-space together with a basepoint fixed by *G*.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before we can describe any of this, we need to introduce *equivariant stable homotopy theory.* 

Let *G* be a finite group. A *G*-space is a topological space *X* with a continuous left action by *G*; a based *G*-space is a *G*-space together with a basepoint fixed by *G*.

We can convert an unbased *G*-spaces *X* into based one by taking the topological sum of *X* and a *G*-fixed basepoint, denoted by  $X_+$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before we can describe any of this, we need to introduce *equivariant stable homotopy theory.* 

Let *G* be a finite group. A *G*-space is a topological space *X* with a continuous left action by *G*; a based *G*-space is a *G*-space together with a basepoint fixed by *G*.

We can convert an unbased *G*-spaces *X* into based one by taking the topological sum of *X* and a *G*-fixed basepoint, denoted by  $X_+$ .

The product  $X \times Y$  of two *G*-spaces is a *G*-space under the diagonal action, as is the smash product of two based *G*-spaces.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel

The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

MU as a C2-spectrum

# The space F(X, Y) of based maps $X \to Y$ is itself a *G*-space with *G*-action defined by $(\gamma f)(x) = \gamma f(\gamma^{-1}x)$ for $\gamma \in G$ .

The space F(X, Y) of based maps  $X \to Y$  is itself a *G*-space with *G*-action defined by  $(\gamma f)(x) = \gamma f(\gamma^{-1}x)$  for  $\gamma \in G$ .

Its fixed point set  $F(X, Y)^G$  is the space of based *G*-maps  $X \rightarrow Y$ , i.e., those maps commuting with the action of *G*.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The space F(X, Y) of based maps  $X \to Y$  is itself a *G*-space with *G*-action defined by  $(\gamma f)(x) = \gamma f(\gamma^{-1}x)$  for  $\gamma \in G$ .

Its fixed point set  $F(X, Y)^G$  is the space of based *G*-maps  $X \rightarrow Y$ , i.e., those maps commuting with the action of *G*.

We use the notation  $[X, Y]_G$  to denote the set of homotopy classes of based *G*-maps  $X \rightarrow Y$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

The space F(X, Y) of based maps  $X \to Y$  is itself a *G*-space with *G*-action defined by  $(\gamma f)(x) = \gamma f(\gamma^{-1}x)$  for  $\gamma \in G$ .

Its fixed point set  $F(X, Y)^G$  is the space of based *G*-maps  $X \rightarrow Y$ , i.e., those maps commuting with the action of *G*.

We use the notation  $[X, Y]_G$  to denote the set of homotopy classes of based *G*-maps  $X \rightarrow Y$ .

A map of *G*-spaces  $f : X \to Y$  is said to be a *weak G*-equivalence if for each subgroup  $H \subset G$ , the induced map  $f : X^H \to Y^H$  is a weak equivalence in the nonequivariant sense.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### **G-CW complexes via orbits**

There are two ways to generalize the construction of CW-complexes to the equivariant world, one based on orbits and a second based on representations.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### **G-CW complexes via orbits**

There are two ways to generalize the construction of CW-complexes to the equivariant world, one based on orbits and a second based on representations.

For the orbit construction, given any subgroup *H* of *G* we may form the homogeneous space G/H and its based counterpart,  $G/H_+$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### **G-CW complexes via orbits**

There are two ways to generalize the construction of CW-complexes to the equivariant world, one based on orbits and a second based on representations.

For the orbit construction, given any subgroup *H* of *G* we may form the homogeneous space G/H and its based counterpart,  $G/H_+$ .

These are treated as 0-dimensional cells, and they play a role in equivariant theory analogous to the role of points in nonequivariant theory. Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We form the *n*-dimensional cells from these homogeneous spaces. In the unbased context, the cell-sphere pair is

 $(G/H \times D^n, G/H \times S^{n-1})$ 



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We form the *n*-dimensional cells from these homogeneous spaces. In the unbased context, the cell-sphere pair is

 $(G/H \times D^n, G/H \times S^{n-1})$ 

and in the based context

 $(G/H_+ \wedge D^n, G/H_+ \wedge S^{n-1}).$ 

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We form the *n*-dimensional cells from these homogeneous spaces. In the unbased context, the cell-sphere pair is

 $(G/H \times D^n, G/H \times S^{n-1})$ 

and in the based context

 $(G/H_+ \wedge D^n, G/H_+ \wedge S^{n-1}).$ 

A cell is said to be *induced* if it comes from a proper subgroup *H*.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We form the *n*-dimensional cells from these homogeneous spaces. In the unbased context, the cell-sphere pair is

 $(G/H \times D^n, G/H \times S^{n-1})$ 

and in the based context

 $(G/H_+ \wedge D^n, G/H_+ \wedge S^{n-1}).$ 

A cell is said to be *induced* if it comes from a proper subgroup *H*.

Starting from these cell-sphere pairs, we form *G*-CW complexes exactly as nonequivariant CW-complexes are formed from the cell-sphere pairs  $(D^n, S^{n-1})$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

We form the *n*-dimensional cells from these homogeneous spaces. In the unbased context, the cell-sphere pair is

 $(G/H \times D^n, G/H \times S^{n-1})$ 

and in the based context

 $(G/H_+ \wedge D^n, G/H_+ \wedge S^{n-1}).$ 

A cell is said to be *induced* if it comes from a proper subgroup *H*.

Starting from these cell-sphere pairs, we form *G*-CW complexes exactly as nonequivariant CW-complexes are formed from the cell-sphere pairs  $(D^n, S^{n-1})$ . In such a complex, an element  $\gamma \in G$  acts on a cell either by mapping it homeomorphically to another cell or by fixing it.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let *V* be an orthogonal representation of *G*. Denote its one-point compactification by  $S^V$ , with  $\infty$  as the basepoint.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let *V* be an orthogonal representation of *G*. Denote its one-point compactification by  $S^V$ , with  $\infty$  as the basepoint. We denote the trivial *n*-dimensional real representation by *n*, giving the symbol  $S^n$  its usual meaning.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let *V* be an orthogonal representation of *G*. Denote its one-point compactification by  $S^V$ , with  $\infty$  as the basepoint. We denote the trivial *n*-dimensional real representation by *n*, giving the symbol  $S^n$  its usual meaning.

We may also form the unit disc and unit sphere

$$D(V) = \{v \in V : ||v|| \le 1\}$$
 and  $S(V) = \{v \in V : ||v|| = 1\}$ ;

we think of them as unbased G-spaces.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let *V* be an orthogonal representation of *G*. Denote its one-point compactification by  $S^V$ , with  $\infty$  as the basepoint. We denote the trivial *n*-dimensional real representation by *n*, giving the symbol  $S^n$  its usual meaning.

We may also form the unit disc and unit sphere

$$D(V) = \{v \in V : ||v|| \le 1\}$$
 and  $S(V) = \{v \in V : ||v|| = 1\}$ ;

we think of them as unbased *G*-spaces. There is a homeomorphism  $S^V \cong D(V)/S(V)$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let *V* be an orthogonal representation of *G*. Denote its one-point compactification by  $S^V$ , with  $\infty$  as the basepoint. We denote the trivial *n*-dimensional real representation by *n*, giving the symbol  $S^n$  its usual meaning.

We may also form the unit disc and unit sphere

$$D(V) = \{v \in V : ||v|| \le 1\}$$
 and  $S(V) = \{v \in V : ||v|| = 1\}$ ;

we think of them as unbased *G*-spaces. There is a homeomorphism  $S^{V} \cong D(V)/S(V)$ .

We can use these objects to build G-CW complexes as well.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let *V* be an orthogonal representation of *G*. Denote its one-point compactification by  $S^V$ , with  $\infty$  as the basepoint. We denote the trivial *n*-dimensional real representation by *n*, giving the symbol  $S^n$  its usual meaning.

We may also form the unit disc and unit sphere

$$D(V) = \{v \in V : ||v|| \le 1\}$$
 and  $S(V) = \{v \in V : ||v|| = 1\}$ ;

we think of them as unbased *G*-spaces. There is a homeomorphism  $S^V \cong D(V)/S(V)$ .

We can use these objects to build *G*-CW complexes as well. In this case G can act on an individual cell by "rotating" it via the representation V.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### More general G-CW complexes

We can also mix these two constructions by considering cell-sphere pairs such as

$$(G \times_H D(V), G \times_H S(V))$$

and

$$(G_+ \wedge_H D(V), G_+ \wedge_H S(V)),$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### More general G-CW complexes

We can also mix these two constructions by considering cell-sphere pairs such as

$$(G \times_H D(V), G \times_H S(V))$$

and

$$(G_+ \wedge_H D(V), G_+ \wedge_H S(V)),$$

where V is a representation of the subgroup H.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### More general G-CW complexes

We can also mix these two constructions by considering cell-sphere pairs such as

$$(G \times_H D(V), G \times_H S(V))$$

and

$$(G_+ \wedge_H D(V), G_+ \wedge_H S(V)),$$

where V is a representation of the subgroup H.

In such a complex, individual cells may be either permuted or rotated by an element of *G*.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before defining equivariant spectra, we need to recall the definition of an ordinary spectrum.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before defining equivariant spectra, we need to recall the definition of an ordinary spectrum.

A prespectrum *D* is a collection of spaces  $D_n$  with maps  $\Sigma D_n \rightarrow D_{n+1}$ . The adjoint of the structure map is a map  $D_n \rightarrow \Omega D_{n+1}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before defining equivariant spectra, we need to recall the definition of an ordinary spectrum.

A prespectrum *D* is a collection of spaces  $D_n$  with maps  $\Sigma D_n \rightarrow D_{n+1}$ . The adjoint of the structure map is a map  $D_n \rightarrow \Omega D_{n+1}$ .

We get a spectrum E from the prespectrum D by defining

$$E_n = \lim_{\stackrel{\rightarrow}{k}} \Omega^k D_{n+k}$$

This makes  $E_n$  homeomorphic to  $\Omega E_{n+1}$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Before defining equivariant spectra, we need to recall the definition of an ordinary spectrum.

A prespectrum *D* is a collection of spaces  $D_n$  with maps  $\Sigma D_n \rightarrow D_{n+1}$ . The adjoint of the structure map is a map  $D_n \rightarrow \Omega D_{n+1}$ .

We get a spectrum E from the prespectrum D by defining

$$E_n = \lim_{\stackrel{\rightarrow}{k}} \Omega^k D_{n+k}$$

This makes  $E_n$  homeomorphic to  $\Omega E_{n+1}$ .

For technical reasons it is convenient to replace the collection  $\{E_n\}$  by  $\{EV\}$  indexed by finite dimensional subspaces *V* of a countably infinite dimensional real vector space *U* called a *universe*.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum *M MU* Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### Toward equivariant spectra (continued)

# The homotopy type of EV depends only on the dimension of V and there are homeomorphisms

 $EV \rightarrow \Omega^{|W|-|V|}EW$  for  $V \subset W \subset U$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### Toward equivariant spectra (continued)

The homotopy type of EV depends only on the dimension of V and there are homeomorphisms

 $EV \rightarrow \Omega^{|W|-|V|}EW$  for  $V \subset W \subset U$ .

A map of spectra  $f : E \to E'$  is a collection of maps of based *G*-spaces  $f_V : EV \to E'V$  which commute with the respective structure maps.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### **G-equivariant spectra**

Let *G* be a finite group. Experience has shown that in order to do equivariant stable homotopy theory, one needs *G*-spaces EV indexed by finite dimensional orthogonal representations *V* sitting in a countably infinite dimensional orthogonal representation *U*.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



. .

Formal group laws

MU's relatives

The spectrum M

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### **G-equivariant spectra**

Let *G* be a finite group. Experience has shown that in order to do equivariant stable homotopy theory, one needs *G*-spaces EV indexed by finite dimensional orthogonal representations *V* sitting in a countably infinite dimensional orthogonal representation *U*.

This universe U is said to be *complete* if it contains infinitely many copies of each irreducible representation of G. A canonical example of a complete universe for finite G is the direct sum of countably many copies of the regular real representation of G.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum (*G*-spectrum for short) indexed on *U* consists of a based *G*-space EV for each finite dimensional subspace  $V \subset U$  together with a transitive system of based *G*-homeomorphisms

$$EV \xrightarrow{\tilde{\sigma}_{V,W}} \Omega^{W-V} EW$$

for  $V \subset W \subset U$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A *G*-equivariant spectrum (*G*-spectrum for short) indexed on *U* consists of a based *G*-space EV for each finite dimensional subspace  $V \subset U$  together with a transitive system of based *G*-homeomorphisms

$$EV \xrightarrow{\tilde{\sigma}_{V,W}} \Omega^{W-V} EW$$

for  $V \subset W \subset U$ . Here  $\Omega^V X = F(S^V, X)$  and W - V is the orthogonal complement of V in W. As in the classical case, the *G*-homotopy type of *EV* depends only on the isomorphism class of V.

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A map of *G*-spectra  $f : E \to E'$  is a collection of maps of based *G*-spaces  $f_V : EV \to E'V$  which commute with the respective structure maps.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A map of *G*-spectra  $f : E \to E'$  is a collection of maps of based *G*-spaces  $f_V : EV \to E'V$  which commute with the respective structure maps.

Dropping the requirement that the structure maps be homeomorphisms gives us a *G*-prespectrum.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A map of *G*-spectra  $f : E \to E'$  is a collection of maps of based *G*-spaces  $f_V : EV \to E'V$  which commute with the respective structure maps.

Dropping the requirement that the structure maps be homeomorphisms gives us a *G*-prespectrum.

The structure map  $\tilde{\sigma}_{V,W}$  is adjoint to a map

$$\sigma_{\mathbf{V},\mathbf{W}}: \mathbf{\Sigma}^{\mathbf{W}-\mathbf{V}} \mathbf{E} \mathbf{V} \to \mathbf{E} \mathbf{W},$$

where  $\Sigma^{V} X$  is defined to be  $S^{V} \wedge X$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

A map of *G*-spectra  $f : E \to E'$  is a collection of maps of based *G*-spaces  $f_V : EV \to E'V$  which commute with the respective structure maps.

Dropping the requirement that the structure maps be homeomorphisms gives us a *G*-prespectrum.

The structure map  $\tilde{\sigma}_{V,W}$  is adjoint to a map

$$\sigma_{V,W}: \Sigma^{W-V} EV \to EW_{2}$$

where  $\Sigma^{V}X$  is defined to be  $S^{V} \wedge X$ .

A *suspension G-prespectrum* is a *G*-prespectrum in which the maps above are *G*-equivalences for *V* sufficiently large.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### RO(G)-graded homotopy groups

Given a representation V one has a suspension G-spectrum  $\Sigma^{\infty}S^{V}$ , which is often denoted abusively (as in the nonequivariant case) by  $S^{V}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### RO(G)-graded homotopy groups

Given a representation V one has a suspension G-spectrum  $\Sigma^{\infty}S^{V}$ , which is often denoted abusively (as in the nonequivariant case) by  $S^{V}$ .

As in the nonequivariant case, to define a prespectrum D it suffices to define G-spaces DV for a cofinal collection of representations V.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### RO(G)-graded homotopy groups

Given a representation *V* one has a suspension *G*-spectrum  $\Sigma^{\infty}S^{V}$ , which is often denoted abusively (as in the nonequivariant case) by  $S^{V}$ .

As in the nonequivariant case, to define a prespectrum D it suffices to define G-spaces DV for a cofinal collection of representations V.

We define  $S^{-V}$  by saying its *W*th space for  $V \subset W$  is  $S^{W-V}$ . This is the analog of formal desuspension in the nonequivariant case. A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### RO(G)-graded homotopy groups (continued)

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

MU as a C2-spectrum

Given a virtual representation  $\nu = W - V$ , we define  $S^{\nu} = \Sigma^{W} S^{-V}$ . Hence we have a collection of sphere spectra graded over the orthogonal representation ring RO(G).

### RO(G)-graded homotopy groups (continued)

# Given a virtual representation $\nu = W - V$ , we define $S^{\nu} = \Sigma^{W} S^{-V}$ . Hence we have a collection of sphere spectra graded over the orthogonal representation ring RO(G).

We define

$$\pi^G_\nu(X) = [S^\nu, X]_G$$

the RO(G)-graded homotopy groups of the G-spectrum X.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### MU as a C<sub>2</sub>-spectrum

Let  $\rho$  denote the real regular representation of  $C_2$ .



### MU as a C<sub>2</sub>-spectrum

Let  $\rho$  denote the real regular representation of  $C_2$ . It is isomorphic to the complex numbers **C** with conjugation.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### MU as a C<sub>2</sub>-spectrum

Let  $\rho$  denote the real regular representation of  $C_2$ . It is isomorphic to the complex numbers **C** with conjugation.

We define a  $C_2$ -prespectrum mu by  $mu(k\rho) = MU(k)$ , the Thom space of the universal  $\mathbf{C}^k$ -bundle over BU(k), which is a direct limit of complex Grassmannian manifolds.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### MU as a C2-spectrum

Let  $\rho$  denote the real regular representation of  $C_2$ . It is isomorphic to the complex numbers **C** with conjugation.

We define a  $C_2$ -prespectrum mu by  $mu(k\rho) = MU(k)$ , the Thom space of the universal  $\mathbf{C}^k$ -bundle over BU(k), which is a direct limit of complex Grassmannian manifolds. The action of  $C_2$  is by complex conjugation.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### MU as a C2-spectrum

Let  $\rho$  denote the real regular representation of  $C_2$ . It is isomorphic to the complex numbers **C** with conjugation.

We define a  $C_2$ -prespectrum mu by  $mu(k\rho) = MU(k)$ , the Thom space of the universal  $\mathbf{C}^k$ -bundle over BU(k), which is a direct limit of complex Grassmannian manifolds. The action of  $C_2$  is by complex conjugation.

Since any orthogonal representation *V* of  $C_2$  is contained in  $k\rho$  for  $k \gg 0$ , we can define the  $C_2$ -spectrum *MU* by

$$MUV = \lim_{\stackrel{\rightarrow}{k}} \Omega^{k\rho-V} MU(k).$$

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### MU as a C2-spectrum

Let  $\rho$  denote the real regular representation of  $C_2$ . It is isomorphic to the complex numbers **C** with conjugation.

We define a  $C_2$ -prespectrum mu by  $mu(k\rho) = MU(k)$ , the Thom space of the universal  $\mathbf{C}^k$ -bundle over BU(k), which is a direct limit of complex Grassmannian manifolds. The action of  $C_2$  is by complex conjugation.

Since any orthogonal representation *V* of  $C_2$  is contained in  $k\rho$  for  $k \gg 0$ , we can define the  $C_2$ -spectrum *MU* by

$$MUV = \lim_{\stackrel{\rightarrow}{k}} \Omega^{k\rho-V} MU(k).$$

This spectrum in known as real cobordism theory and has been studied by Landweber, Araki, Hu-Kriz and Kitchloo-Wilson.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let  $H \subset G$  be groups and let X be a H-space. There are two ways to get a G-space from it. The corresponding functors are the left and right adjoints to the forgetful functor from G-spaces to H-spaces.



Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU Formal group laws MU's relatives The Hopkins-Miller theorem Our first guess at M

Equivariant stable homotopy theory

Let  $H \subset G$  be groups and let X be a H-space. There are two ways to get a G-space from it. The corresponding functors are the left and right adjoints to the forgetful functor from G-spaces to H-spaces.

There is the *induced G-space*  $G \times_H X$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let  $H \subset G$  be groups and let X be a H-space. There are two ways to get a G-space from it. The corresponding functors are the left and right adjoints to the forgetful functor from G-spaces to H-spaces.

There is the *induced G*-space  $G \times_H X$ . Its underlying space is the disjoint union of |G/H| copies of *X*.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

Let  $H \subset G$  be groups and let X be a H-space. There are two ways to get a G-space from it. The corresponding functors are the left and right adjoints to the forgetful functor from G-spaces to H-spaces.

There is the *induced G-space*  $G \times_H X$ . Its underlying space is the disjoint union of |G/H| copies of X.

An example is the the cell-sphere pair

 $(G/H \times D^n, G/H \times S^{n-1}).$ 

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

There is the coinduced G-space

$$\operatorname{map}_{H}(G, X) = \{ f \in \operatorname{map}(G, X) \colon f(\gamma \eta^{-1}) = \eta f(\gamma) \\ \forall \eta \in H \text{ and } \gamma \in G \}$$

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

There is the coinduced G-space

$$\operatorname{map}_{H}(G, X) = \{ f \in \operatorname{map}(G, X) \colon f(\gamma \eta^{-1}) = \eta f(\gamma) \\ \forall \eta \in H \text{ and } \gamma \in G \}$$

The underlying space here is the Cartesian product  $X^{|G/H|}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

There is the *coinduced G-space* 

$$\operatorname{map}_{H}(G, X) = \{ f \in \operatorname{map}(G, X) \colon f(\gamma \eta^{-1}) = \eta f(\gamma) \\ \forall \eta \in H \text{ and } \gamma \in G \}$$

The underlying space here is the Cartesian product  $X^{|G/H|}$ .

There is a based analog of the coinduced *G*-space in which the underlying space is the smash product  $X^{(|G/H|)}$ .

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

There is the coinduced G-space

$$map_{H}(G, X) = \{ f \in map(G, X) : f(\gamma \eta^{-1}) = \eta f(\gamma) \\ \forall \eta \in H \text{ and } \gamma \in G \}$$

The underlying space here is the Cartesian product  $X^{|G/H|}$ .

There is a based analog of the coinduced *G*-space in which the underlying space is the smash product  $X^{(|G/H|)}$ .

It extends to *H*-spectra. For a *H*-spectrum *X* we denote the coinduced *G*-spectrum by  $N_H^G X$ , the norm of *X* along the inclusion  $H \subset G$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### Norming up from MU

## We apply this construction to the case $H = C_2$ , $G = C_{2^{n+1}}$ and X = MU.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

#### Norming up from MU

We apply this construction to the case  $H = C_2$ ,  $G = C_{2^{n+1}}$  and X = MU. The underlying spectrum of  $N_H^G MU$  is the  $2^n$ -fold smash power  $MU^{(2^n)}$ .

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

### Norming up from MU

We apply this construction to the case  $H = C_2$ ,  $G = C_{2^{n+1}}$  and X = MU. The underlying spectrum of  $N_H^G MU$  is the  $2^n$ -fold smash power  $MU^{(2^n)}$ .

Let  $\gamma \in G$  be a generator and let  $z_i$  be a point in MU. Then the action of G on  $MU^{(2^n)}$  is given by

$$\gamma(\mathbf{Z}_1\wedge\cdots\wedge\mathbf{Z}_{2^n})=\overline{\mathbf{Z}}_{2^n}\wedge\mathbf{Z}_1\wedge\cdots\wedge\mathbf{Z}_{2^n-1},$$

where  $\overline{z}_{2^n}$  is the complex conjugate of  $z_{2^n}$ .

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

In particular this makes  $MU^{(4)}$  into a  $C_8$ -spectrum.

A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

In particular this makes  $MU^{(4)}$  into a  $C_8$ -spectrum. Our spectrum  $\tilde{M}$  is obtained from it by equivariantly inverting a certain element in its homotopy.

A solution to the Arf-Kervaire invariant problem

> Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

In particular this makes  $MU^{(4)}$  into a  $C_8$ -spectrum. Our spectrum  $\tilde{M}$  is obtained from it by equivariantly inverting a certain element in its homotopy. Them  $M = \tilde{M}^{C_8}$ , which we will show to be equivalent to  $\tilde{M}^{hC_8}$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

In particular this makes  $MU^{(4)}$  into a  $C_8$ -spectrum. Our spectrum  $\tilde{M}$  is obtained from it by equivariantly inverting a certain element in its homotopy. Them  $M = \tilde{M}^{C_8}$ , which we will show to be equivalent to  $\tilde{M}^{hC_8}$ .

The spectrum  $MU^{(4)}$  has two advantages over our earlier candidate  $E_4$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

In particular this makes  $MU^{(4)}$  into a  $C_8$ -spectrum. Our spectrum  $\tilde{M}$  is obtained from it by equivariantly inverting a certain element in its homotopy. Them  $M = \tilde{M}^{C_8}$ , which we will show to be equivalent to  $\tilde{M}^{hC_8}$ .

The spectrum  $MU^{(4)}$  has two advantages over our earlier candidate  $E_4$ .

(i) It is a  $C_8$ -equivariant spectrum, while  $E_4$  was merely an ordinary spectrum with a  $C_8$  "action" for which a homotopy fixed point set could be defined.

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory

In particular this makes  $MU^{(4)}$  into a  $C_8$ -spectrum. Our spectrum  $\tilde{M}$  is obtained from it by equivariantly inverting a certain element in its homotopy. Them  $M = \tilde{M}^{C_8}$ , which we will show to be equivalent to  $\tilde{M}^{hC_8}$ .

The spectrum  $MU^{(4)}$  has two advantages over our earlier candidate  $E_4$ .

- (i) It is a  $C_8$ -equivariant spectrum, while  $E_4$  was merely an ordinary spectrum with a  $C_8$  "action" for which a homotopy fixed point set could be defined.
- (ii) The action of  $C_8$  on  $\pi_*(MU^{(4)})$  is transparent, unlike its mysterious action on  $\pi_*(E_4)$ .

#### A solution to the Arf-Kervaire invariant problem

Mike Hill Mike Hopkins Doug Ravenel



The spectrum M MU

Formal group laws

MU's relatives

The Hopkins-Miller theorem

Our first guess at M

Equivariant stable homotopy theory