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BOOK REVIEW

Nilpotence and periodicity in stable homotopy theory, by Douglas C. Ravenel. Prince-
ton University Press, Princeton, NJ, 1992, xiv + 209 pp., $24.95. ISBN 0-691-
02572-X

The subject of homotopy theory, especially stable homotopy theory, was for
many years guided by J. Frank Adams. In the final article in his selected works
[1] he wrote: “At one time it seemed as if homotopy theory was utterly without
system; now it is almost proved that systematic effects predominate.” Adams was
commenting on the influence of the results discussed in Ravenel’s book, which are
the subject of this review. The most striking of these results are due to Ethan Dev-
inatz, Mike Hopkins, and Jeff Smith [2, 5] and were conjectured by Doug Ravenel
[7] in the late seventies and early eighties.

To set the stage, recall that two continuous maps f and ¢ from a space X to a
space Y are homotopic if there is a continuous map H : X x[0,1] — Y agreeing with
fon X x{0} and with g on X x {1}. One often restricts attention to CW-complexes,
i.e. spaces built in a systematic way by attaching cells. In stable homotopy theory,
one is permitted to suspend a map f : X — Y as often as desired; its suspension
Yf : XX — XY is defined in a natural way on the suspension of X, the “double
cone” obtained from X x [0, 1] by collapsing the two copies X x {0} and X x {1}
to separate points. Maps f,g : X — Y are called stably homotopic if, for some ¢,
the iterated suspensions X! f and !¢ are homotopic.

To make matters more precise, consider a self-map of a finite CW-complex X,
by which we shall mean a map

wix L ox
for some d > 0. Especially, if X is the n-sphere S™, then (since the suspension of S™

is S"*t1) f is a map S"*+¢ 1, §7. Now one can iterate self-maps up to suspension
by forming composites

d
---aZQdXﬁdei)X

to obtain further self-maps which we denote by f2, f3, .... Call a self-map f
nilpotent if some iterate f* : £*X — X is stably homotopic to a constant map;
if this is not the case, call f periodic. In case X = S", one has a twenty year-old
theorem due to Goro Nishida [6]:
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Theorem. FEach map f : S"t¢ — S™ with d > 0 is nilpotent.

How can one hope to generalize Nishida’s theorem to determine when a self-
map f : XX — X is nilpotent for a general finite CW-complex X? The idea
is a basic one in algebraic topology. One should search for a suitable homology
theory E.(-), meaning a sequence of functors E;(-) from spaces to abelian groups
satisfying the usual Eilenberg-Steenrod axioms for homology theory, except for the
dimension axiom (so one permits E;(point) to be nonzero even if i # 0). As for
ordinary homology, one then defines reduced homology groups of a nonempty space
by putting

E;i(X) = ker(E;(X) — E;j(point))

for the unique map from X to a one-point space. Since there is a suspension
isomorphism
Ei(21X) =2 Ei_y(X).

the homomorphisms E.(f) : E;(X¢X) — E;(X) induced by a self-map f : %¢X —
X can be viewed as an endomorphism of the graded abelian group E.(X). Now if f
is nilpotent, as defined above, then (by the homotopy axiom for a homology theory)
so is the endomorphism FE. (f); we seek a homology theory which is reasonably easy
to compute and for which the converse is true. The remarkable fact is that such a
homology theory exists.

Nilpotence Theorem. There is a homology theory MU.(+), known as the complex
bordism theory, for which a self-map f : ¥¢X — X of a finite CW-complex is
nilpotent if and only if the endomorphism MU (f) of MU.(X) is nilpotent.

This theorem requires a delicate and lengthy argument, given by Devinatz, Hop-

kins, and Smith in [2]. Nishida’s nilpotence theorem for self-maps %¢S™ J, " with
d > 0 is an immediate corollary, since MU, (f) is then the zero homomorphism.
In fact, two further forms of the nilpotence theorem are proved in [2], being natu-
ral generalizations of Nishida’s theorem in two different directions. These “smash
product” and “ring spectrum” forms of the nilpotence theorem are equivalent and
imply the “self-map” form of the theorem discussed above. The subject is rounded
out by the periodicity theorem of Hopkins and Smith [5] mentioned below and is
elegantly summarized by Hopkins in [3].

The nilpotence theorem suggests that the complex bordism theory mirrors stable
homotopy theory with considerable accuracy. For a finite CW-complex X, MU, (X)
is a graded module over the ring MU, (point) = MU,. Indeed, from cobordism
theory one has long known that MU, is a polynomial ring,

MU, = Z[IQ,JJ4,...],

the cobordism ring of smooth compact manifolds for which the tangent bundle
(perhaps after adding a trivial bundle) has a complex structure. Each polynomial
generator g, is the cobordism class of a suitable manifold M?" with a complex
structure on its stable tangent bundle (these manifolds can be taken to be finite
disjoint unions of smooth complex projective varieties).

It is tempting to elaborate on the further structure of complex bordism theory,
but I hope it will suffice to say that MU, (X) is often computable, that there is
a well-developed theory of cohomology operations which leads to a version of the
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Adams spectral sequence for computing stable homotopy groups, and that there is
a close connection with the subject of one-parameter formal group laws. Indeed,
this connection has been crucial for many advances over the last twenty-five years,
and it is the source for the recent work by Gross and Hopkins [4] on Lubin-Tate
moduli spaces and their applications to stable homotopy theory.

To state the periodicity theorem, we must point out that along with complex
bordism MU.,(-) one frequently studies a great many associated homology theo-
ries. When one’s interest is focused on a fixed prime p, a sharper view of sta-
ble homotopy theory is provided by a sequence of homology theories K(n).(-) for
n > 0, called Morava K-theories. The first of these is just rational homology,
K(0).(X) = H.(X;Q), while for n > 0 the homology of a point is given by
K(n).«(point) = Fy[v,,v, ] with v, of degree 2(p™ — 1) (so these are periodic
homology theories). Now let X be a finite CW-complex; we say that X has type n
at p if K(n),(X) # 0, while for m < n we have K(m)_(X) = 0. Each finite CW-
complex X with H.(X;F,) # 0 has type n at p for some n (0 < n < o0); there do
exist finite CW-complexes of type n for all n.

Periodicity Theorem. Let X be a finite CW-complex of type n at the prime p.
Then there is a self-map f : L4 X — XX for somei > 0 such that K(n).(f) is an
isormorphism and K(m).(f) = 0 for m > n. Moreover, the self-map f is essentially
unique (after sufficient iteration and suspension), and for n > 0 the self-map can
be chosen so that K(n).(f) is multiplication by a power of vy,.

It is remarkable that there are finite CW-complexes of type n at p for all n,
and all the more so that they admit self-maps detected by the Morava K-theories
K(n).(-); reasonably easy arguments suffice only for small values of n. The period-
icity theorem could have been stated in terms of MU, (X)), but this is seldom done
since the Morava K-theories are far more efficient for this purpose (even though
they still lack a geometric definition for n > 1).

Ravenel’s book presents these results with considerable enthusiasm and with a
style and organization that readers will surely find illuminating. The first chapter
provides an introduction to the subject, while background on homotopy theory and
complex bordism can be located in the appendices as well as in the author’s previous
book [8]. A further appendix covers results due to Jeff Smith on the representations
of the symmetric group which are needed for the proof of the periodicity theorem.
The rest of the book patiently develops the subject, culminating in the proofs of
the three forms of the nilpotence theorem and the periodicity theorem as well as a
number of further results. The author has done a marvelous job of making difficult
material accessible and inviting.

The book does contain a number of misprints and other slips. The proofs of The-
orem 3.4.2 on pages 35-36 and of Corollary 5.1.5 on pages 50-51 need some rework-
ing. Page entries in the index need to be reduced by two. Readers may wish to ob-
tain a helpful errata listing by contacting the author at drav@troi.cc.rochester.edu.
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