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What does “chromatic” mean?
The stable homotopy categoryS localized at a prime
p can be studied via a series of increasingly
complicated Bousfield localization functorsLn for
n ≥ 0, which detect “vn-periodic” phenomena.
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What does “chromatic” mean?
The stable homotopy categoryS localized at a prime
p can be studied via a series of increasingly
complicated Bousfield localization functorsLn for
n ≥ 0, which detect “vn-periodic” phenomena.
Ln is localization with respect tov−1

n BP∗, or
equivalently with respect toK(0) ∨ K(1) ∨ . . . K(n).
For more details, see [Rav92].
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What does “chromatic” mean?
The stable homotopy categoryS localized at a prime
p can be studied via a series of increasingly
complicated Bousfield localization functorsLn for
n ≥ 0, which detect “vn-periodic” phenomena.
Ln is localization with respect tov−1

n BP∗, or
equivalently with respect toK(0) ∨ K(1) ∨ . . . K(n).
For more details, see [Rav92].

L0S L1Soo L2Soo . . .oo S(p)oo

• L0 is rationalization. Rational stable homotopy
theory is very well understood. It detects only the
0-stem in the stable homotopy groups of spheres.
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What does “chromatic” mean?
The stable homotopy categoryS localized at a prime
p can be studied via a series of increasingly
complicated Bousfield localization functorsLn for
n ≥ 0, which detect “vn-periodic” phenomena.

L0S L1Soo L2Soo . . .oo S(p)oo

• L1 is localization with respect to real or complex
K-theory. It detects the image ofJ and theα
family in the stable homotopy groups of spheres.
The Lichtenbaum-Quillen conjecture is a
statement aboutL1 of algebraicK-theory.
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What does “chromatic” mean?
The stable homotopy category localized a primep can
be studied via a series of increasingly complicated
Bousfield localization functorsLn for n ≥ 0, which
detect “vn-periodic” phenomena.

L0S L1Soo L2Soo . . .oo S(p)oo

• L2 is localization with respect to elliptic
cohomology [LRS95] or the theory of topological
modular forms of Hopkinset al. It detects theβ
family in the stable homotopy groups of spheres.
Davis’ nonimmersion theorem for real projective
spaces was proved using related methods.
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What does “chromatic” mean?
The stable homotopy category localized a primep can
be studied via a series of increasingly complicated
Bousfield localization functorsLn for n ≥ 0, which
detect “vn-periodic” phenomena.

L0S L1Soo L2Soo L3Soo . . .oo S(p)oo

• Forn > 2 there is no comparable geometric
definition ofLn, which can only be constructed
by less illuminating algebraic methods related to
BP -theory. It detects higher Greek letter families
in the stable homotopy groups of spheres. The
nth MoravaK-theory is closely related to it.
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The m-series of a formal group
law
Definition 1 LetF be 1-dimensional formal group
law. For a positive integerm, them-series is defined
inductively by

[m]F (x) = F (x, [m − 1]F (x))

where[1]F (x) = x.
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Examples ofm-series
• For the additive formal group law,[m](x) = mx.
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Examples ofm-series
• For the additive formal group law,[m](x) = mx.

• For the multiplicative formal group law,

[m](x) = (1 + x)m − 1

= mx +
(m

2

)
x2 + . . . + xm.
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Examples ofm-series
• For the additive formal group law,[m](x) = mx.

• For the multiplicative formal group law,

[m](x) = (1 + x)m − 1

= mx +
(m

2

)
x2 + . . . + xm.

• ForF (x, y) = x+y
1+xy , we have

[m](x) =
∑

i

(
m

2i+1

)
x2i+1

/∑
i

(
m
2i

)
x2i

=
mx +

(
m
3

)
x3 + . . .

1 +
(

m
2

)
x2 + . . .
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The height of a formal group law
Over a fieldk of characteristicp, thep-series is either
0 or has the form

[p]F (x) = axpn

+ . . .

for some nonzeroa ∈ k.
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The height of a formal group law
Over a fieldk of characteristicp, thep-series is either
0 or has the form

[p]F (x) = axpn

+ . . .

for some nonzeroa ∈ k.
Definition 3 Theheight of F is the integern. If
[p]F (x) = 0 (which happens whenF (x, y) = x + y),
the height is defined to be∞.
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Examples of heights
• The multiplicative formal group law ( which is

associated withK-theory) has height 1.

JHU Conference – p. 9/42



Examples of heights
• The multiplicative formal group law ( which is

associated withK-theory) has height 1.

• The formal group law associated with an elliptic
curve is known to have height at most 2.
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Examples of heights
• The multiplicative formal group law ( which is

associated withK-theory) has height 1.

• The formal group law associated with an elliptic
curve is known to have height at most 2.

• vn-periodic phenomena (thenth layer in the
chromatic tower) are related to formal group laws
of heightn.
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Question
How can we attach formal group laws of height> 2 to
geometric objects (such as algebraic curves) and use
them get insight into cohomology theories that go
deeper into the chromatic tower?
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Program
• Let C be a curve of genusg over some ringR.
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Program
• Let C be a curve of genusg over some ringR.

• Its JacobianJ(C) is an abelian variety of
dimensiong.
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Program
• Let C be a curve of genusg over some ringR.
• Its JacobianJ(C) is an abelian variety of

dimensiong. J(C) has a formal completion

Ĵ(C) which is ag-dimensional formal group law.
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Program
• Let C be a curve of genusg over some ringR.
• Its JacobianJ(C) is an abelian variety of

dimensiong. J(C) has a formal completion

Ĵ(C) which is ag-dimensional formal group law.

• If Ĵ(C) has a 1-dimensional summand, then
Quillen’s theorem [Qui69] gives us a
homomorphism

MU∗
θ

// R
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Program
• Let C be a curve of genusg over some ringR.
• Its JacobianJ(C) is an abelian variety of

dimensiong. J(C) has a formal completion

Ĵ(C) which is ag-dimensional formal group law.

• If Ĵ(C) has a 1-dimensional summand, then
Quillen’s theorem [Qui69] gives us a
homomorphism

MU∗
θ

// R

If θ is Landweber exact [Lan76], then we get an
MU -module spectrumE with π∗(E) = R.
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Caveat
Note that a 1-dimensional summand of the formal
completionĴ(C) is not the same thing as
1-dimensional factor of the JacobianJ(C).
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Caveat
Note that a 1-dimensional summand of the formal
completionĴ(C) is not the same thing as
1-dimensional factor of the JacobianJ(C).
The latter would be an elliptic curve, whose formal
completion can have height at most 2.
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Caveat
Note that a 1-dimensional summand of the formal
completionĴ(C) is not the same thing as
1-dimensional factor of the JacobianJ(C).
The latter would be an elliptic curve, whose formal
completion can have height at most 2.
There is a theorem that says if an abelian varietyA
has a 1-dimensional formal summand of heightn for
n > 2, then the dimension ofA (and the genus of the
curve, ifA is a Jacobian) is at leastn.
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Artin-Schreier curves
Theorem 4 (2002) LetC(p, f) be the curve overFp

defined by the affine equation

ye = xp − x wheree = pf − 1.

(Assume thatf > 1 whenp = 2.) Then its Jacobian
has a 1-dimensional formal summand of height
(p − 1)f .
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Artin-Schreier curves
Theorem 4 (2002) LetC(p, f) be the curve overFp

defined by the affine equation

ye = xp − x wheree = pf − 1.

(Assume thatf > 1 whenp = 2.) Then its Jacobian
has a 1-dimensional formal summand of height
(p − 1)f .
The resulting genus isnotLandweber exact, so this
does not lead to a cohomology theory.
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Properties of the curveC(p, f)

• Its genus is(p − 1)(pf − 2)/2. (Thus it is zero in
the excluded case(p, f) = (2, 1).)
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Properties of the curveC(p, f)
• It has an action of the group

G = Fp o µm, wherem = (p − 1)(pf − 1)

andµm is the group ofmth roots of unity, given
by

(x, y) 7→ (ζpf−1x + a, ζy)

for a ∈ Fp andζ ∈ µm.
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Properties of the curveC(p, f)
• It has an action of the group

G = Fp o µm, wherem = (p − 1)(pf − 1)

andµm is the group ofmth roots of unity, given
by

(x, y) 7→ (ζpf−1x + a, ζy)

for a ∈ Fp andζ ∈ µm.
This group is isomorphic to a maximal finite
subgroup of thehth Morava stabilizer group, and
it acts appropriately on the 1-dimensional formal
summand of̂J(C(p, f)).
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Examples of these curves
• C(2, 2) andC(3, 1) are elliptic curves whose

formal group laws have height 2.

JHU Conference – p. 20/42



Examples of these curves
• C(2, 2) andC(3, 1) are elliptic curves whose

formal group laws have height 2.

• C(2, 3) has genus 3 and its Jacobian has a
1-dimensional formal summand of height 3.
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Examples of these curves
• C(2, 2) andC(3, 1) are elliptic curves whose

formal group laws have height 2.

• C(2, 3) has genus 3 and its Jacobian has a
1-dimensional formal summand of height 3.

• C(2, 4) andC(3, 2) each have genus 7 and their
Jacobians each have a 1-dimensional formal
summand of height 4.
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Remarks
• Theorem 4 was known to and cited by Manin in

1963 [Man63]. Most of what is needed for the
proof can be found in Katz’s 1979 Bombay
Colloquium paper [Kat81] and in Koblitz’ Hanoi
notes [Kob80]. (The latter book has been googled
and is available online.)
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Remarks
• Theorem 4 was known to and cited by Manin in

1963 [Man63]. Most of what is needed for the
proof can be found in Katz’s 1979 Bombay
Colloquium paper [Kat81] and in Koblitz’ Hanoi
notes [Kob80]. (The latter book has been googled
and is available online.)

• The original proof rests on the determination of
the zeta function of the curve by
Hasse-Davenport in 1934 [HD34], and on some
properties of Gauss sums proved by Stickelberger
in 1890 [Sti90]. The method leads to complete
determination of̂J(C(p, f)).
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More remarks
We have reproved Theorem 4 using Honda’s theory of
commutative formal group laws developed in the
early ’70s in [Hon70] and [Hon73]. (These papers are
also available online.)
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More remarks
We have reproved Theorem 4 using Honda’s theory of
commutative formal group laws developed in the
early ’70s in [Hon70] and [Hon73]. (These papers are
also available online.)
This proof does not rely on knowledge of the zeta
function and can be modified to prove Theorem 5
below.
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Deforming the Artin-Schreier
curve
We want a lifting ofC(p, f) to characteristic 0 that
admits a coordinate change similar to the one for the
Weierstrass curve used in the construction oftmf .
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Deforming the Artin-Schreier
curve
We want a lifting ofC(p, f) to characteristic 0 that
admits a coordinate change similar to the one for the
Weierstrass curve used in the construction oftmf .
The equation will have the form

ye = xp + . . .

with (nonaffine) coordinate change fixingy and
sending

x 7→ x +

f∑

i=1

tiy
(pf−pi)/p.
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Deforming the Artin-Schreier
curve
We want a lifting ofC(p, f) to characteristic 0 that
admits a coordinate change similar to the one for the
Weierstrass curve used in the construction oftmf .
The equation will have the form

ye = xp + . . .

with (nonaffine) coordinate change fixingy and
sending

x 7→ x +

f∑

i=1

tiy
(pf−pi)/p.

Theti above are related to the generators of the same
name inBP∗(BP ). JHU Conference – p. 23/42



Deforming the Artin-Schreier
curve
In order to state this precisely we need some notation.
Let

I = (i1, i2, . . . if)

be anf -tuple of nonnegative integers and define

|I| =
∑

k ik ||I|| =
∑

k(p
k − 1)ik

tI =
∏

k tikk I! =
∏

k ik!
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Deforming the Artin-Schreier
curve
In order to state this precisely we need some notation.
Let

I = (i1, i2, . . . if)

be anf -tuple of nonnegative integers and define

|I| =
∑

k ik ||I|| =
∑

k(p
k − 1)ik

tI =
∏

k tikk I! =
∏

k ik!

The coefficients in our equation will be formal
variablesaI with |I| ≤ p (wherea0 = p!) with
topological dimension2||I||.
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Deforming the Artin-Schreier
curve
We will sometimes writeaI asa||I||. For |I| ≤ p, I is
uniquely determined by its norm||I||.
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Deforming the Artin-Schreier
curve
We will sometimes writeaI asa||I||. For |I| ≤ p, I is
uniquely determined by its norm||I||. The number of

indicesI with 0 < |I| ≤ p is
(

p+f
f

)
− 1.

JHU Conference – p. 25/42



Deforming the Artin-Schreier
curve
Then the equation for our deformed curve is

ye =

p∑

i=0

xp−i

(p − i)!

∑

|I|=i

aIy
(ei−||I||)/p

= xp + amx + . . .

where (as before)e = pf − 1 andm = (p − 1)e.
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Deforming the Artin-Schreier
curve
Then the equation for our deformed curve is

ye =

p∑

i=0

xp−i

(p − i)!

∑

|I|=i

aIy
(ei−||I||)/p

= xp + amx + . . .

where (as before)e = pf − 1 andm = (p − 1)e. The
effect of the coordinate change on the coefficientsaI

is given by

aI 7→
∑

J+K=I

aJ
tK

K!
.
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An infinitesimal deformation
Theorem 5 (2004)Let

A = Zp[aI : 0 < |I| ≤ p]

A = A/(am − 1)

A ⊃ J = (ai : i 6= m, )

Then the Jacobian of curve above defined above over
the ringA/J2 has a 1-dimensional formal summand
of heighth. The corresponding formal group law has
Landweber exact liftings toA anda−1

m A.
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An infinitesimal deformation
The mapBP∗ → A is given by

vr =






pam+pr−1 + apr−1 if 1 ≤ r ≤ min(f, h − 1)

ase+pi−1 if f < r < h andp > 2

m − 2a2e if r = h andp = 2

1 if r = h andp > 2

up to unit scalar, wherer = sf + i with 1 ≤ i ≤ f .
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A fantasy
There is an associated Hopf algebroid

Γ = A[t1, . . . , tf ]

where eachti is primitive and the right unit given by
the coordinate change formula above.
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A fantasy
There is an associated Hopf algebroid

Γ = A[t1, . . . , tf ]

where eachti is primitive and the right unit given by
the coordinate change formula above.
Conjecture 6 For each(p, f) as above there is a
spectrum generalizingtmf whose homotopy can be
computed by an Adams-Novikov type spectral
sequence with

E2 = ExtΓ(A,A).
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A is too big
This conjecture is not likely to be true forf > 1
because the ringA is too large. Ideally its Krull
dimension should bepf , the sum of the height of the
formal group law and the number of coordinate
change parameters.
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A is too big
This conjecture is not likely to be true forf > 1
because the ringA is too large. Ideally its Krull
dimension should bepf , the sum of the height of the
formal group law and the number of coordinate
change parameters.

The Krull dimension ofA is
(

p+f
f

)
− 1. Forf = 2

this isp(p + 3)/2 instead of the desired2p.

JHU Conference – p. 31/42



A smaller ring R
Replace the equation above with

ye =

p∏

j=1

(
x +

f∑

i=1

ri,jy
(pf−pi)/p

)

with |ri,j| = 2(pi − 1).
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A smaller ring R
Replace the equation above with

ye =

p∏

j=1

(
x +

f∑

i=1

ri,jy
(pf−pi)/p

)

with |ri,j| = 2(pi − 1). Thus we get a curve defined
over the ring

R = Zp[ri,j : 1 ≤ i ≤ f, 1 ≤ j ≤ p],

which has the desired Krull dimension.
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R is still too big
However this leads to an uninteresting Ext group.
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R is still too big
However this leads to an uninteresting Ext group. The
coordinate change above induces

ri,j 7→ ri,j + ti
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R is still too big
However this leads to an uninteresting Ext group. The
coordinate change above induces

ri,j 7→ ri,j + ti

and

ExtsΓ(R) =






Zp[ri,j − rp,i: 1 ≤ j ≤ p − 1]

for s = 0

0 for s > 0.
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A slightly smaller ring B
The equation for the curve is actually defined over the
subring

B = RΣp = Zp[ri,j : 1 ≤ i ≤ f, 1 ≤ j ≤ p]Σp

whereΣp acts onR via the second subscript.
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A slightly smaller ring B
The equation for the curve is actually defined over the
subring

B = RΣp = Zp[ri,j : 1 ≤ i ≤ f, 1 ≤ j ≤ p]Σp

whereΣp acts onR via the second subscript. This
ring is a quotient ofA, but its structure appears to be
unknown forf > 1 except forp = 2.
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A slightly smaller ring B
The equation for the curve is actually defined over the
subring

B = RΣp = Zp[ri,j : 1 ≤ i ≤ f, 1 ≤ j ≤ p]Σp

whereΣp acts onR via the second subscript. This
ring is a quotient ofA, but its structure appears to be
unknown forf > 1 except forp = 2. B is clearly a
module (presumably free of rankp!f−1) over the
subring

C = RΣf
p

where thef copies ofΣp act independently on thef
sets ofp generators ofR.
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The ring C
The structure ofC is well known, namely

C = Zp[σi,k : 1 ≤ i ≤ f, 1 ≤ k ≤ p]

whereσi,k is thekth elementary symmetric function
in the variablesri,1, . . . , ri,p.
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The ring C
The structure ofC is well known, namely

C = Zp[σi,k : 1 ≤ i ≤ f, 1 ≤ k ≤ p]

whereσi,k is thekth elementary symmetric function
in the variablesri,1, . . . , ri,p.
σi,k is the image ofak(pi−1)/(p − k)!.
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Relation to tmf at p = 2

For (p, f) = (2, 2) our equation reads

y3 = x2 + (a1y + a3)x + a2y
2 + a4y + a6,

so ourais are the Weierstrassais up to sign.
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Relation to tmf at p = 2

For (p, f) = (2, 2) our equation reads

y3 = x2 + (a1y + a3)x + a2y
2 + a4y + a6,

so ourais are the Weierstrassais up to sign. In the
ring B there is a relation

(2a4 − a1a3)
2 = (4a2 − a2

1)(4a6 − a2
3),

which makes it a free module on{1, a4} over the ring

C = Z2[a1, a2, a3, a6].
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Relation to tmf at p = 2
Our coordinate change is

y 7→ y and x 7→ x + t1y + t2,
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Relation to tmf at p = 2
Our coordinate change is

y 7→ y and x 7→ x + t1y + t2,

while in the construction oftmf it is

y 7→ y + r and x 7→ x + sy + t.
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Relation to tmf at p = 2
Our coordinate change is

y 7→ y and x 7→ x + t1y + t2,

while in the construction oftmf it is

y 7→ y + r and x 7→ x + sy + t.

The former can be obtained from the latter by

(r, s, t) 7→ (0, t1, t2).
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Relation to tmf at p = 2
Our coordinate change is

y 7→ y and x 7→ x + t1y + t2,

while in the construction oftmf it is

y 7→ y + r and x 7→ x + sy + t.

The former can be obtained from the latter by

(r, s, t) 7→ (0, t1, t2).

It seems likely that our conjecture (withA replaced by
B) would lead to the spectrum

tmf ∧
(
S0 ∪ν e4

)
.
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