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The Telescope Conjecture (made public in a lecture at Northwestern Uni-
versity in 1977) says that the vn–periodic homotopy of a finite complex of type
n has a nice algebraic description. It also gives an explicit description of certain
Bousfield localizations. In this paper we outline a proof that it is false for n = 2
and p ≥ 5. A more detailed account of this work will appear in [Rav]. In view
of this result, there is no longer any reason to think it is true for larger values
of n or smaller primes p.

In Section 1 we will give some background surrounding the conjecture. In
Section 2 we outline Miller’s proof of it for the case n = 1 and p > 2. This
includes a discussion of the localized Adams spectral sequence. In Section 3 we
describe the difficulties in generalizing Miller’s proof to the case n = 2 . We end
that section by stating a theorem (3.5) about some differentials in the Adams
spectral sequence, which we prove in Section 4. This material is new; I stated
the theorem in my lecture at the conference, but said nothing about its proof. In
Section 5 we construct the parametrized Adams spectral sequence, which gives
us a way of interpolating between the Adams spectral sequence and the Adams–
Novikov spectral sequence. We need this new machinery to use Theorem 3.5 to
disprove the Telescope Conjecture. This argument is sketched in Section 6.

1 Background

Recall that for each prime p there are generalized homology theories K(n)∗ (the
Morava K–theories) for each integer n ≥ 0 with the following properties:

(i) K(0)∗ is rational homology and K(1)∗ is one of p−1 isomorphic summands
of mod p complex K–theory.

(ii) For n > 0, K(n)∗(pt.) = Z/(p)[vn, v−1
n ] with |vn| = 2pn − 2.

(iii) There is a Künneth isomorphism

K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗(Y ).
∗Partially supported by the National Science Foundation and MSRI
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(iv) If X is a finite spectrum with K(n)∗(X) = 0, then K(n− 1)∗(X) = 0.

(v) If the p–localization of X (as above) is not contractible, then

K(n)∗(X) 6= 0 for nÀ 0.

The last two properties imply that we can make the following.

Definition 1.1 A noncontractible finite p–local spectrum X has type n if n is
the smallest integer such that K(n)∗(X) 6= 0.

Definition 1.2 If X as above has type n then a vn–map on X is a map

ΣdX
f−→ X

with K(n)∗(f) an isomorphism and K(m)∗(f) = 0 for all m 6= n.

The Periodicity Theorem of Hopkins–Smith [HS] says that such a map always
exists and is unique in the sense that if g is another such map then some iterate
of f is homotopic to some iterate of g. The Telescope Conjecture concerns the
telescope X̂, which is defined to be the homotopy direct limit of the system

X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · ·

The Periodicity Theorem tells us that this is independent of the choice of the
vn–map f .

The motivation for studying X̂ is that the associated Adams–Novikov spec-
tral sequence has nice properties. We will illustrate with some simple examples.
Suppose

BP∗(X) = BP∗/In = BP∗/(p, v1, · · · vn−1).

This happens when X is the Toda complex V (n− 1). These are known to exist
for small n and large p. Then

BP∗(X̂) = v−1
n BP∗/In.

The E2–term of the associated Adams–Novikov spectral sequence is

Es,t
2 = Exts,t

BP∗(BP )(BP∗, v−1
n BP∗/In),

which can be computed directly. For more details, see 5.1.14 and Chapter 6 of
[Rav86]. It is a free module over K(n)∗. In particular when n = 2 and p ≥ 5 (in
which case the spectrum V (1) is known to exist) it has total (for all values of s)
rank 12 and vanishes for s > 4. This means that the Adams–Novikov spectral
sequence collapses and there are no extension problems.

The computability of this Ext group was one of the original motivations for
studying vn–periodic homotopy theory.

However, we do not know that this Adams–Novikov spectral sequence con-
verges to π∗(X̂). It is known [Rav87] to converge to π∗(LnX), where LnX
denotes the Bousfield localization of X with respect to E(n)–theory. (When X
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is a finite spectrum of type n, this is the same as the localization with respect
to K(n)–theory.) Since X̂ is K(n)∗–equivalent to X, there are maps

X
i−→ X̂

λ−→ LnX.

The Telescope Conjecture says that λ is an equivalence, or equivalently that
the Adams–Novikov spectral sequence converges to π∗(X̂). This statement is
trivial for n = 0, known to be true for n = 1 ([Mil81] and [Mah82]). The object
of this paper is to sketch a counterexample for n = 2 and p ≥ 5.

2 Miller’s proof for n = 1 and p > 2

It is more or less a formality to reduce the Telescope Conjecture for a given
value of n and p to proving it for one particular p–local finite spectrum of type
n. We will outline Miller’s proof for the mod p Moore spectrum V (0). In that
case the v1–map

Σ2p−2V (0) α−→ V (0) (2.1)

is the map discovered long ago by Adams in [Ada66]. There is a map

S2p−3 −→ S0 −→ V (0)

which corresponds to an element in the Adams–Novikov spectral sequence called
h1,0. The Telescope Conjecture says that

π∗(V̂ (0)) = K(1)∗ ⊗ E(h1,0) (2.2)

where E(·) denotes an exterior algebra.
Miller studies this problem by looking at the classical Adams spectral se-

quence for π∗(V (0)). In its E2–term there is an element

v1 ∈ E1,2p−1
2

that corresponds to the Adams map α. One can formally invert this element
and get a localized Adams spectral sequence converging to π∗(V̂ (0)). (This
convergence is not obvious, and is proved in [Mil81].)

We will describe the construction of this localized Adams spectral sequence.
Recall that the classical Adams spectral sequence for the homotopy of spectrum
X is constructed as follows. One has an Adams resolution for X, which is a
diagram of the form

X = X0 ←− X1 ←− X2 ←− · · ·
f0↓ f1↓ f2↓
K0 K1 K2

with the following properties.

(i) Each Ks is a wedge of suspensions of mod p Eilenberg–Mac Lane spectra.
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(ii) Each map fs induces a monomorphism in mod p homology.

(iii) Xs+1 is the fibre of fs.

The canonical Adams resolution for X is obtained by setting

Ks = Xs ∧H/(p).

A map g : X → Y induces a map of Adams resolutions, i.e., a collection of
maps gs : Xs → Ys with suitable properties. The map g has Adams filtration
≥ t if it lifts to a map g′ : X → Yt. In this case it is automatic that gs lifts to
Ys+t.

Now consider the example at hand, namely X = V (0). The map α has
Adams filtration 1, so we have maps

V (0) = X0
α′0−→ Σ−qX1

α′1−→ Σ−2qX2
α′2−→ · · · ,

where q = 2p− 2. We define X̂s to be the limit of

Xs
α′s−→ Σ−qXs+1

α′s+1−→ Σ−2qXs+2

α′s+2−→ · · · ,

and K̂s to be the cofibre of the map X̂s+1 → X̂s, or equivalently the limit of

Ks −→ Σ−qKs+1 −→ Σ−2qKs+2 −→ · · · ,
Like Ks, it is a bouquet of mod p Eilenberg–Mac Lane spectra. These spectra
are defined for all integers s, not just for s ≥ 0 as in the classical case.

Thus we get a localized Adams resolution, i.e., a diagram

· · · ←− X̂s ←− X̂s+1 ←− X̂s+2 ←− · · ·
bfs↓ bfs+1↓ bfs+2↓
K̂s K̂s+1 K̂s+2

(2.3)

and a spectral sequence converging to the homotopy of the telescope V̂ (0), which
is the limit of

X̂0 −→ X̂−1 −→ X̂−2 −→ · · ·
To prove the spectral sequence converges, one must show that the inverse limit
of the X̂s is contractible.

Unlike the classical Adams spectral sequence, which is confined to the first
quadrant, the localized Adams spectral sequence is a full plane spectral sequence
with Es,t

1 conceivably nontrivial for all integers s and t. However, it can be shown
that the E2–term has a vanishing line of slope 1/q, namely

Es,t
2 = 0 for s >

t− s + 1
q

.

Fortunately the E2–term of the localized Adams spectral sequence is far
simpler than that of the usual Adams spectral sequence. In order to describe it
we need to recall some facts about the Steenrod algebra A. Its dual is

A∗ = E(τ0, τ1, · · ·)⊗ P (ξ1, ξ2, · · ·)
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where P (·) denotes a polynomial algebra over Z/(p). We will denote these two
factors by Q∗ and P∗ respectively.

We will use the homological (as opposed to cohomological) formulation of
the Adams spectral sequence for π∗(X), so the E2–term is

ExtA∗(Z/(p),H∗(X)) (2.4)

where H∗(X) (the mod p homology of X) is regarded as a comodule over A∗.
There is an extension of Hopf algebras

P∗ −→ A∗ −→ Q∗

which leads to a Cartan–Eilenberg spectral sequence converging to (2.4) with

E2 = ExtP∗(Z/(p),ExtQ∗(Z/(p),H∗(X))).

The inner Ext group is easy to compute since Q∗ is dual to an exterior algebra.
For X = V (0) it is

P (v1, v2, · · ·) with vn ∈ Ext1,2pn−1.

(The elements vn correspond so closely to the generators of π∗(BP ) that we see
no point in making a notational distinction between them.)

For odd primes the Cartan–Eilenberg spectral sequence collapses. (See
[Rav86, 4.4.3]. It is stated there only for X = S0, but the proof given will
work for any X.) It follows that

Exts
A∗(Z/(p),H∗(X)) ∼=

⊕

i+j=s

Exti
P∗(Z/(p),Extj

Q∗(Z/(p),H∗(X))). (2.5)

We can pass to the telescope V̂ (0) by inverting v1. Then we have the fol-
lowing very convenient change–of–rings isomorphism.

ExtP∗(Z/(p), v−1
1 P (v1, v2, · · ·)) ∼= ExtB(1)∗(Z/(p), K(1)∗) (2.6)

∼= K(1)∗ ⊗ ExtB(1)∗(Z/(p),Z/(p))

where K(1)∗ as usual denotes the ring v−1
1 P (v1) and

B(1)∗ = P (ξ1, ξ2, · · ·)/(ξp
i ).

This Hopf algebra has a cocommutative coproduct, so its Ext group is easy
to compute and we have

ExtB(1)∗(Z/(p),Z/(p)) ∼= E(h1,0, h2,0, · · ·)⊗ P (b1,0, b2,0, · · ·)

where

hi,0 ∈ Ext1,2pi−2

bi,0 ∈ Ext2,2pi+1−2p.
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This should be compared with the localized form of the Adams–Novikov
spectral sequence, in which the E2–term is

ExtBP∗(BP )(BP∗, v−1
1 BP∗/(p)).

One can get a spectral sequence converging to this called the algebraic
Novikov spectral sequence by filtering BP∗ by powers of the ideal

I = (p, v1, v2, · · ·). (2.7)

The E2–term of this spectral sequence is a regraded form of (2.6). We denote
the rth differential in this spectral sequence by δr. These can all be computed
by algebraic methods coming from BP–theory. In this case we have

δ2(hi+1,0) = v1bi,0 for i > 0.

Miller uses this to deduce that there are similar differentials in the localized
Adams spectral sequence, namely

d2(hi+1,0) = v1bi,0.

This gives
E3 = E∞ = K(1)∗ ⊗ E(h1,0),

which proves the Telescope Conjecture for n = 1 and p > 2.

3 Difficulties for n = 2

One can mimic Miller’s argument for n = 2 and p ≥ 5. In that case one has the
spectrum

V (1) = S0 ∪p e1 ∪α1 e2p−1 ∪p e2p,

which is the cofibre of the Adams map α of (2.1). There is a v2–map

Σ2p2−2V (1)
β−→ V (1)

constructed by Larry Smith [Smi71] and H. Toda [Tod71]. The Adams E2–term
is

ExtP∗(Z/(p), P (v2, v3, · · ·)).
We can use the map β to localize this Adams spectral sequence in the same

way as Miller localized the one for V (0). The resulting E2–term is

K(2)∗ ⊗ ExtB(2)∗(Z/(p),Z/(p))

where
B(2)∗ = P (ξ1, ξ2, · · ·)/(ξp2

i ).

This does not have a cocommutative coproduct, so its Ext group is not as
easy to compute as (2.6), but it is still manageable. It is a subquotient of the
cohomology of the cochain complex

C∗,∗ = E(h1,0, h2,0, · · · ;h1,1, h2,1, · · ·)⊗ P (b1,0, b2,0, · · · ; b1,1, b2,1, · · ·)
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where

hi,j ∈ C1,2pj(pi−1)

bi,j ∈ C2,2pj+1(pi−1)

and the coboundary ∂ is given by

∂(hi,0) = ±h1,0hi−1,1

∂(hi,1) = 0
∂(bi,0) = ±h1,1bi−1,1

∂(bi,1) = 0.

(3.1)

There is also an algebraic Novikov spectral sequence with the following dif-
ferentials.

δ2(hi,0) = ±v2bi−2,1 (3.2)

δ1+pi−1(hi,1) = ±vpi−1

2 bi−2,0 for i ≥ 3 (3.3)

The reader may object to (3.2) on the grounds that hi,0 is not a cocycle in C∗,∗,
and he would be correct. It would be more accurate to say that the algebraic
Novikov spectral sequence has differentials formally implied by (3.2), such as

δ2(h1,0hi,0) = ±v2h1,0bi−2,1 and
δ2(hi−1,1hi,0) = ±v2hi−1,1bi−2,1.

In any case these differentials kill the elements bi,j and hi+2,j for all i > 0, and
the E2–term of the Adams–Novikov spectral sequence is the cohomology of

K(2)∗ ⊗ E(h1,0, h1,1, h2,0, h2,1)

with the coboundary given by (3.1), namely

∂(h2,0) = ±h1,0h1,1.

This is a K(2)∗–module of rank 12 with basis

E(h2,1)⊗ {1, h1,0, h1,1, h1,0h2,0, h1,1h2,0, h1,0h1,1h2,0}. (3.4)

This is the value of π∗(V̂ (1)) predicted by the Telescope Conjecture.
The difficulty is that while Miller’s methods allow us to translate the al-

gebraic differentials implied by (3.2) into differentials in the localized Adams
spectral sequence, they do not enable us to do so for those of (3.3). The latter
would give us dr’s for arbitrarily large r, and such differentials could be inter-
fered with by other shorter differentials not related to the algebraic Novikov
spectral sequence.

The following result says that such interfering differentials do occur in the
localized Adams spectral sequence.

7



Theorem 3.5 In the localized Adams spectral sequence for V̂ (1) for p ≥ 5,

d2p(hi,1) = ±v2b
p
i−1,0 for i ≥ 2

modulo nilpotent elements.

The proof of this will be sketched below in Section 4. For i = 2 this can be
deduced from the Toda differential [Rav86, 4.4.22] by direct calculation.

This result shows that the E2p–term of the localized Adams spectral sequence
is a subquotient of

E(h1,0, h1,1, h2,0)⊗ P (b1,0, b2,0, · · ·)/(bi,0)p.

Even though this is infinite dimensional, it is too small in the sense that it
appears to have only two elements with Novikov filtration one (namely h1,0 and
h1,1), while there are three such elements in (3.4).

4 Computing the differentials d2p(hi,1)

The purpose of this section is to prove Theorem 3.5. The following is rationale
for these differentials, which will be made more rigorous and precise below. In
the appropriate form of the cobar complex, we have

−d(hi+2,0) ≡ h1,0hi+1,1 + v2bi,1 (4.1)

modulo terms with higher Adams filtration. It follows that the target of this
differential must be a permanent cycle in the localized Adams spectral sequence.
Now suppose we knew that

d2p−1(bi,1) = h1,0b
p
i,0. (4.2)

Then combining this with (4.1) would determine the differential on hi+1,1, giving
Theorem 3.5 up to suitable indeterminacy.

The Toda differential

For i = 1, (4.2) is the Toda differential, first established in [Tod67]. The
following is a reformulation of Toda’s proof. The generator of π2p−2(BU) is
represented by a map which extends (via the loop space structure of BU) to a
map

ΩS2p−1 −→ BU,

which can be composed with the map

ΣΩ2S2p−1 −→ ΩS2p−1

(adjoint to the identity map) to give a vector bundle over ΣΩ2S2p−1. Its Thom
spectrum is the cofibre of a stable map

Ω2S2p−1 f−→ S0.
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Now Ω2S2p−1 splits stably into an infinite wedge of finite spectra Bi for
i > 0 described explicitly by Snaith in [Sna74]. Localization at p makes Bi

contractible except when i ≡ 0 or 1 mod p, and makes Bpj+1 equivalent to
Σ2p−3Bpj for j > 0. The best way to see this is to look at mod p homology. We
have

H∗(Ω2S2p−1;Z/(p)) = E(x0, x1, · · ·)⊗ P (y1, y2, · · ·)
where the dimensions of xj and yj are 2pj(p−1)−1 and 2pj(p−1)−2 respectively.

In order to describe the Snaith splitting homologically, it is conveneient to
assign a weight to each monomial. We do this by defining the weight of both
xj and yj to be pj . This leads to a direct sum decomposition of the homology
corresponding to the Snaith splitting of the suspension spectrum, i.e., H∗(Bi)
is spanned by the monomials of weight i.

Now observe that the only generator whose weight is not divisible by p is
x0, which is an exterior generator. It follows that multiplication by x0 gives
an isomorphism from the subspace spanned by monomials with weight divisi-
ble by p to the that spanned by the ones with weight congruent to 1 mod p.
This isomorphism can be realized by a p–local equivalence Σ2p−3Bpi → Bpi+1.
Moreover, every monomial has weight congruent to 0 or 1 mod p.

Also note that the first monomial of weight pi is yi
1, which has dimension

2i(p2 − p− 1). It follows that

(Bpi)(p) = Σ2i(p2−p−1)Di

for some (−1)–connected finite spectrum Di.
Thus the Snaith splitting (after localizing at p) has the form

Ω2S2p−1
+ ' (S0 ∨ S2p−3) ∧

∨

i≥0

Σ2i(p2−p−1)Di.

In particular the resulting map

S2p−3 −→ S0

is α1, the generator of the (2p − 3)–stem corresponding to the element h1,0 in
the Adams spectral sequence.

D1 is the mod p Moore spectrum and the map

Σ2(p2−p−1)D1
f1−→ S0

is β1 on the bottom cell, i.e., the generator of the 2(p2 − p − 1)–stem, which
corresponds to b1,0 in the Adams spectral sequence. In general, the bottom cell
of Di is mapped in by βi

1.
Dp is a 4–cell complex of the form

Dp = S0 ∪p e1 ∪α1 e2p−2 ∪p e2p−1,

where the third cell is attached to the bottom cell by α1.
The restriction of fp to the bottom cell is βp

1 . The fact that this extends over
the third cell means that α1β

p
1 = 0 in π∗(S0). This means that h1,0b

p
1,0 must
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be the target of a differential in the Adams spectral sequence for the sphere
spectrum.

If one computes the Adams E2–term through the relevant range of dimen-
sions, one finds that the only possible source for this differential is b1,1. However,
one can also deduce this by studying the map fp more closely. Let

S0 = Y0 ←− Y1 ←− Y2 ←− · · ·

be an Adams resolution for S0. Then routine calculations show that the restric-
tions of fp to various skeleta of Dp lift to various Yi. Let the relevant suspensions
of these skeleta be denoted for brevity by

S2p(p2−p−1) = D(0)
p −→ D(1)

p −→ D(2)
p −→ D(3)

p = Σ2p(p2−p−1)Dp.

Then we have liftings

D
(0)
p −→ D

(1)
p −→ D

(2)
p −→ D

(3)
p

↓ ↓ ↓ ↓
Y2p −→ Y2p−1 −→ Y2 −→ Y1

In each case the corresponding map to Ys/Ys+1 (the generalized Eilenberg–
MacLane spectrum whose homotopy is Es,∗

1 ) factors through the top cell of the
finite complex. The four resulting elements in the Adams E1–term are bp

1,0,
bp−1
1,0 h1,1, b1,1 and h1,2.

This, along with the fact that the third cell of Dp is attached to the first by
α1, gives the Toda differential

d2p−1(b1,1) = h1,0b
p
1,0.

Generalizing the Toda differential to i > 1

One might hope to generalize Toda’s proof of (4.2) for i = 1 to larger values
of i by constructing a map

Ω2S2pi−1 f−→ S0

with suitable properties. In particular, the bottom cell, S2pi−3 would have to
represent hi,0. However, this is impossible since the latter is not a permanent
cycle.

We can get around this difficulty by replacing S0 by the spectrum T (i− 1),
which is a connective p–local ring spectrum characterized by

BP∗(T (i− 1)) = BP∗[t1, t2, · · · ti−1].

In particular, T (0) = S0. To construct these spectra for i > 0, recall that
ΩSU ' BU by Bott periodicity, so for each n > 0 we have a map

ΩSU(n) −→ BU
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which induces a stable vector bundle over ΩSU(n). We denote the resulting
Thom spectrum by X(n). After localizing at p, each of these admits a splitting
generalizing the Brown–Peterson splitting of MU(p), which is the case n = ∞.
This is proved in [Rav86, 6.5.1]. The resulting minimal summand is T (i) for
pi ≤ n ≤ pi+1 − 1.

Now consider the commutative diagram of spaces

Ω2SU(pi) −→ pt. −→ ΣΩ2SU(pi)
↓ ↓ ↓

Ω2S2pi−1 −→ ΩSU(pi − 1) −→ ΩSU(pi)

where the top row is a cofibre sequence and the bottom row is a fibre sequence,
and the left most map is induced by the usual projection of SU(pi) onto S2pi−1.
There is a natural stable vector bundle over every space in sight, and Thomifi-
cation leads to a diagram of p–local spectra

Ω2SU(pi) −→ S0 −→ T
↓ ↓ ↓

Ω2S2pi−1 −→ X(pi − 1) −→ X(pi)
↓ ↓

Ω2S2pi−1 f−→ T (i− 1) −→ T (i)

where T is the Thom spectrum of the bundle over ΣΩ2SU(pi)
This gives us the map f we are looking for. We could use it to prove a

statement similar to (4.2) in the Adams spectral sequence for T (i−1). However,
for i > 1 the element h1,0 is trivial in this setting, and bi,1 is actually a permanent
cycle. (The latter can be seen by observing that the first element of Novikov
filtration 2p + 1 is hi,0b

p
i,0, whose dimension exceeds that of bi,1 when i > 1.)

Fortunately, all is not lost. T (i− 1) is a split ring spectrum, and T (i− 1) ∧
T (i− 1) is a wedge of suspensions of T (i− 1), indexed by the monomials in the
tj ’s for j < i. Thus for each such monomial we get a map from T (i − 1) to an
appropriate suspension of itself. These maps induce cohomology operations in
T (i − 1)–theory. The Quillen operations in BP–theory are constructed in the
same way.

We are interested in the map

T (i− 1) r1−→ Σ2p−2T (i− 1)

corresponding to the monomial t1. This is analogous to the first Steenrod re-
duced power operation P1. The induced map in homotopy, which we also denote
by r1, lowers degree by 2p− 2.

Using arguments similar to Toda’s one can use the map f to prove the
following.

Theorem 4.3 For i > 1,
r1(bi,1) = bp

i,0

in π∗(T (i− 1)).
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Completing the proof of Theorem 3.5

Theorem 4.3 can be used to prove an analog of Theorem 3.5 in the localized
Adams spectral sequence for V (1) ∧ T (i − 1). This determines d2p(hi+1,1) in
the localized Adams spectral sequence for V (1) itself modulo the kernel of the
map from V̂ (1) to V̂ (1)∧ T (i− 1). This is good enough because disproving the
Telescope Conjecture requires only that d2p(hi+1,1) be an element which is not
nilpotent.

Let
· · · ←− X̂−1 ←− X̂0 ←− X̂1 ←− X̂2 ←− · · · (4.4)

be a localized Adams resolution (as defined in (2.3)) for V (1) ∧ T (i− 1). Then
we have

hi+1,0, hi,1 ∈ π∗(X̂1/X̂2).

The resolution of (4.4) can be obtained by smashing T (i− 1) with a similar
resolution for V (1). It forllows that for i > 1, the map r1 is defined on the entire
resolution and (4.1) implies that

r1(hi+1,0) = −hi,1.

Differentials on these elements in the localized Adams spectral sequence corre-
spond to their images under the map δ induced by

X̂1/X̂2 −→ ΣX̂2.

One can also deduce from (4.1) that

δ(hi+1,0) = −v2bi,1.

The following diagram commutes

X̂1/X̂2
δ−→ ΣX̂2

r1↓ ↓r1

Σq+1X̂1/X̂2
δ−→ Σq+1X̂2

so we have

δ(hi,1) = −δ(r1(hi+1,0))
= −r1(δ(hi+1,0))
= r1(v2bi,1)
= v2r1(bi,1)
= v2b

p
i,0,

which is the desired result.
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5 A parametrized Adams spectral sequence

In this section we will describe a variant of the Adams spectral sequence that
we need to disprove the Telescope Conjecture.

Again we need to recall how the Adams spectral sequence is set up. Let F
denote the mod p Eilenberg–MacLane spectrum H/p, let F denote the fibre of
the map

F −→ S0 −→ F

and let F
(s)

denote the sth smash power of F .
Then for any spectrum X we have a tower

X ←− X ∧ F ←− X ∧ F
(2) ←− · · · .

This gives us a collection of cofibre sequences

X ∧ F
(s+1) −→ X ∧ F

(s) −→ X ∧ F
(s) ∧ F,

which in turn give long exact sequences of homotopy groups. These form an
exact couple which gives the Adams spectral sequence. If X is a connective
p–torsion spectrum, then the spectral sequence converges to π∗(X), and for any
X the E2–term is

Es,t
2 = Exts,t

A∗(Z/(p),H∗(X)).

The Adams–Novikov spectral sequence is constructed in the same way, re-
placing F by E, the fibre of the map

E −→ S0 −→ BP.

Let
Xi,j = X ∧ E

(i) ∧ F
(j)

so we have a diagram

X ←− X1,0 ←− X2,0 ←− · · ·
↑ ↑ ↑

X0,1 ←− X1,1 ←− X2,1 ←− · · ·
↑ ↑ ↑

X0,2 ←− X1,2 ←− X2,2 ←− · · ·
↑ ↑ ↑
...

...
...

(5.1)

The left edge of this diagram is the tower giving the classical Adams spectral
sequence, while the top edge gives the Adams–Novikov spectral sequence.

Question 5.2 Is there an algebraic structure that exploits the diagram (5.1)
the way a spectral sequence exploits a tower?
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Such a structure would be very useful. For example, the computations of
[Rav86, 4.4] indicate that the 2–component of the stable homotopy groups of
spheres can be computed through a respectable range of dimensions simply
by comparing the E2–terms of the Adams spectral sequence and the Adams–
Novikov spectral sequence. The structure of the two spectral sequences each
imply the existence of nontrivial differentials in the other. It would be nice to
have a more systematic way of doing this.

We will construct some more spectral sequences associated with (5.1), but
we do not think this is the definitive answer to 5.2. The situation is still like the
parable of the blind men and the elephant. (When I first used this metaphor in
a lecture, I actually saw an elephant on the Rochester campus the next day.)

We can assume that all maps in (5.1) are inclusions (see [Rav84, 3.1] for a
proof), so it makes sense to speak of unions and intersections of the various Xi,j

as subspectra of X.
Now fix a pair of relatively prime, nonnegative integers m and n, and define

Ws =
⋃

mi+nj≥s

Xi,j .

This gives a tower
X = W0 ←−W1 ←−W2 ←− · · · (5.3)

from which we can derive a generalization of the Adams spectral sequence. It
is the classical Adams spectral sequence when m = 0 and n = 1, and the
Adams–Novikov spectral sequence when m = 1 and n = 0.

The fact that the map
E −→ S0

factors through F can easily be seen to imply the following.

Proposition 5.4 The spectral sequence described above is the classical Adams
spectral sequence whenever n ≥ m.

In view of this result, the case n > m is superfluous and we may as well
assume that m ≥ n. Let ε denote the rational number n/m. Then we have
0 ≤ ε ≤ 1 and the extreme values of ε give the Adams–Novikov spectral sequence
and the classical Adams spectral sequence respectively.

Definition 5.5 For a rational number ε = n/m (with m and n relatively prime)
between 0 and 1, the Adams spectral sequence parametrized by ε is the
homotopy spectral sequence based on the exact couple associated with the tower

X = W0 ←−W1/m ←−W2/m ←− · · ·
with

Ws =
⋃

i+εj≥s

X ∧ E
(i) ∧ F

(j)

where the union is over nonnegative integers i and j and it is understood that
E

(0)
= F

(0)
= S0. (This notation is not the same as in (5.3); Ws here is Wms

there.)
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Notice that there are inclusion maps

X ∧ E
dse −→Ws −→ X ∧ F

dse

(where dse denotes the smallest integer ≥ s) which induce maps

Adams–Novikov spectral sequence
↓

parametrized Adams spectral sequence
↓

classical Adams spectral sequence

once suitable indexing conventions have been adopted. The composite is the
usual reduction map. Thus the parametrized Adams spectral sequences inter-
polate between the Adams–Novikov spectral sequence and the classical Adams
spectral sequence.

We have adopted a convention that allows the filtration grading s to be any
nonnegative multiple of 1/m; the same will be true of the differential index r.
(The reader who is uncomfortable with these fractional indices is free to replace
the rational numbers r, s and t with the integers mr, ms and t + (m − 1)s
throughout the discussion.) With this understanding, we have the usual

Es,t
r

dr−→ Es+r,t+r−1
r . (5.6)

The difference t − s is still an integer, i.e., Es,t
r vanishes when t − s is not an

integer.
The usual E2–term is replaced by the E1+ε–term, at least when ε is a recip-

rocal integer. Recall (2.5) that in the classical (i.e., ε = 1) case we have

Es,t
2
∼=

⊕

i+j=s

Exti,t−j
P∗ (Z/(p),Extj

Q∗(Z/(p),H∗(X))).

Theorem 5.7 In the parametrized Adams spectral sequence with ε = 1/m (and
m > 1 if p = 2), if X is such that E2 = Em in the classical Adams spectral
sequence for X ∧BP ,

Es,t
1+ε =

⊕

i+jε=s

Exti,t−εj
P∗ (Z/(p),Extj

Q∗(Z/(p),H∗(X))).

In other words, the element vn, which has filtration 0 in the Adams–Novikov
spectral sequence and filtration 1 in the classical Adams spectral sequence, has
filtration ε in the parametrized Adams spectral sequence.

The hypothesis on X is satisfied when X is S0, V (0), V (1), or any spectrum
for which the Adams spectral sequence for X ∧BP collapses. In this case there
is an isomorphism

Extj
Q∗(Z/(p),H∗(X)) ∼= IjBP∗(X)/Ij+1BP∗(X)

of P∗–comodules, where I is as in (2.7). It follows that the E1+ε–term of the
parametrized Adams spectral sequence is isomorphic (up to reindexing) to the
E1–term of the algebraic Novikov spectral sequence. Then we have
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Theorem 5.8 Let ε = 1/m and suppose X is such that the classical Adams
spectral sequence for BP ∧ X collapses from E2. In the parametrized Adams
spectral sequence for X, let x ∈ Es,t

r be represented by an element x̃ ∈ Es,t
1+ε

which corresponds to an element x̂ in the algebraic Novikov spectral sequence
which is not a permanent cycle. Then for m sufficiently large (depending on x),
dr(x) in the parametrized Adams spectral sequence corresponds to δmr(x̂) in the
algebraic Novikov spectral sequence.

In other words, in many cases the differential on x can be computed by
BP–theoretic methods when ε is sufficiently small.

A similar statement can be made about permanent cycles in the Adams–
Novikov spectral sequence.

Theorem 5.9 In the parametrized Adams spectral sequence, let ε and X be as
in 5.8. Let x ∈ Es,t

r be represented by an element x̃ ∈ Es,t
1+ε which correpsonds

to a permanent cycle in both the algebraic Novikov spectral sequence and the
Adams–Novikov spectral sequence. Then for m sufficiently large (depending on
the dimension t−s), x is a permanent cycle in the parametrized Adams spectral
sequence.

6 Disproving the Telescope Conjecture

Now we can outline our disproof of the Telescope Conjecture. As noted above
(3.4), the predicted value of π∗(V̂ (1)) is

K(2)∗ ⊗ E(h2,1)⊗ {1, h1,0, h1,1, h1,0h2,0, h1,1h2,0, h1,0h1,1h2,0}.
This can be shown to imply that

π∗(V̂ (1) ∧ T (2)) ∼= K(2)∗ ⊗ P (v3, v4)⊗ E(h3,0, h3,1, h4,0, h4,1).

We will disprove the Telescope Conjecture by showing that h4,1 is not in
π∗(V̂ (1)∧T (2)). If it were, then for some N À 0, vN

2 h4,1 would be a permanent
cycle in the Adams–Novikov spectral sequence for π∗(V (1) ∧ T (2)). Using 5.9,
this means that a similar element would be a permanent cycle in the paramet-
rized Adams spectral sequence for sufficiently large m. It follows that h4,1 would
be a permanent cycle in the localized parametrized Adams spectral sequence for
all sufficiently small ε > 0.

Here is what we know about the localized parametrized Adams spectral
sequence for the spectrum V (1) ∧ T (2) for ε = 1/m. We have

E1+ε = K(2)∗ ⊗ P (v3, v4)⊗ E(h3,0, h4,0, · · · ; h3,1, h4,1, · · ·)
⊗P (b3,0, b4,0, · · · ; b3,1, b4,1, · · ·).

and
d1+ε(hi+2,0) = ±v2bi,1 for i ≥ 3,

which gives

E1+2ε = K(2)∗ ⊗ P (v3, v4)⊗ E(h3,0, h4,0; h3,1, h4,1, · · ·)
⊗P (b3,0, b4,0, · · ·).
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Now we combine 3.5 and (3.3) to get the heuristic formula

d(hi,1) = ±v2b
p
i−1,0 ± vpi−1

2 bi−2,0, (6.1)

where the second term is understood to be trivial for i = 4 and both terms are
trivial for i = 3. The second term has lower filtration when

ε <
2p− 2

pi−1 − 1
,

i.e., for small values of i, while the first term has lower filtration for iÀ 0.
Suppose for example that ε = 1/p3. Then (6.1) gives

d(h4,1) = ±v2b
p
3,0

d(h5,1) = ±v2b
p
4,0 ± vp4

2 b3,0

Hence
d1+p(h5,1) = ±vp4

2 b3,0

and bp
3,0 is dead in E2p−1, so the expected differential on h4,1 is trivial. However

(6.1) also gives

d(h5,1(d(h5,1)p−1)) = (d(h5,1))p

= ±vp
2bp2

4,0 ± vp5

2 bp
3,0,

from which we get

d(h4,1 ± v1−p5

2 h5,1(d(h5,1)p−1)) = ±v1+p−p5

2 bp2

4,0,

which gives the differential

d2p2−1+(1+p−p5)ε(h4,1) = ±v1+p−p5

2 bp2

4,0.

We need to be sure that this differential is nontrivial, i.e., that bp2

4,0 has not
been killed earlier by another differential. For this value of ε, the first term of
(6.1) is the dominant one for all i ≥ 6. It follows that

E2p−1+2ε = K(2)∗ ⊗ P (v3, v4)⊗ E(h3,0, h4,0, h3,1, h4,1)
⊗P (b4,0, b5,0, · · ·)/(bp

5,0, b
p
6,0, · · ·).

The first three exterior generators can be shown to be permanent cycles by
studying the Adams–Novikov spectral sequence for V (1) ∧ T (2) in low dimen-
sions. The elements bi,0 for i ≥ 5 can be ignored here because they have (after
being multiplied by a suitable negative power of v2 to get them in roughly the
same dimension as h4,1) lower filtration than h4,1.

It follows that the indicated differential on h4,1 is nontrivial as claimed for
ε = 1/p3.

Similar computations can be made for smaller positive values of ε. For
example when ε = p−j for j ≥ 2, we get

dr(h4,1) = ±ve
2b

pj−1

j+1,0

for suitable values of r and e. It follows that h4,1 is not a permanent cycle in
the localized parametrized Adams spectral sequence for any positive value of ε,
and the Telescope Conjecture for n = 2 and p ≥ 5 is false.
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