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The Telescope Conjecture (made public in a lecture at Northwestern Uni-
versity in 1977) says that the v,—periodic homotopy of a finite complex of type
n has a nice algebraic description. It also gives an explicit description of certain
Bousfield localizations. In this paper we outline a proof that it is false for n = 2
and p > 5. A more detailed account of this work will appear in [Rav]. In view
of this result, there is no longer any reason to think it is true for larger values
of n or smaller primes p.

In Section 1 we will give some background surrounding the conjecture. In
Section 2 we outline Miller’s proof of it for the case n = 1 and p > 2. This
includes a discussion of the localized Adams spectral sequence. In Section 3 we
describe the difficulties in generalizing Miller’s proof to the case n =2 . We end
that section by stating a theorem (3.5) about some differentials in the Adams
spectral sequence, which we prove in Section 4. This material is new; I stated
the theorem in my lecture at the conference, but said nothing about its proof. In
Section 5 we construct the parametrized Adams spectral sequence, which gives
us a way of interpolating between the Adams spectral sequence and the Adams—
Novikov spectral sequence. We need this new machinery to use Theorem 3.5 to
disprove the Telescope Conjecture. This argument is sketched in Section 6.

1 Background

Recall that for each prime p there are generalized homology theories K (n). (the
Morava K-theories) for each integer n > 0 with the following properties:

(i) K(0), is rational homology and K (1), is one of p—1 isomorphic summands
of mod p complex K—theory.

(ii) For n > 0, K(n).(pt.) = Z/(p)[vn, v, ] with |v,| = 2p™ — 2.
(iii) There is a Kiinneth isomorphism

K(n)o(X x Y) 2 K(n).(X) ® K(n).(Y).
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(iv) If X is a finite spectrum with K (n).(X) =0, then K(n —1).(X) =0.
(v) If the p-localization of X (as above) is not contractible, then

K(n)«.(X)#0 for n>0.

The last two properties imply that we can make the following.

Definition 1.1 A noncontractible finite p—local spectrum X has type n if n is
the smallest integer such that K(n).(X) # 0.

Definition 1.2 If X as above has type n then a v,—map on X is a map
wix L x
with K(n).(f) an isomorphism and K(m).(f) =0 for all m # n.

The Periodicity Theorem of Hopkins—Smith [HS] says that such a map always
exists and is unique in the sense that if g is another such map then some iterate
of f is homotopic to some iterate of g. The Telescope Conjecture concerns the
telescope X, which is defined to be the homotopy direct limit of the system

x Loyg-dx Loyp-2ax 1,

The Periodicity Theorem tells us that this is independent of the choice of the
vp—map f. N
The motivation for studying X is that the associated Adams—Novikov spec-
tral sequence has nice properties. We will illustrate with some simple examples.
Suppose
BP.(X)= BP./I, = BP,/(p,v1, - Vn—1)-

This happens when X is the Toda complex V(n —1). These are known to exist
for small n and large p. Then

BP,(X) =v;'BP,/I,.
The Es—term of the associated Adams—Novikov spectral sequence is

By = Extyh pp)(BPe vy ' BP. /1),

which can be computed directly. For more details, see 5.1.14 and Chapter 6 of
[Rav86]. It is a free module over K (n),. In particular when n = 2 and p > 5 (in
which case the spectrum V(1) is known to exist) it has total (for all values of s)
rank 12 and vanishes for s > 4. This means that the Adams—Novikov spectral
sequence collapses and there are no extension problems.

The computability of this Ext group was one of the original motivations for
studying v,,—periodic homotopy theory.

However, we do not know that this Adams-Novikov spectral sequence con-
verges to m«(X). It is known [Rav87] to converge to m.(L,X), where L,X
denotes the Bousfield localization of X with respect to E(n)-theory. (When X



is a finite spectrum of type n, this is the same as the localization with respect
to K (n)-theory.) Since X is K(n).—equivalent to X, there are maps

X -5 XXX

The Telescope Conjecture says that A is an equivalence, or equivalently that
the Adams—Novikov spectral sequence converges to m,(X). This statement is
trivial for n = 0, known to be true for n = 1 ([Mil81] and [Mah82]). The object
of this paper is to sketch a counterexample for n = 2 and p > 5.

2 Miller’s proof for n =1 and p > 2

It is more or less a formality to reduce the Telescope Conjecture for a given
value of n and p to proving it for one particular p—local finite spectrum of type
n. We will outline Miller’s proof for the mod p Moore spectrum V(0). In that
case the v;—map

»2P27(0) -2 V(0) (2.1)

is the map discovered long ago by Adams in [Ada66]. There is a map
S8 8% . V(0)

which corresponds to an element in the Adams—Novikov spectral sequence called
hi. The Telescope Conjecture says that

—

m(V(0)) = K(1)« @ E(h1,0) (2.2)

where E(-) denotes an exterior algebra.
Miller studies this problem by looking at the classical Adams spectral se-
quence for m,(V(0)). In its Eo—term there is an element

1,2p—1
V1 € E2 P

that corresponds to the Adams map «. One can formally invert this element

and get a localized Adams spectral sequence converging to 71'*(17(0\)) (This
convergence is not obvious, and is proved in [Mil81].)

We will describe the construction of this localized Adams spectral sequence.
Recall that the classical Adams spectral sequence for the homotopy of spectrum
X is constructed as follows. One has an Adams resolution for X, which is a
diagram of the form

X :XO — X1 — X2 —
fo| fi| f2]
Ko K, K>

with the following properties.

(i) Each K is a wedge of suspensions of mod p Eilenberg-Mac Lane spectra.



(ii) Each map fs induces a monomorphism in mod p homology.
(ili) Xg41 is the fibre of fs.
The canonical Adams resolution for X is obtained by setting
K, =X ANH/(p).

A map g : X — Y induces a map of Adams resolutions, i.e., a collection of
maps gs : Xs — Y, with suitable properties. The map g has Adams filtration
>t if it lifts to a map ¢’ : X — Y;. In this case it is automatic that g, lifts to
Ystt-

Now consider the example at hand, namely X = V(0). The map « has
Adams filtration 1, so we have maps

V(O):Xoa—6>2_qX1a—/1>2_2‘1X2a—/2>~-~,

where ¢ = 2p — 2. We define )/(\'S to be the limit of

’

o, _ O‘;+1 _ Asto
X, =5 079X, B nX,, 2.

and I?s to be the cofibre of the map )A(Sﬂ — )A(S, or equivalently the limit of
Ky, — E_q[(erl — 2_2(1KS+2 )

Like K, it is a bouquet of mod p Eilenberg—-Mac Lane spectra. These spectra
are defined for all integers s, not just for s > 0 as in the classical case.
Thus we get a localized Adams resolution, i.e., a diagram

— )?s — )?s—i-l — Xs+2 o
ﬁi ﬁ“i fs+2l (2.3)
K. K1 Kyt

and a spectral sequence converging to the homotopy of the telescope V' (0), which
is the limit of R N N
XO —>X_1 —}X_Q — e

To prove the spectral sequence converges, one must show that the inverse limit
of the X, is contractible.

Unlike the classical Adams spectral sequence, which is confined to the first
quadrant, the localized Adams spectral sequence is a full plane spectral sequence
with E;" conceivably nontrivial for all integers s and t. However, it can be shown

that the Fo—term has a vanishing line of slope 1/¢, namely
t— 1
Ey'=0 for s> fosvl

q

Fortunately the Es—term of the localized Adams spectral sequence is far
simpler than that of the usual Adams spectral sequence. In order to describe it
we need to recall some facts about the Steenrod algebra A. Its dual is

A, = E(19, 71, ) @ P(&1,&2,--+)



where P(-) denotes a polynomial algebra over Z/(p). We will denote these two
factors by @, and P, respectively.

We will use the homological (as opposed to cohomological) formulation of
the Adams spectral sequence for 7.(X), so the Fa—term is

Exta, (Z/(p), Hi(X)) (2.4)

where H,(X) (the mod p homology of X) is regarded as a comodule over A,.
There is an extension of Hopf algebras

P* — A* — Q*
which leads to a Cartan—Eilenberg spectral sequence converging to (2.4) with

By = Extp (Z/(p), Extq. (Z/(p), Hi(X)))-

The inner Ext group is easy to compute since @), is dual to an exterior algebra.
For X =V(0) it is

P(vy,v9,-++) with wv, € Exth2P" 1,

(The elements v,, correspond so closely to the generators of 7, (BP) that we see
no point in making a notational distinction between them.)

For odd primes the Cartan—Eilenberg spectral sequence collapses. (See
[Rav86, 4.4.3]. It is stated there only for X = S° but the proof given will
work for any X.) It follows that

Ext}y (Z/(p), Hi(X)) = €D Extp (Z/(p), Extyy (Z/(p), Ho(X))).  (2:5)
i+j=s

—

We can pass to the telescope V(0) by inverting v;. Then we have the fol-
lowing very convenient change—of-rings isomorphism.

Extp. (Z/(p),vy ' P(vr,vz,-++)) = Extp).(Z/(p), K(1).) (2.6)
= K(1). ®Extpa).(Z/(p),Z/(p))

where K (1), as usual denotes the ring v; ' P(v;) and

B(1)s = P(&1,&2,-++)/(&D).

This Hopf algebra has a cocommutative coproduct, so its Ext group is easy
to compute and we have

Extpy.(Z/(p),Z/(p)) = E(h1,0,h20, ) ® P(b1,0,b2,0,- ")

where

hio € ExtV®' 2

i+l
bi,O S EXt2’2p 2p.



This should be compared with the localized form of the Adams—Novikov
spectral sequence, in which the Eo—term is

Extpp, (pp)(BP.,v; "BP,/(p)).

One can get a spectral sequence converging to this called the algebraic
Novikov spectral sequence by filtering BP, by powers of the ideal

Iz(p71}1,1}2,~'~). (27)

The Es—term of this spectral sequence is a regraded form of (2.6). We denote
the 7** differential in this spectral sequence by §,. These can all be computed
by algebraic methods coming from BP-theory. In this case we have

(52(]7,1‘4_170) = 1}1[)1‘,0 for ¢>0.

Miller uses this to deduce that there are similar differentials in the localized
Adams spectral sequence, namely
da(hit1,0) = v1bi .

This gives
E3; =FEo = K(1), @ E(h1),

which proves the Telescope Conjecture for n =1 and p > 2.

3 Difficulties for n =2

One can mimic Miller’s argument for n = 2 and p > 5. In that case one has the
spectrum
V(1) =80, e Uy, e U, e,

which is the cofibre of the Adams map « of (2.1). There is a vo—map
w2’ =2y(1) 25 v (1)

constructed by Larry Smith [Smi71] and H. Toda [Tod71]. The Adams Es—term
is

Extp, (Z/(p), P(va,vs,--)).

We can use the map § to localize this Adams spectral sequence in the same
way as Miller localized the one for V(0). The resulting E2—term is

K(2). ® Extp2).(Z/(p), Z/(p))
where )
B(2). = P(&,&, ) /(&)
This does not have a cocommutative coproduct, so its Ext group is not as

easy to compute as (2.6), but it is still manageable. It is a subquotient of the
cohomology of the cochain complex

C** = E(h1,0,h2,0, - 5h1,1,h21, ) @ P(b1,0,b2,0,--+3b1,1,02,1, )



where

hij € oL2r’ (' =1)
j+1/.i
bij € o220 (' -1)

and the coboundary 9 is given by

O(hip) = =hiohi—i1
dh;1) = 0

’ 3.1
Obio) = Fhiabi1a (3.1)
abi1) = 0.

There is also an algebraic Novikov spectral sequence with the following dif-
ferentials.

52(h¢’0) = :|:’l)2bi72’1 (32)
i—1

(51+pi—1(hi,1) = i’l)g bi_9o fori>3 (3.3)

The reader may object to (3.2) on the grounds that h; ¢ is not a cocycle in C**,
and he would be correct. It would be more accurate to say that the algebraic
Novikov spectral sequence has differentials formally implied by (3.2), such as

da(h1,0hip) = Zvahigbi—2;1 and
da(hi—11hip) = Fvahi_11bi_21.

In any case these differentials kill the elements b; ; and h;4o ; for all ¢ > 0, and
the Eo—term of the Adams—Novikov spectral sequence is the cohomology of

K(2), ® E(h1,0,h1,1,h20,h2.1)
with the coboundary given by (3.1), namely
I(ha2,0) = £hyoh11.
This is a K (2).—module of rank 12 with basis

E(h2,1) ® {1, h1,0, h1,1, h1,0h2,0, h1,1h2,0, h10h1,1ho0}. (3.4)

This is the value of 7r*(17(T)) predicted by the Telescope Conjecture.

The difficulty is that while Miller’s methods allow us to translate the al-
gebraic differentials implied by (3.2) into differentials in the localized Adams
spectral sequence, they do not enable us to do so for those of (3.3). The latter
would give us d,’s for arbitrarily large r, and such differentials could be inter-
fered with by other shorter differentials not related to the algebraic Novikov
spectral sequence.

The following result says that such interfering differentials do occur in the
localized Adams spectral sequence.



—

Theorem 3.5 In the localized Adams spectral sequence for V(1) forp > 5,
dgp(h%l) = ivgbﬁll’o fO’I“i Z 2
modulo nilpotent elements.

The proof of this will be sketched below in Section 4. For i = 2 this can be
deduced from the Toda differential [Rav86, 4.4.22] by direct calculation.

This result shows that the Fo,~term of the localized Adams spectral sequence
is a subquotient of

E(hy0,h1,1,h2,0) ® P(b1,0,b2,0,--)/(bi0)".

Even though this is infinite dimensional, it is too small in the sense that it
appears to have only two elements with Novikov filtration one (namely h; o and
h1,1), while there are three such elements in (3.4).

4 Computing the differentials ds,(h; 1)

The purpose of this section is to prove Theorem 3.5. The following is rationale
for these differentials, which will be made more rigorous and precise below. In
the appropriate form of the cobar complex, we have

—d(hit2,0) = h1ohiy1,1 + vabia (4.1)

modulo terms with higher Adams filtration. It follows that the target of this
differential must be a permanent cycle in the localized Adams spectral sequence.
Now suppose we knew that

dgp_l(biJ) = hl,Obﬁo- (4.2)

Then combining this with (4.1) would determine the differential on h;41 1, giving
Theorem 3.5 up to suitable indeterminacy.

The Toda differential

For i = 1, (4.2) is the Toda differential, first established in [Tod67]. The
following is a reformulation of Toda’s proof. The generator of ma,_o(BU) is
represented by a map which extends (via the loop space structure of BU) to a
map

Qs%-1 . BU,

which can be composed with the map
292521)—1 N QS2p—1

(adjoint to the identity map) to give a vector bundle over £Q2S?P~1. Tts Thom
spectrum is the cofibre of a stable map

0252t L, 50,



Now 0282P~1 gplits stably into an infinite wedge of finite spectra B; for
i > 0 described explicitly by Snaith in [Sna74]. Localization at p makes B;
contractible except when ¢ = 0 or 1 mod p, and makes B,; 1 equivalent to
221’*3Bm- for j > 0. The best way to see this is to look at mod p homology. We
have
H,(*S*7YZ/(p) = E(zo, 21, ) @ Py1,y2,- )

where the dimensions of z; and y; are 2p’ (p—1)—1 and 2p? (p—1)—2 respectively.

In order to describe the Snaith splitting homologically, it is conveneient to
assign a weight to each monomial. We do this by defining the weight of both
x; and y; to be p’. This leads to a direct sum decomposition of the homology
corresponding to the Snaith splitting of the suspension spectrum, i.e., H,(B;)
is spanned by the monomials of weight 4.

Now observe that the only generator whose weight is not divisible by p is
xg, which is an exterior generator. It follows that multiplication by x¢ gives
an isomorphism from the subspace spanned by monomials with weight divisi-
ble by p to the that spanned by the ones with weight congruent to 1 mod p.
This isomorphism can be realized by a p-local equivalence 2’ ~3B,,; — By, 1.
Moreover, every monomial has weight congruent to 0 or 1 mod p.

Also note that the first monomial of weight pi is 3%, which has dimension
2i(p? —p —1). It follows that

(sz)(p) — E2i(p27p71)DZ‘

for some (—1)—connected finite spectrum D;.
Thus the Snaith splitting (after localizing at p) has the form

Q251 = (S0 v 83 A/ B2 Y,
i>0
In particular the resulting map

SQp—3 _ SO

is aq, the generator of the (2p — 3)-stem corresponding to the element hj o in
the Adams spectral sequence.
D1 is the mod p Moore spectrum and the map

w20’ —p-1)p J1, g0

is (31 on the bottom cell, i.e., the generator of the 2(p?> — p — 1)-stem, which
corresponds to by o in the Adams spectral sequence. In general, the bottom cell
of D; is mapped in by [%.

D, is a 4—cell complex of the form

_ Q0 1 2p—2 2p—1
D,=5"Upe Uy, € Upe ,

where the third cell is attached to the bottom cell by «;.
The restriction of f, to the bottom cell is 37. The fact that this extends over
the third cell means that oy 87 = 0 in 7.(S°). This means that hy ob} , must



be the target of a differential in the Adams spectral sequence for the sphere
spectrum.

If one computes the Adams Fs—term through the relevant range of dimen-
sions, one finds that the only possible source for this differential is b; ;. However,
one can also deduce this by studying the map f, more closely. Let

S'=Yo = Yie— Yoo

be an Adams resolution for S°. Then routine calculations show that the restric-
tions of f}, to various skeleta of D,, lift to various Y;. Let the relevant suspensions
of these skeleta be denoted for brevity by

§2p(P°—p=1) _ D1(70) N Dz()l) N D1(72) N Dz()3) - E2p(p2—p—1)Dp.
Then we have liftings

pY . p®» . p@ . pP
1 1 1 1

Yv2p I }/2;071 — Yv2 — Yl

In each case the corresponding map to Ys/Ys41 (the generalized Eilenberg—
Mac Lane spectrum whose homotopy is Ey"") factors through the top cell of the
finite complex. The four resulting elements in the Adams Fj;-term are bf,()a

by o i1, bry and hys.
This, along with the fact that the third cell of D, is attached to the first by
a1, gives the Toda differential

dap—1(b1,1) = h1,0b -

Generalizing the Toda differential to i > 1

One might hope to generalize Toda’s proof of (4.2) for i = 1 to larger values
of ¢ by constructing a map

9252pi—1 L) SO

with suitable properties. In particular, the bottom cell, $?*'—3 would have to
represent h; 0. However, this is impossible since the latter is not a permanent
cycle.

We can get around this difficulty by replacing S° by the spectrum 7'(i — 1),
which is a connective p—local ring spectrum characterized by

BP.(T(i — 1)) = BP, [ty ts, - t;_1].

In particular, T(0) = S° To construct these spectra for i > 0, recall that
QSU ~ BU by Bott periodicity, so for each n > 0 we have a map

QSU(n) — BU

10



which induces a stable vector bundle over QSU(n). We denote the resulting
Thom spectrum by X (n). After localizing at p, each of these admits a splitting
generalizing the Brown—Peterson splitting of MU ), which is the case n = co.
This is proved in [Rav86, 6.5.1]. The resulting minimal summand is T'(i) for
ngngpl-‘rl_l

Now consider the commutative diagram of spaces

Q2SU(p') — pt. —  XQ2SU(p)
. ! l
Q28 -1 QSU(p'—1) —  QSU(p')

where the top row is a cofibre sequence and the bottom row is a fibre sequence,
and the left most map is induced by the usual projection of SU(p*) onto S2»' 1,
There is a natural stable vector bundle over every space in sight, and Thomifi-
cation leads to a diagram of p-local spectra

Q2SUpl) — 8%  — T

L ! !
@s — X' -1) — X()
I | !

s~ Lo —  T3)

where T is the Thom spectrum of the bundle over XQ2SU (p?)

This gives us the map f we are looking for. We could use it to prove a
statement similar to (4.2) in the Adams spectral sequence for T'(i—1). However,
for i > 1 the element h; g is trivial in this setting, and b, ; is actually a permanent
cycle. (The latter can be seen by observing that the first element of Novikov
filtration 2p + 1 is huobim whose dimension exceeds that of b; ; when ¢ > 1.)

Fortunately, all is not lost. T'(i — 1) is a split ring spectrum, and T'(i — 1) A
T(i—1) is a wedge of suspensions of T'(i — 1), indexed by the monomials in the
t;’s for j < i. Thus for each such monomial we get a map from T'(i — 1) to an
appropriate suspension of itself. These maps induce cohomology operations in
T(i — 1)~theory. The Quillen operations in BP-theory are constructed in the
same way.

We are interested in the map

T(i—1) =% $2P727(i — 1)

corresponding to the monomial ¢;. This is analogous to the first Steenrod re-
duced power operation P!. The induced map in homotopy, which we also denote
by r1, lowers degree by 2p — 2.

Using arguments similar to Toda’s one can use the map f to prove the
following.

Theorem 4.3 Fori > 1,
1 (bi71) = bf,O
inm (T(i—1)).

11



Completing the proof of Theorem 3.5

Theorem 4.3 can be used to prove an analog of Theorem 3.5 in the localized
Adams spectral sequence for V(1) A T(¢ — 1). This determines dop(hit1,1) in
the localized Adams spectral sequence for V(1) itself modulo the kernel of the

—_—

map from V(1) to V(1) AT (i — 1). This is good enough because disproving the
Telescope Conjecture requires only that dg,(hit1,1) be an element which is not
nilpotent.
Let R R R R
e X g — Xg— X — Xy — - (4.4)

be a localized Adams resolution (as defined in (2.3)) for V(1) AT(i — 1). Then
we have

hitx1,0, hi1 € 7T»<()?1/)?2)~

The resolution of (4.4) can be obtained by smashing T'(i — 1) with a similar
resolution for V' (1). It forllows that for ¢ > 1, the map r is defined on the entire
resolution and (4.1) implies that

r1(hit1,0) = —hi1-

Differentials on these elements in the localized Adams spectral sequence corre-
spond to their images under the map § induced by

21/22 — E)?Q
One can also deduce from (4.1) that
0(hiy1,0) = —v2bs 1.

The following diagram commutes

X /X, 5 X,

7‘1l l’l‘1

Satl X, /X, -2 matlX,
so we have

6(hin) = —0(ri(hit1,0))
—11(0(hit1,0))
r1(v2b; 1)
vor1(bi1)

_ P
= v2bi,0’

which is the desired result.

12



5 A parametrized Adams spectral sequence

In this section we will describe a variant of the Adams spectral sequence that
we need to disprove the Telescope Conjecture.

Again we need to recall how the Adams spectral sequence is set up. Let F’
denote the mod p Eilenberg—Mac Lane spectrum H/p, let F' denote the fibre of
the map

F—S8 —F

and let F) denote the s™ smash power of F.

Then for any spectrum X we have a tower
X<—X/\F<—X/\F(2) —

This gives us a collection of cofibre sequences

) ) )

XAFTY L xAFY S xAFY AR

which in turn give long exact sequences of homotopy groups. These form an
exact couple which gives the Adams spectral sequence. If X is a connective
p—torsion spectrum, then the spectral sequence converges to 7. (X), and for any
X the Ey—term is

Ey" = Ext}{ (Z/(p), H(X)).

The Adams-Novikov spectral sequence is constructed in the same way, re-
placing F by E, the fibre of the map

E— S — BP.

Let 5 =)
Xi;=XANEY ATV

so we have a diagram

X — X0 — Xyp —

7 T 7
Xo1 — Xi1 — Xoq — .

7 7 7 (5.1)
Xo2 +— Xio — Xoo — .-

T T T

The left edge of this diagram is the tower giving the classical Adams spectral
sequence, while the top edge gives the Adams—Novikov spectral sequence.

Question 5.2 s there an algebraic structure that exploits the diagram (5.1)
the way a spectral sequence exploits a tower?

13



Such a structure would be very useful. For example, the computations of
[Rav86, 4.4] indicate that the 2-component of the stable homotopy groups of
spheres can be computed through a respectable range of dimensions simply
by comparing the Es—terms of the Adams spectral sequence and the Adams—
Novikov spectral sequence. The structure of the two spectral sequences each
imply the existence of nontrivial differentials in the other. It would be nice to
have a more systematic way of doing this.

We will construct some more spectral sequences associated with (5.1), but
we do not think this is the definitive answer to 5.2. The situation is still like the
parable of the blind men and the elephant. (When I first used this metaphor in
a lecture, T actually saw an elephant on the Rochester campus the next day.)

We can assume that all maps in (5.1) are inclusions (see [Rav84, 3.1] for a
proof), so it makes sense to speak of unions and intersections of the various X; ;
as subspectra of X.

Now fix a pair of relatively prime, nonnegative integers m and n, and define

W, = LJ X

mi+nj>s

This gives a tower
XZWQ<—W1<—W2<—"' (53)

from which we can derive a generalization of the Adams spectral sequence. It
is the classical Adams spectral sequence when m = 0 and n = 1, and the
Adams—Novikov spectral sequence when m =1 and n = 0.
The fact that the map
E— S°

factors through F can easily be seen to imply the following.

Proposition 5.4 The spectral sequence described above is the classical Adams
spectral sequence whenever n > m.

In view of this result, the case n > m is superfluous and we may as well
assume that m > n. Let ¢ denote the rational number n/m. Then we have
0 < e <1 and the extreme values of € give the Adams—Novikov spectral sequence
and the classical Adams spectral sequence respectively.

Definition 5.5 For a rational number e = n/m (with m and n relatively prime)
between 0 and 1, the Adams spectral sequence parametrized by e is the
homotopy spectral sequence based on the exact couple associated with the tower

X =Wy e— Wy Woyp -+
with 5 =)
We= |J XAEYAFY
i+e€j>s
where the union is over nonnegative integers i and j and it is understood that

E(o) = F(O) = SO, (This notation is not the same as in (5.3); Wy here is W,

there.)

14



Notice that there are inclusion maps
XAE —w, — x AT
(where [s] denotes the smallest integer > s) which induce maps

Adams—Novikov spectral sequence

!

parametrized Adams spectral sequence

!

classical Adams spectral sequence

once suitable indexing conventions have been adopted. The composite is the
usual reduction map. Thus the parametrized Adams spectral sequences inter-
polate between the Adams—Novikov spectral sequence and the classical Adams
spectral sequence.

We have adopted a convention that allows the filtration grading s to be any
nonnegative multiple of 1/m; the same will be true of the differential index r.
(The reader who is uncomfortable with these fractional indices is free to replace
the rational numbers r, s and ¢ with the integers mr, ms and ¢ + (m — 1)s
throughout the discussion.) With this understanding, we have the usual

Byt 2, prnitrl, (5.6)

The difference ¢ — s is still an integer, i.e., E$* vanishes when ¢ — s is not an
integer.

The usual Fr-term is replaced by the E;.—term, at least when € is a recip-
rocal integer. Recall (2.5) that in the classical (i.e., e = 1) case we have

Byt @) Exti 7 (2/(p). Extl (Z/(p), Hu(X))).
i+j=s

Theorem 5.7 In the parametrized Adams spectral sequence with e = 1/m (and
m > 1 if p=2), if X is such that Ey = E,, in the classical Adams spectral
sequence for X N BP,

Eyl.= @@ Extp (Z/(p),Exty (Z/(p), H.(X))).
i+je=s

In other words, the element v,,, which has filtration 0 in the Adams—Novikov
spectral sequence and filtration 1 in the classical Adams spectral sequence, has
filtration € in the parametrized Adams spectral sequence.

The hypothesis on X is satisfied when X is S°, V(0), V(1), or any spectrum
for which the Adams spectral sequence for X A BP collapses. In this case there
is an isomorphism

Ext}, (Z/(p), H.(X)) = I' BP.(X)/ P+ BP.(X)

of P,—comodules, where I is as in (2.7). It follows that the Ejy.~term of the
parametrized Adams spectral sequence is isomorphic (up to reindexing) to the
Ey—term of the algebraic Novikov spectral sequence. Then we have
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Theorem 5.8 Let € = 1/m and suppose X is such that the classical Adams
spectral sequence for BP N X collapses from Es. In the parametrized Adams
spectral sequence for X, let x € ES' be represented by an element T € Efje
which corresponds to an element T in the algebraic Novikov spectral sequence
which is not a permanent cycle. Then for m sufficiently large (depending on x),
d,-(z) in the parametrized Adams spectral sequence corresponds to O, (&) in the

algebraic Novikov spectral sequence.

In other words, in many cases the differential on x can be computed by
BP-theoretic methods when ¢ is sufficiently small.

A similar statement can be made about permanent cycles in the Adams—
Novikov spectral sequence.

Theorem 5.9 In the parametrized Adams spectral sequence, let € and X be as
in 5.8. Let x € ES' be represented by an element T € Efﬁe which correpsonds
to a permanent cycle in both the algebraic Novikov spectral sequence and the
Adams—Novikov spectral sequence. Then for m sufficiently large (depending on
the dimension t —s), x is a permanent cycle in the parametrized Adams spectral

Sequence.

6 Disproving the Telescope Conjecture

Now we can outline our disproof of the Telescope Conjecture. As noted above
(3.4), the predicted value of 7, (V (1)) is

K(2), ® E(han) ® {1, h1,0, k11, h1,0h2,0, h1,1h2.0, h1,0h1,102,0}-

This can be shown to imply that

—

W*(V(l) A T(2)) = K(Z)* (02 P(U3,U4) ® l?(h&o7 h371, h470, h471).

We will disprove the Telescope Conjecture by showing that h4 i is not in

—

7. (V(1) AT(2)). If it were, then for some N >> 0, v5’hy 1 would be a permanent
cycle in the Adams—Novikov spectral sequence for m,(V (1) AT(2)). Using 5.9,
this means that a similar element would be a permanent cycle in the paramet-
rized Adams spectral sequence for sufficiently large m. It follows that h4 1 would
be a permanent cycle in the localized parametrized Adams spectral sequence for
all sufficiently small € > 0.

Here is what we know about the localized parametrized Adams spectral
sequence for the spectrum V(1) A T(2) for e = 1/m. We have

Eiife = K(2).® P(v3,v1) ® E(hs,ha0, - 3h31,han, )
® P(b3,0,b4,0,-- 331,041, ).

and
dite(hita,0) = Tvab; 1 for 7 > 3,

which gives

Eiioe = K(2)« ® P(vs,va) @ E(h30,hao;hs1,ha1, ")
® P(b3,0,ba,0," ).
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Now we combine 3.5 and (3.3) to get the heuristic formula

i—1
d(h,i,l) = inbffl,O + ’Ug bi—2,07 (61)

where the second term is understood to be trivial for 7 = 4 and both terms are
trivial for 4 = 3. The second term has lower filtration when
2p — 2
pifl _ 1’
i.e., for small values of i, while the first term has lower filtration for 7 > 0.
Suppose for example that € = 1/p®. Then (6.1) gives

d(h4,1) = :i:vgbé"o
d(h5)1) = i’l}gbio + ’U12)4b3)0
Hence 4
diyp(hs,1) = %05 b3
and bg,o is dead in Esp,_1, so the expected differential on hy ; is trivial. However
(6.1) also gives
d(hs1(d(hs 1)P7Y) = (d(hs0))”

2 5
prp P
Fuhby o Fvh by,

from which we get
dlhan %05 hsa(dlhsn)" ™)) = 03P 0,
which gives the differential
.5 2
d2p2—1+(1+p—p5)6(h4,1) = iv;+p b bZ,O'
We need to be sure that this differential is nontrivial, i.e., that bfl”zo has not
been killed earlier by another differential. For this value of €, the first term of
(6.1) is the dominant one for all ¢ > 6. It follows that

Eop_142e = K(2), ® P(vs,vq) @ E(hs0,ha0,h31,ha1)
@ P(ba,0,05,0, )/ (b5 0,b6,05 )

The first three exterior generators can be shown to be permanent cycles by
studying the Adams—Novikov spectral sequence for V(1) A T(2) in low dimen-
sions. The elements b; ¢ for ¢ > 5 can be ignored here because they have (after
being multiplied by a suitable negative power of vy to get them in roughly the
same dimension as hy4 1) lower filtration than hy ;.

It follows that the indicated differential on h4; is nontrivial as claimed for
e=1/p

Similar computations can be made for smaller positive values of €. For
example when € = p~7 for j > 2, we get

j—1
dy(hay) = £V507 1 o

for suitable values of r and e. It follows that h4; is not a permanent cycle in
the localized parametrized Adams spectral sequence for any positive value of e,
and the Telescope Conjecture for n = 2 and p > 5 is false.
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