Theorem 1. Let C(p, f) be the Artin-Schreier curve over \mathbf{F}_p defined by the affine equation

$$y^d = x^p - x$$
 where $d = p^f - 1$.

(Assume that f > 1 when p = 2.) Then its Jacobian has a 1-dimensional formal summand of height (p-1)f.

Properties of C(p, f):

- Its genus is (p-1)(d-1)/2.
- It has an action by the group

$$\tilde{G} = \mathbf{F}_p \rtimes \mu_{(p-1)d}$$

given by

$$(x,y) \mapsto (\zeta^d x + a, \zeta y)$$

for $a \in \mathbf{F}_p$ and $\zeta \in \mu_{(p-1)d}$.

 \bullet Its de Rham H^1 has basis

$$\left\{ \omega_{i,j} = \frac{x^i y^j dx}{y^{d-1}} : 0 \le i \le p-2, \ 0 \le j \le d-2 \right\}.$$

• If we restrict the action to the abelian subgroup $G = \mathbf{F}_p \times \mu_d$, H^1 decomposes into 1-dimensional eigenspaces for each character that is nontrivial on both \mathbf{F}_p and μ_d .

1

The Hopkins-Mahowald affine group action. The Weierstrass equation for a general elliptic curve is

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

Under the affine coordinate change

$$x \mapsto x + r$$
 and $y \mapsto y + sx + t$
we get

$$a_{6} \mapsto a_{6} + a_{4}r + a_{3}t + a_{2}r^{2}$$
 $+a_{1}rt + t^{2} - r^{3}$
 $a_{4} \mapsto a_{4} + a_{3}s + 2a_{2}r$
 $+a_{1}(rs + t) + 2st - 3r^{2}$
 $a_{3} \mapsto a_{3} + a_{1}r + 2t$
 $a_{2} \mapsto a_{2} + a_{1}s - 3r + s^{2}$
 $a_{1} \mapsto a_{1} + 2s$.

This can be used to define an action of the affine group on the ring

$$A = \mathbf{Z}[a_1, a_2, a_3, a_4, a_6].$$

Its cohomology is the E_2 -term of a spectral sequence converging to $\pi_*(\text{tmf})$.

Theorem 2. [Dieudonné] The category of formal groups over a finite field k is equivalent to the category of modules over the ring

 $\mathbf{D}(k) = \mathbf{W}(k)\langle F, V \rangle / (FV = VF = p)$ where $Fw = w^{\sigma}F$ and $Vw^{\sigma} = wV$ for $w \in \mathbf{W}(k)$. F is the Frobenius or pth power map, and V is the Verschiebung, the dual of F.

Examples:

• The Dieudonné module for the formal group law associated with the *n*th Morava K-theory is

$$\mathbf{D}(\mathbf{F}_p)/(V-F^{n-1}),$$

so in it we have $F^n = p$.

• More generally, for m and n relatively prime, let

$$G_{m,n} = \mathbf{D}(k)/(V^m - F^n).$$

It corresponds to an m-dimensional formal group of height m + n.

4

Theorem 3. [Manin]

- (i) STRUCTURE THEOREM. Any simple Dieudonné module M is isogenous over $\mathbf{W}(\overline{\mathbf{F}}_p)$ to some $G_{m,n}$.
- (ii) Let the characteristic polynomial for F in M be

$$Q(T) = T^m + \sum_{i>0} c_i T^{m-i}$$

for $c_i \in \mathbf{W}(k)$. If its Newton polygon has a line segment of horizontal length n and slope j/n, then up to isogeny over $\mathbf{W}(\overline{k})$, M has a summand of the form $G_{j,n-j}$.

The Newton polygon is the convex hull of the set of points

$$\{(i, \operatorname{ord}_p(c_i)) : 0 \le i \le m\},$$

where $c_0 = 1$. The condition on Q(T) above is equivalent to the existence of n roots having p-adic valuation j/n.

Theorem 4. [Manin, Tate, Honda]

- (i) RIEMANN SYMMETRY CONDITION. If A is an abelian variety with formal completion \widehat{A} , and its Dieudonné module $D(\widehat{A})$ has a summand $G_{m,n}$ up to isogeny over $\mathbf{W}(\overline{\mathbf{F}}_p)$, then it also has a summand $G_{n,m}$.
- (ii) More precisely, if A has dimension g and is defined over \mathbf{F}_q with $q=p^a$, then the characteristic polynomial for F^a has the form

$$Q_a(T) = T^{2g} + \sum_{0 < i < 2g} c_i T^{2g-i} + q^g$$

with $c_i \in \mathbf{Z}$, and

$$Q_a\left(\frac{q}{T}\right) = \frac{q^g Q_a(T)}{T^{2g}},$$

so $c_{g+i} = q^i c_{g-i}$ for 0 < i < g. (The Newton polygon for Q(T) is determined by that of $Q_a(T)$.)

(iii) Classification of abelian variations and one-to-one correspondence between isogeny classes of abelian varieties over \mathbf{F}_q and polynomials of the above form, all of whose roots have absolute value \sqrt{q} .

Corollary 5.

(i) For an elliptic curve C, either

$$D(\widehat{C}) \cong G_{0,1} \oplus G_{1,0},$$

(the ordinary height 1 case) or

$$D(\widehat{C}) \cong G_{1,1},$$

(the supersingular height 2 case), up to isogeny over $\mathbf{W}(\overline{\mathbf{F}}_p)$.

(ii) If an abelian variety A has a 1-dimensional formal summand of height n for n > 2, then the dimension of A is at least n.

Theorem 6. [Grothendieck, Berthelot] Let C be a smooth curve of genus g over \mathbf{F}_q . Then its crystalline (or de Rham) H^1 is a free $\mathbf{W}(\mathbf{F}_q)$ -module of rank 2gisomorphic to the Dieudonné module of its Jacobian $D(\widehat{J}(C))$, with the induced action of the Frobenius \widetilde{F} relative to \mathbf{F}_q coinciding with the action of F^a . THE WEIL CONJECTURES of 1949, proved by Deligne in 1974.

Given a smooth d-dimensional variety X over \mathbf{F}_q , its ZETA FUNCTION is defined by

$$Z(X,T) = \exp\left(\sum_{n>0} |X(\mathbf{F}_{q^n})| \frac{T^n}{n}\right).$$

Then

- (i) Z(X,T) is a rational function of T. (Proved by Dwork in 1960.)
- (ii) More precisely,

$$Z(X,T) = \frac{P_1(T)P_3(T)\cdots P_{2d-1}(T)}{P_0(T)P_2(T)\cdots P_{2d}(T)}$$

where $P_i(T)$ is a polynomial whose degree is the rank of $H^i(X)$ suitably defined.

(iii) RIEMANN HYPOTHESIS IN CHARAC-TERISTIC p. Each reciprocal root of $P_i(T)$ has absolute value $q^{i/2}$.

(iv)

$$P_i(T) = \det(1 - T\tilde{F}|H^i(X))$$

where \tilde{F} is the Frobenius relative to \mathbf{F}_q . Hence (ii) follows from an analog of the Lefschetz fixed point formula. Weil proved these statements for curves. If X is a smooth curve of genus g, then

$$Z(X,T) = \frac{P_1(T)}{(1-T)(1-qT)},$$

where the factors $(1-T)^{-1}$ and $(1-qT)^{-1}$ correspond to H^0 and H^2 . $P_1(T)$, which corrspsonds to H^1 , has degree 2g with

$$P_1(T) = 1 + \sum_{0 < i < 2g} c_i T^i + q^g T^{2g},$$

and $Q_a(T) = T^{2g}P_1(1/T)$ is the characteristic polynomial of $\tilde{F} = F^a$ in $D(\widehat{J}(X))$. The coefficients c_i are the same as those in Theorem 4.

In other words, the zeta function of a curve determines the formal structure of its Jacobian in an explicit way. Suppose X is acted on by a finite group G and let ρ be a representation of G over a suitable number field K. Define

$$L(X, \rho, T)$$

$$= \exp\left(\frac{1}{|G|} \sum_{g \in G} \operatorname{Trace}(\rho(g)) \sum_{n>0} C_n^g \frac{T^n}{n}\right),\,$$

where C_n^g is the number of points in x in $X(\overline{\mathbf{F}}_p)$ satisfying $g(x) = \tilde{F}^n(x)$.

When ρ is the regular representation, $L(X, \rho, T)$ is the zeta function. If the action of G is trivial and ρ is irreducible and nontrivial, then $L(X, \rho, T) = 1$.

We have

$$L(X, \rho_1 \oplus \rho_2, T) = L(X, \rho_1, T)L(X, \rho_2, T)$$

SO

$$Z(X,T) = \prod_{\rho \text{ irreducible}} L(X,\rho,T)^{\text{degree}(\rho)}.$$

Deligne proved an alternating product formula for $L(X, \rho, T)$ similar to Weil's for Z(X, T), in which $P_i^{\rho}(T)$ is the characteristic polynomial of \tilde{F} restricted to

$$\operatorname{Hom}_G(\rho, H^i(X) \otimes_{\mathbf{W}(\mathbf{F}_q)} K).$$

Recall that our curve C(p, f) admits an action of the abelian group

 $G = \mathbf{F}_p \times \mu_d$ where $d = p^f - 1$ that decomposes H^1 into 1-dimensional eigenspaces. It follows that

$$P_1(T) = \prod_{\chi} P_1^{\chi}(T),$$

where the product is over all characters χ that are nontrivial on both factors of G. Each of these factors of $P_1(T)$ is linear. They were computed in 1935 by Davenport and Hasse, who showed that the reciprocial roots of $P_1(T)$ (which are the roots of $Q_f(T)$) are certain Gauss sums, i.e., sums of pdth roots of unity. They can be computed explicitly for small values of p and f. The ideals that they generate, and hence their valuations with respect to a p-adic place in K, were determined by Stickelberger in 1890.

Theorem 7. The characteristic polynomial Q(T) for the Frobenius in the Dieudonné module $D(\widehat{J}(C(p, f)))$ has $(p - 1)b_i$ roots with p-ordinal i/(p - 1), where

$$\sum_{i} b_{i} t^{i} = \left(\frac{1 - t^{p}}{1 - t}\right)^{f} - 1 - t^{(p-1)f}$$
so for $0 < i < (p - 1)f$,
$$b_{i} = \sum_{0 \le j \le i/p} (-1)^{j} \binom{f}{j} \binom{f + i - pj - 1}{f - 1},$$
e.g., $b_{1} = f$.

Theorem 1 and more is a corollary of this.

Corollary 8. In terms of Manin's structure theorem,

$$D(\widehat{J}(C(p,1))) \cong \bigoplus_{0 < i < p-1}^{} G_{i,p-1-i}$$

$$D(\widehat{J}(C(p,2))) \cong \binom{p}{2} G_{1,1} \oplus \bigoplus_{0 < i < p-1}^{} \frac{i+1}{2} (G_{i,2p-2-i} \oplus G_{2p-2-i,i})$$

$$D(\widehat{J}(C(2,f))) \cong \bigoplus_{0 < i < f}^{} \binom{f}{i} \frac{1}{f} G_{i,f-i}$$

up to isogeny, where it is understood that $G_{km,kn} = kG_{m,n}$.

Here are some explicit values of the characteristic polynomial Q(T) of the Frobenius (relative to \mathbf{F}_p) for the curve C(p,f).

p	f	Q(T)
2	2	$\frac{Q(T)}{T^2 + 2}$
2	3	$T^6 - 2T^3 + 2^3$
2	4	$(T^8 + 2T^4 + 2^4)(T^2 + 2T + 2)(T^2 - 2T + 2)(T^2 \pm 2)$
2	5	$T^{30} - 6T^{25} - 16T^{20} + 352T^{15} - 512T^{10} - 6144T^5 + 32768$
2	6	$\left[\left(T^{36} + 6T^{30} + 120T^{24} + 384T^{18} + 7680T^{12} + 24576T^6 + 262144 \right) \right]$
		$(T^{12} - 12T^6 + 64)(T^{12} + 12T^6 + 64)(T^2 + 2)^2$
		$(T^2+2) (T^4-2T^2+4) (T^2+8)$ T^2+3
3	1	$T^2 + 3$
3	2	$(T^8 - 6T^4 + 81)(T^2 - 3)^2(T^2 + 3)$
3	3	$(T^{24} - 87T^{18} + 3321T^{12} - 63423T^6 + 531441)$
		$(T^{12} + 9T^9 + 45T^6 + 243T^3 + 729)^2(T^2 + 3)$
5	1	$(T^8 + 30T^4 + 625)(T^2 - 5)^2$
5	2	$(T^2 - 5)^8 (T^2 + 5)^4 (T^8 - 30T^4 + 625)^2$
		$(T^8 + 30T^4 + 625) (T^{16} + 750T^4 + 390625)$
		$\left[(T^{32} + 1380 T^{24} + 1103750 T^{16} + 539062500 T^8 + 152587890625) \right]$
7	1	$(T^{12} + 4977T^6 + 117649)(T^6 + 7T^3 + 343)^2(T^2 + 7)^3$
11	1	$(672749994932560009201 - 14568299213068271 T^{10}$
		$+129620301481T^{20} - 561671T^{30} + T^{40}$
		$(25937424601 - 157668929 T^5 + 467181 T^{10} - 979 T^{15} + T^{20})^2$
		$(T^2+11)^5$
13	1	$(542800770374370512771595361 - 415420467450868292270 T^{12})$
		$+126001160412387T^{24} - 17830670T^{36} + T^{48}$
		$(4826809 + 4381 T^6 + T^{12})^2 (28561 - 130 T^4 + T^8)^3$
		$(2197 - 65 T^3 + T^6)^4 (-13 + T^2)^6$

ISAAC NEWTON INSTITUTE, CAMBRIDGE, UK