THE METHOD OF INFINITE DESCENT IN STABLE
HOMOTOPY THEORY II

HIROFUMI NAKAI AND DOUGLAS C. RAVENEL

ABSTRACT. This paper is a continuation of [ | and the second in a series
of papers intended to clarify and expand results of | , Chapter 7], and it
will give the foundation for a program to compute the p-components of 7. (S)
for a prime greater than 2 through roughly dimension p3|va|. We will refer
to results from | | freely as if they were in the first four sections of this
paper, which begins with section 5.

5. INTRODUCTION

In [ | the second author described a method for computing the Adams-
Novikov Es-term for spheres and used it to determine the stable homotopy groups
through dimension 108 for p = 3 and 999 for p = 5. The latter computation was a
substantial improvement over prior knowledge, and neither has been improved upon
since. It is generally agreed among homotopy theorists that it is not worthwhile to
try to improve our knowledge of stable homotopy groups by a few stems, but that
the prospect of increasing the known range by a factor of p would be worth pursuing.
This possibility may be within reach now, due to a better understanding of the
methods of | , Chapter 7] and improved computer technology. This paper
should be regarded as laying the foundation for a program to compute . (S?) )
through roughly dimension p*|vs|, i.e., 432 for p = 3 and 6,000 for p = 5.

5.1. Summary of I. First we review | ] briefly. The method referred to in the
title involves the connective p-local ring spectra T'(m) (cf. | , §6.5]) satisfying

BP,(T(m)) = BP,[t1,...,tm] C BP,(BP)

and the natural map T'(m) — BP which is an equivalence below dimension [¢,,1].
In particular, we have T(0) = S?p) and T'(c0) = BP.

We also defined the quotient module
I'(k) = BP.(BP)/(t1,...,tk—1) = BPy[tg, tet1,- - )

In particular, I'(1) = BP,(BP). Then the pair (BP,,I'(k)) forms a Hopf algebroid,
whose structure maps are inherited from (BP., BP.(BP)).

For a Hopf algebroid (A,T") and I'-comodule M, we will often drop the first vari-
able of Ext for short, i.e., Extr(A, M) will be denoted by Extr(M). By the change-
of-rings isomorphism [ , A1.3.12], the Adams-Novikov Es-term for T'(m) is
reduced to EXtr(,,41)(BPx).

It is not difficult to find the structure of Ext,, 1)(BPs) in low dimensions.
For example, it is known below dimension |vE,]| | , 7.1.9] and below dimension
v ] | , 7.1.13].
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2
Moreover, the structure of Extf,,1)(BPx) below dimension |vy, | was alge-
braically determined in Theorem 4.5. To explain it, recall some machinery de-

veloped in | ]. We have constructed the short exact sequence of I'(m + 1)-
comodules
(5.1) 0— BP, "5 D%, S EL,, —0 form>0

where the map 4; induces an isomorphism of Ext® (Theorem 3.7), and D,, 1 is a
weak injective I'(m + 1)-comodule. So, we have isomorphisms

EXtp 1) (Bpg1) = Extr(,, ) (BP.)  for ¢ > 0.

We may also assume the existence of the short exact sequence

(5.2) 0— ELy % DL 25 E2 . 0.

m

where D#H is weak injective. In fact, for m = 0 and odd p, an inclusion E{ — Dj
to a weak injective inducing an isomorphism in Ext® are constructed in Lemma 4.1.
For m > 0, it was shown in Lemma 3.18 that 1;1_1ﬁ7;1_~_1 is weak injective with

Ethq(m+1)(U1_1Evlrz+1) = Ul_lEthl“(m+1)(BP*)-

Thus, we may regard D},H_l as vl_lEl

ma1 at worst. Of course, it is desirable to

define D}, ., to make its Ext" as small as possible. If we assume that the map io
induces an isomorphism of Ext’, then we have isomorphisms

EXtT (1) (Bimg1) = Extil? ) (BP.)  for t > 0.

In | ] the second author shows that we have such isomorphisms' below dimen-
sion p?|vp,41| by producing the subcomodule E2, | of E} | /(v3°) satisfying some
desirable conditions and the comodule D}, ., as the induced extension:

1 12 1 j2 2
0 4>Em+1 Derl Eerl 0

L

0—— By —— v Bl —— B/ (05°) —— 0.

Then, Extf,,41)(Ez1) is computed in Theorem 4.5. Since there is no Adams-
Novikov differential and no nontrivial group extension in this range (except in the
case m = 0 and p = 2), Extp(,,41)(BP;) determines 7, (T (m)) below dimension
P?|vma1| — 2. This was the goal of [ ]

5.2. Introduction to II. To descend from T'(m + 1) to T'(m), we can consider
some interpolating spectra 7'(m) ;) introduced in Lemma 1.15. Each T'(m); is the
T'(m)-module spectrum satisfying

BP.(T(m) ;) = BP(T(m)){t5,41 |0 < £ < p'}
and the natural equivalence T'(m);y — T(m + 1) below dimension p'|tp,+1]. In

particular, we have T'(m)y = T7'(m) and T'(m)) = T(m + 1). Then, we can

1 Unfortunately, 2 induces an isomorphism of Ext® only below dimension plvm+2| for m > 0.
See Remark 7.4.
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descend from T'(m)(;4+1) to T'(m)(;) by making use of a topological small descent
spectral sequence (Theorem 1.21), whose Ej-term is
E(hmt1,i) ® P(bytr,i) @ m(T(m) 1))

1,2p (pm+1_1 2,2pi 1 (pmHtl_q
where A1 € B (® ) and bnt1: € BT (p ) are permanent cy-

cyles.
We also have another way for descending from T'(m) ;1) to T'(m) ;) algebraically.
Denoting the BP,-module generated by

{tr1 [0 <L <p'}

by T\, the Adams-Novikov Es-term for T(m) ;) is reduced to Ext;’(tn 1) (BPs, )

by Lemma 1.15. To compute this, we have the 3-term resolution of Tﬁf) by tensor-
ing the short exact sequence (5.1) with T,si), and the associated spectral sequence
{E™ d,},>1 converging to Extl’i(mﬂ)(ﬂ%)) with

ExtP i1y (T’ @pp, Dyy1)  for (n,t) = (0,0),
E?’t = EXttF(mH)(T?S%Z) ®BP. E¢1n+1) forn =1,
0 otherwise.

Then, we have only one nontrivial differential d; : By — E}*° induced by j; (5.1),
and the spectral sequence collapses from Fs-term. Thus we have

Proposition 5.3. The Adams-Novikov Ez-term for T'(m) ;) is

ker dy forn =0,
EXt?(erl)(TTrf)) & 4 coker d; forn =1,
EXt?(771;+1)(T7(75) ®@pp, Ejq) forn>2.

O

Note that the 0-line and the 1-line were determined in | , 2.5, 4.1 and §5];

see also Proposition 6.8. The purpose of this paper is to determine the second and
higher lines of the Adams-Novikov Es-term, and the stable homotopy groups of
T'(m)(2y (Corollary 9.8) and T'(m) ;) (Theorem 10.13) for m > 0 below dimension
P|Vm+3]. In this range there is still no room for Adams-Novikov differentials, so the
homotopy and Ext calculations coincide 2. It is only when we pass from T(m)() to
T(m)y = T(m) that we encounter Adams-Novikov differentials below dimension
P?|Uma2|. For m = 0, the first of these is the Toda differential dop—1(Bp/p) = 187
of [ ] and | ], and the relevant calculations were the subject of [ )
Chapter 7]. An analogous differential for m > 0 was also established in [Rav], and
we will discuss it somewhere else in the future.

6. A VARIANT OF CARTAN-EILENBERG SPECTRAL SEQUENCE

Assume that M is a I'(k)-comodule for some k. Once we know the structure of
Extr ) (M), then there is an inductive step reducing the value of k. Set

A(m) = Zgy v, ..., vm] and  G(m) = A(m)[tm]

2For m = 0, the second author determined the structure of Ext;'("f) (Tél)) in [ , 7.5.1] for

p > 2 below dimension (p3 + p)|v1].
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(Definition 1.1). The pair (A(m),G(m)) is a Hopf algebroid. Then we have an
extension of Hopf algebroids (cf. Proposition 1.2)

(A(m),G(m)) — (BP,,I'(m)) — (BP,,I'(m +1))
and the associated Cartan-Eilenberg spectral sequence

m)

We will approach Extf,, _H)(T,(,f) ®@pp, B}, 1) using a Cartan-Eilenberg spectral
sequence associated with the above Hopf algebroid extension. For a given I'(m+ 2)-
comodule M, we will denote Ext%(m 42y by M for short. In particular, we have

Ty = A(m+1){th4y |0 <0< p'}
The Cartan-Eilenberg spectral sequence converging to Extl"i( m +1)(T£ﬁf) @pp, By 1)
has Fs-term

E5" = Extg(m41) (EXt (o) (TN @pp. Ely1))

~ s (1)
(6.1) = Extgmt1) (T ®@A(mt1) EXttr(erz) (Epi1))

and differentials d, : E5* — ESt7t="+1 Since the case of s = ¢ = 0 is not
interesting, we may consider only for s +¢ > 1.

For simplicity, we will hereafter omit the subscript in TE,?@ A(m+1), and we will
also denote Ext’li(erQ)(BP*) by Ul 1. As we will see in Corollary 8.1, Ut for
t > 3 is a certain suspension of U2, ; below dimension p|7s].

Since DY), is weak injective, we have isomorphisms Exty,, ) (E}, 1) = Utth
and
(6.2) B3 = Extinn)(To @ ULHL)  fort > 1.

The structure of U, ,; has been given in Theorem 4.5 below dimension p?|vy, 1.
This will be discussed again in Corollary 8.1.

To describe E5°, we need a resolution of E,I,LH = Extl(l(erQ)(E}nH). The ob-
vious one is obtained by applying Extlg(mw)(—) to (5.2). In practice, there is a
“smaller resolution.” Recall some notations used in | ].

For a fixed positive integer m, we will set v; = vy, 1; and 1 = tmti (3.3), and
define

~ yA’é ~ ~ ~ ~
ﬂi/el,eo = Wa 6i/61 = ﬂi/el,lv Bi = ﬂi/lv
1
. 1~ o vl
! ! ! = 3
ﬁi/el = gﬁi/ela B = Bi/p and 7; = PULvs

Then we have

~

Theorem 6.3. Let B,,11 be the A(m+1)-module generated by ﬂz’./i fori> 0. Then
Biny1 is a sub G(m+1)-comodule of E}, 1 /(v§°) and it is invariant over T'(m+2).

Its Poincaré series is

k1 k
P (1—yP)

9(Bmt1) = gmt1(t) E i

iso (L—a?"™)(1 —ab)
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where y =t @ =t 2y = 1%l and

m—+1 1

Im+1(t) = H 1y where y; = tIvil,
i=1 v

Proof. This is | , 2.4]. To clarify that B;/Z are in E} _;/(v3°), note that an ele-
ment in N2 lies in B}, /(v$°) if and only if it has trivial image in (M°/D9, 1) /(v°).
This can be shown by the following commutative diagram.

04>E},L+14>vl_1E}n+14>E}n+l/(vf°)—>0

I I I

0 Nt M? N? 0

| l |

0——M°/D}, 1y —— oy (M°/D}, 1) —— (M°/D), 1)/ (1) —— 0

where M* and N* are usual chromatic comodules. If we define w € DY, ,; by

(6.4) w=(1—pr N -y

then we have Uy = p(Xg + A\w) and

B/ . pi(xz + Aw)’ . Piil(xz + A\w)?
ifi — — =

7 70yl
1puy ]

which is in (MY/DY, )/ (v$°) as desired. O

Remark 6.5. For m =0 and p > 2, E1/(v$°) is isomorphic to N2.

Let Wy,41 be the G(m + 1)-comodule defined by the induced extension in the
following commutative diagram (| , (1.4)]):

0 4)@3,14_1 L Wm+1 L Bm+1 —0
0 *)E,ln_,_l —wflfinﬂ —>E,1n+1/(v§°) — 0

Remark 6.6. For m = 0 and p > 2, we have a weak injective comodule D} and
an inclusion E{ — D} (| , 7.2.1]) which induces an isomorphism in Extp. .

So, we could simply set Wy = Ext%(Q)(D%) (cf. [ , (7.2.17)]).
We can describe W, 11 explcitly. Recall that
v
EXtr (1 9)(BP.) & A(m + 1) {? |i> 0} .
wp
Applying Extp(,,42) to (5.1) we have the short exact sequence

0 — Am)M)/A(m +1) — By oy =5 UL, — 0.
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Then, a lift of the element v /ip € U}, | to E,lnﬂ is given by

_ % — (nw)’

b; where w is as in (6.4).

p
and a lifting of the generator B;/l € B4 i
. i — 1\ (po; Na)
wh= 3 (30)) B
o<j<i M T pJ
Wit is the subcomodule of M obtained by adjoining vy ‘b; (i > 0) to E,lnﬂ.
The following properties of W,,, ;1 can be read off in | , 2.4].

Proposition 6.7. W,,11 is weak injective with EXtOG(m+1)(Wm+1) > UL, e,

1 . . . .
the map v : B,y — W41 induces an isomorphism in Ext’. (]
. —1
Now we have a 3-term resolution of E,,
=1
0—E,q — Wing1 2 By — 0.

Let C** denote the cochain complex obtained by applying Ext¢,, _H)(Tr(nj )@ —) to
the sequence

-0 101 P

Dm+1 ’ Wm+1 ” B77L+1
and let H**(C) be the associated cohomology group. Then we have

Proposition 6.8. For n =0 and 1, H™%(C) is isomorphic to the Adams-Novikov
Es-term Ext}l(mﬂ)(T,s@])).

Proof. Since W11 is weak injective over G(m—+1), TE,? ® W41 is also weak injec-

tive by Lemma 1.14 and we have C1:* = 0 for s > 1. So, we have the commutative
diagram

00 10 20
J{(jl)*
0 700 b o0 P 02,0 E}° 0 (exact)

and isomorphisms C%5~! = E5° for s > 2. The map (j1). coincides with the
differential dy : E?’O — Ell"0 of the resolution spectral sequence of §5.2, so we have

H(C) = ker (j1)« = ker d,
HYO(C) = ker p, /im (j1). = ESY/im (j1). = coker d. O
The structure of H™%(C) for n = 0,1 was determined in [ , 2.5, 4.1 and §5]
. We can also read the following result from the above proof.
Proposition 6.9. For the Cartan-Eilenberg spectral sequence of (6.1) we have

kerp, for s =0,
B30 = { coker p. (= H>°(C)) fors=1,

Eth_(vln—i-l)(Tf’i) ® Bm+1) for s > 2.
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d

Combining this with (6.2), we have the following chart of Fs-term, in which all
Ext groups are over G(m + 1).

TABLE 1. The Cartan-Eilenberg Fs-term of (6.1).

t=2|Bxt*(TY o U3,,) Ext'(TY @US3,,) Bxt*(T"

m

)
® U737L+1 )

t=1 Ext"(Tf,{) ®@UZ ) Extl(Tfi) ®@UZ ) ExtQ(Tf,{) ®UZ 1)

t=0 ker p, coker p, Extl(Tsi) ® Bint1)

s=0 s=1 s=2

Note that the case of s = ¢ = 0 is not interesting here, as we stated before. For
coker p,, we need to recall some results from the other papers. For a G(m + 1)-
comodule M, denote the subgroup () ker7, of M by L;(M). Then, it was
proved in | , 1.12] that the map

n>pJ

)

(c® 1Y : Li(M) — ExtEyya) Ty © M)

is an isomorphism between A(m + 1)-modules. Thus, to obtain the structure of
E21 ’0, we may alternatively examine the map

px + Li(Wimni1) — Lj(Bma).
The following can be read from | , 4.3].

Lemma 6.10. The coker p, is isomorphic to the quotient
Li(Bpa)/A(m+ 1) {B), [0 <i<p/ 7'}

The structure of L;j(By,41) is defermined in | ] for all m and j. In particular,
the following is the results for j = 2.

Lemma 6.11 (| , Theorem 6.1]). Assume that m > 0. Below dimension
302, La(Bpmyi1) is the A(m + 1)-module generated by

{B;/t li> 1, 0<t§min(i7p)}u{gapz+b/t Ip<t<p®a>0 and0§b<p}.

In particular, below dimension |5§2+1/vf2 |, the comodule By, 11 is 2-free and La(By,41)
is the A(m + 1)-module generated by

(6.12) {B;/min(i’p) i > 0} u {Bi/t Ip<t<p®<i<p? +p}.
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24

7. EXTENDING THE RANGE OF EXtF(m+1)

In Theorem 4.5 the structure of Extfi(m +1)(BPy) was determined below dimen-
sion p2[v1]. Here we extend this range to p|vz|. This is the dimension where the
subcomodule E2, | of E}, ,/(v°) starts to behave badly for m > 0.

By Lemma 4.2 the Poincaré series of EZ | below dimension p[0s| is

#(1—y) 2 (1 =yt
gm-+2(1) <(1 —)(i—w2) | (I—a7)(1 - I3)>

2P 2P’ (1 — P )
—_ BP,/I))————=
Q=i —my) BB/

The first term corresponds to the module described in Theorem 4.5, and the second
term presumably corresponds to

BP./(p,v1) {B\p/j’p+2fj |0<j< p} :

(7.1) = g(BP./I>)

We see that
~p -2k
2 _ Uy _ p\p Sp—k, k 1
Bolipre—5 = PR E , (k> N wt € By /()
p V1 o<k<j v

(where w is as in (6.4)) for j > 2, but Ep/l,pﬂ ¢ E} . 1/(v7®). We get around this
problem by replacing 3,1 ,+1 with

= o 5y wil Wl .
a9 _ [e's)
Bp/lm-&-l - pp+1v1 pv% + pvf” p%% € Em+1/(“1 )
Then, our extension of Theorem 4.5 ([ , 7.2.6]) is the following.

Theorem 7.2. For m >0, let E% | be the A(m + 2)-module generated by the set

{Bissi Vings ki +1 2 5+ 8} U{Bpsiprai 125 <0} U{Bynpn }-
Below dimension p|vs|, it has the Poincaré series specified in (7.1), it is a sub
L'(m + 1)-comodule of E}, 1 /(v{°), and its Ext group is isomorphic to

E(hl,o) ® P(blyo) ® EXt%(m+1)(Egl+1)

where
ExtP () (Forgr) = Alm+1)/B @ {8, Bye | > 0,2 <k <p}.
In particular Ext® maps monomorphically to Ext%(mﬂ)(BP*) in that range.

Proof. Define a decreasing filtration on BP,/(p>,v$°) by 094 /p®v§ € F™ if and only
if a—b— ¢ > n. Then it was shown in Theorem 4.5 that the submodule generated
by the first set (i.e., the elements of F'~!) is a subcomodule. We also see that the

reduced expansion of 8,/; ,42—; is in F~1 (though Bp/jm_;'_g_j itself is belonging to
F~2) and the reduced expansion of Bp/l,pﬂ is in F~2. Thus the module generated

by the assigned set is a comodule as desired.
The Ext group can be shown similarly to the proof of Theorem 4.5. (]
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Remark 7.3. When m = 0, we have

< vh > vh vhty
R = -
P21 p2uy PU%

which means that the element 51/7 does not exist and that hy 083,/2 = 0.

Remark 7.4. Applying Ext to the short exact sequence (5.2), we have an associ-
ated long exact sequence

(i2)« (J2)«
) ——

—— Ext®(D} 41
81

(o mith — e

0 — Bxt®(EL ) —2s

— Ext"(Ep, ;1) >

(12)*

where we have omitted the subscript I'(m + 1) in Ext to save space. We have seen
that (i2). is an isomorphism in Ext® for m = 0 (Lemma 4.1), however, it doesn’t for

m > 0 since we have an element pvlgp/l’pﬂ(: —vgm“@l/pvl), which is actually
the first nontrivial element in ker 6. Below this dimension (i.e., p|02|), the map (i2).
is still isomorphic and Ext%(m+1)(E,271+1) is isomorphic to Ext%(m+1)(BP ) and it
is justified that we use D}, and EZ | instead of v; 1Eerl and E}, 1 /(v5°).

8. SOME ELEMENTS IN E} ,/(v§°)

To determine the Cartan-Eilenberg Fs-term we need to know the structure of
a1 (6.2). A translation of Theorem 7.2 to the present context is the following.

Corollary 8.1. Below dimension p|vs|, we have an isomorphism
U:‘n"_f1 o E(h2 0) ® P(Zz 0)@UZ, form >0
where U2, |, is isomorphic to the A(m + 1)/Iz-module generated by

~J=i ~
(8.2) {6051<_1"2”3>,5051<v’3k>|0<z‘§p,jzo,2§k§p}.
il puy pUt

where 69 and §' are the connecting homomorphisms for the short exact sequences
0— BP, > M° s N' >0 and 0N 5> M 5 N2
respectively. The bidegrees of elements are |ﬁ270| = (1, [t2]) and |32,0| = (2,[8h)]).
In particular, we have
Ugfj'fﬁbao ®th®Un21+l fora>1and e =0,1,

and hereafter we denote UY ., by $#72U2 ., when we restrict ourselves below
dimension p|vs|. We also denote the elements listed in Corollary 8.1 by @; ; and
t,,, respectively. If we replace 6°6' of Corollary 8.1 with the composition

5t 5°
(8:3)  Ext (o) (B 1 /(v5%)) == Extr(y,yo0)(Ehy1) —=— ExtP(,, 40, (BP.)

then we need to pull back elements u; ; and ,;, to Extr(m+2)( E} . 1/(v$°)). The

corresponding elements will be denoted by 91 ; and 01, /k» and the rest of this section
is devoted to determine these elements explicitly.
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Remark 8.4. The composition (8.3) is an epimorphism and the choise of 5” is

not unique, i.e., the definition of 5” has ambiguity up to elements of kerd!. In
particular, the comodule By, is involved in kerd I and we may tack any element
of By,11 to U504 /puy.

Recall the recursive formula for 7; (3.10), which are independent on m.
21 = /):1, 22 = /):2 + fl//\\f, Z?, = /):3 + fl//\\g + fg;\\fz
On the other hand, the expression of 7; in terms of Xl depends on m. For small
values of i, we have

Lemma 8.5. In DY, ., we have

i)\l - p/)zla
By =pro+ (1—pP Dol — "X (m>1),
0 (m=1),

P

- > ~ 2 ~2
U3 =phs — pP 1A + ¢ mod (v where =\ —
3=pA3 —p’ T vaA] +( (v1) ¢ = v} {v2 S (m>2).

In particular the subtraction U5 — pAs modulo (v1) is T'(m + 2)-invariant.
Proof. By (3.9) we have
pzl = 617

~ N N ~ _m+1
péz = vy + 511}{} + gl’Uf (m 2 1),

m—42 -~
~ . p? v 12 (m=1),
pls = v3 + Elvp + Ezvp + 1m ~ M~
2 ! vy +2€2 + v +€1 (m >2).
Then the result follows from (3.10). O

For m = 1, we have v, = pA; and 93 mod (v1DY, ) is in pDY, ;. On the other
hand, U3 — ¢ mod (v DY, ) is in pDY, | for m > 2.

Define the element ¢ in DY, ,; by
0 (m=1)

5 = UQ%\g - m1 o~
oiob N (m > 2)
Then we have

Lemma 8.6. For m > 1, the congruences v7¢ = & mod (p2,vfm+l) hold in E} ;.

o~ m—+1
Proof. Notice that vy = v1 A} mod (p,v} ), and for m > 2

o~ m—+1-~ m+41~
D P P, D — 5P DD _
V¢ = va(n A))P —ofvl Ay =0t —ofud A =¢
m—+41 . . .
mod (p?,v} ). The case for m = 1 is similarly proved. O

Proposition 8.7. Define é\p)j (j >0) by

N . o 1%
(8.8) 0. :@;( 3 - .
, I 1+
popur plopu;TP

Then it is in Ext%(m+2)(E1 4+1/(v9°)) and satisfies 5051(12);,7]-) =Up,.

m
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Proof. By Lemma 8.6 we see that

B _ B —p” el 4P BhOP _ wger
p!-pvr p! - puy pl - pvlﬂ’ pl-pul TP

mod E},,/(v{°). Direct calculations show that 9p7j is invariant over I'(m + 2).

Since v; ¥ 2_157’ /p? is in ker 6%, the second statement follows. ([
In Definition 1.9 we have defined a Quillen operation 7 : M — %7 Y by
=SB en)+
J
where the missing terms involve ¢; for # > 1. The following lemma on the Quillen
operation is useful.
Lemma 8.9. The k-fold iteration of 7,; is congruent to k!7y,; modulo P

Proof. The relation rgyry = (sjt) Ts+¢ holds and the k-fold iteration of 7,; is equal

to _
(kp?)!
(D
where the coefficient is congruent to k! modulo p?. O

Then, we have

Proposition 8.10. Define 6;; (0 < i < p,j > 0) by (3.8) and the downward
induction on i: R R

bi; = v?@? (Biv1,5) for 0 <i<p.
Then they are in Extg(mﬁ)(E#H/(vfo)) and satisfy §°61 (67”) =,

Proof. The first statement is obvious since Ext%(m 1oy (B 1/ (v5°)) is a subcomod-

ule of E} ., /(v§°). Since the second term of (8.8) is in ker§' and each Quillen
operation commutes with the connecting homomorphism, the second statement
follows. 0

Proposition 8.11. Quillen operations on é\l,j (0 <j <p*—p) are given by
?102 (01,j) =0 and ?p(el,j) = j’Ugﬁijp,l/p
up to unit scalar multiplication.

Proof. By Lemma 8.9 7,2 (913) is a unit multiple of vy ! % (gpj), and we can

check 7, (prj) = 0. Similarly, rp(91 ;) is a unit multiple of vy +1?p3_p2+p(§p7j),
which can be computed by direct calculation.

Proposition 8.12. We have
v50; i, i
0;,) = E M mod (v3).

0<k<1

Proof. By Lemma 8.9 we have vgﬂ-é\l = @= ) Tp_ip2 (§p7j), and the result follows

from the computation of 1/)(1)2 0, ,j) mod (v5). We also notice that k!7y,2 (5”) =
1/2“91 k,j since 72 (914_17]) = vgﬂw by Lemma 8.9. O
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In particular §p70 is an element between dimension p2[Us| and p|v3|. It is also
true for the following elements.

Proposition 8.13. Define gp/k (0<k<p) by

2 m42
-~p D~P vy -~

~ = Vg _ Uy Vg T Uy V2

p/k = % 2k E+1
vy pof Uy

Then it is in EXt(,,, o) (EL 41 /(v5°)) and satisfies 5061(§p/k) = Up1,. Moreover, it

~

is G(m + 1)-invariant, i.e., we have 7;(0,/1) = 0 for all j > 1.

Proof. By Lemma 8.5 we see that modulo E}., _/(v5°)

~ 2 ~, 3 2.~ 3 m—+2 -~
- (O LAY O AR LD O SRR P X1
p/k = k - 21k k41
pup pvl pU;
~, 2 ~ ~,
PYP m+2 3p
_ V1A (pA1)? AT
= — + T =0
vy puy
for m =1, and
o~ 2 ~,3 m—+42 .~ 2~,3 m—+42 -~
PYP PYP » D D PIND » D
~ = VA FupA] —vy A vy -up AY U5 SV} 0
p/k = k 2+k k+1
puy pvf pvuy

for m > 2. All terms in §p /k except for the leading term are in ker o', and thus its

6961-image is the desired one. Direct calculations show that ép /i is invariant over
L(m+1). O

9. THE HOMOTOPY GROUPS OF T'(m) )

In this section we determine the homotopy groups of T'(m) 2 in dimensions less
than p|U3|. It requires the analysis of the Cartan-Eilenberg Fs-term of Table 1 for
7 =2. By Lemma 6.10 and 6.11 we have

Proposition 9.1. Assume that m > 0. Below dimension |§52+1/vf2|, the Cartan-
FEilenberg Ea-term of Table 1 for j = 2 satisfies ES’O =0 for s > 2, and E:}‘O is
isomorphic to the A(m + 1)-module generated by

{Eg/t |i>2,0<t<min(i - 1,p)} U {sz/t Ip<t SpQ}.
~p2+1, p?| . ~ .
Note that |05 7~ /v] | is larger than p|vs| if m > 0.
Thus our remaining task is to determine the structure of
B3 2 Bxt oy (T @ X7102,0) fort > 1,

Since this is a certain suspension of E;l (i.e., tensored object with some power of
bao and he ), we may consider only for ES’l. Below dimension p|vs|, define the

vy-torsion free A(m + 1)-submodule U° of vy 'U2, 41 by adjoining the elements

{v3U; ;| 0<i<p,j>0}U{v3 U, |2<k<p}
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to U2 . Note that U° is a comodule since the congruence in Proposition 8.12 is
modulo v and the ignored elements have non-negative vo-exponent after applying
vy ". We also define the quotient comodule U by the following short exact sequence

(9.2) 0— U2, — U — U —0

The Quillen operations on v;pﬂp/k € UY are trivial by Proposition 8.13. On
the other hand, the behavior of Quillen operations on v ’ﬂi,j € UV follows from
Proposition 8.10. The following diagram for p = 5 may be helpful, where each
diagonal arrow represents the action of 7,2 up to unit scalar multiplication and the
elements in the rightmost column are out of our range except for j = 0.

~

u1,5 Uz, us,j Ug,j Us,j

;
/
/

1~ 1~ 1~ 1~ 1~
Vg U1,j Vg U2, Vg U35 Vg Uq,j Vg Us,j

.

7
7
7

—2~ —2~ —2~ PN
Vg U2,j Vg U35 Vg Uq,j Vg Us,j

7
7
7

—3~ —3~ —3~
Vg U35 Vg U4, ) U5’j

/
;

VPN VPN
Uy U4,j Uy Us,j

—5~
Vg Us,j

Proposition 9.4. U° is 2-free, and we have an isomorphism of A(m + 1)-modules

D @ U% = A(m +1) ® {v 01 5,05 Py | 5> 0,2 < k < p}.

m

EXt%’(m-{-l) (T
Proof. By Lemma 1.12, Ext%(m+1)(T£,2l) ® UY) is additively isomorphic to
Ly(U°%) = () kerFy.

£>p?
In (9.3) the only possible elements with trivial action of 7,2 are v, 41 ;. Note that
To(vy 1 5) = 690" (vg ' 7e(01,5))
and v;l?g(al,j) =0 for £ # 1, p? because
i A 2 m41
y Uy03 | _ 03(0s +uat? — b )
pu1 pbur

We have 7 (vy ‘1) ;) = 0 even for £ = 1 or p? since
a3 N pmtio1g e 7N
vy T1(015) = vy B and vy T (6;) = B
are in kerd'. Thus all Quillen operations on v, '@y ; are trivial and there is a

bijection between Ext%(m_kl)(ig) ® U%) and ExtOG(m+1) (UY).
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The diagram (9.3) also suggests the equality of Poincaré series

Ext®(U° .
g(U°) = 9(Ext (U7)) (U2 ) where = ¢/™!
1—aP
and we have
—@ 0 o 1—a2?"  g(Ext®(U°))
T = . =
oI @ U0) = g(v°) - = = SEE
= g(Ext®(U")) - g(G(m + 1)/1)
= g(Bxt®(T}) © U°)) - g(G(m + 1)/1)
which means that U° is 2-free. O

Proposition 9.5. U! is 2-free, and we have an isomorphism of A(m + 1)-modules
EXt%(erl)(Ti) & Ul) = A(m+ 1)/]3 & {ﬁi,j/vg | 1>1,72> 0}
Proof. For the va-torsion comodule U?, the analogous diagram to (9.3) for p = 5 is

Urj/va  Ugj/ve U j/ve  Uaj/ve  Usj/v2
\ \

Up /vy — Usj/vi Taj/vs — Us;/vs

Uz /vy Uay/vs  TUsj/vs

Uy j/vy — Usj/vs

s, /v3.-
In this case Ext® is generated by the elements in the top row. The 2-freeness of U*

is similarly shown to U°. O

Proposition 9.6. Assume that m > 0. Below dimension p|vs|, the Cartan-
FEilenberg Es-term of Table 1 for j = 2 satisfies

S, % ~ N ™ s —(2
E +1 o E(h270) ® P(b270) (39 EXtG(m+1)(T5n) (39 U72n+1)
and
Es,l — Ext® T(Q) U2
2 XtG(erl)( m 0 m+1)

A(m+1)/Io ® {U1, Uy | 0 20,2<k <p} fors=0,

=4 A(m 4 2)/ T (0| > 2) fors =1,
0 for s >2

where 3; = 6% (U; 0/v2) and 6% is the connecting homomorphism associated to (9.2).
The operators behave as if they had bidegree hg g € Eg’l and by € ES’Q.

Proof. By Proposition 9.4 and 9.5, we have the 4-term exact sequence®

0— EY' — Ext%(mﬂ)(sz) @U% — ExtOG(mH)(Tfs) @U'Y) — Ey' — 0

3The m = 0 case was described in | , 7.3.5].
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and E5" = 0 for s > 2. Since the image of the middle map is
A(m +1)/I @ {u1;/v2 | j > 0} = A(m +2) /13 ® {U1,0/va}
we have the desired result. O

By Proposition 9.1 and 9.6, Table 1 is reduced to the following one:

TABLE 2. The Cartan-Eilenberg Fa-term of (6.1) for j = 2.

) )

t=2 EXtO(Tg ®XUn41) Eth(ng ®2U541) 0

t=1| Exx° (T & U2.1) Ext! (T2 @ U2.1) 0

t=0 ker p, described in Proposition 9.1 0
s=0 s=1 s=2

Proposition 9.7. Assume that m > 0. Below dimension p|vs|, the Cartan-
Eilenberg spectral sequence of Table 1 for j = 2 collapses, and we have the short
exact sequence

0— ELt — ExttFJ(le)(T,(n?)) — E%FL 0

which splits for t > 1, but fort = 0.

Proof. In Table 2 we have only two columns, and so the spectral sequence collapses.

The middle groups is isomorphic to Ext?(r}n N 1)(T7(n2) ® E},.1), and the short exact

sequences follow by inspection of Table 2. For ¢ > 1, it splits since the Egt is
va-torsion while the Eg’t+1 is wo-torsion free by Proposition 9.6. For ¢ = 0, for
example, an element

(2)

1,0 € Ext@ ity (T @ Upppy) = By

is killed by wv1, but its lift

~ ~p
5051 (By0) = 0%6" [ =2 — 22 ) ¢ e 7
( 1,0) oy pUier X F(m+1)( m )
is not killed by v;. Thus, it does not split. O

Corollary 9.8. Assume that m > 0. Then, the Adams-Novikov spectral sequence
for m (T (m)(2)) collapses below dimension p|vs|.

Proof. We can rule out differentials originating in filtrations 0 or 1 by the usual
arguments, and the shortest possible one is

dop_1: B3 — E3PTH*,
The first element in the target is Egilﬁg,oé\l’o S E§p+1’*, and the total degrees are
01.0] = |ba,0| = 2p™T3 — 2p — 2 and |ho | = 2p™ "2 — 3, so we have

(05 o T 081 ,0] = plTs] + 20°(p™ — 1) =3 > p[ts]
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which is out of our range. O

10. THE HOMOTOPY GROUPS OF T'(m)(1)

In this section we determine the homotopy groups of T'(m)(;) in dimensions
less than p|vz]. To determine the Cartan-Eilenberg Fo-term for j = 1, we recall
the algebraic small descent spectral sequence (Theorem 1.17). For a G(m + 1)-
comodule M and non-negative integer ¢, it is a spectral sequence converging to

EXtG(erl)(T(z) ®A(m+1) M) with
Bt = B(hyy) @ P(by ;) @ Extl iy Mo @ agmin) M)

with El,j e B, bl,j e E?° and d, : ES' — EStHt=rt1 In particular, d;
is induced by the action on M of r,; for s even and r(,_;y,; for s odd. Note
that r(,_1)p; is congruent to the (p — 1)-fold iteration of rp; up to unit scalar
multiplication.

(L

The case for M = U2 ., is easy.

Proposition 10.1. Below dimension p|v3| the small descent spectral sequence for
U? 11 collapses from the Ea-term, and

. 1 o~ ~ 2
Exti® ) (T’ © U2 1) @ B 1) @ P(bi1) ® Extly o) (Tor) @

UnH—l)

Proof. Below dimension p[v3| the action of 7, on U2, is trivial by Corollary 8.1,
and the Ei-term coincides with the Eao-term. The differentials ds : E; b E5+2 0
are also trivial since the source is ve-torsion while the target is vo-torsion free By

Proposition 9.6 the small descent spectral sequence has only two rows, and so we
have d, = 0 for r» > 3. O

Hereafter we will denote @ ; by @; for short. Since
Es it~ Et lEth(m+1)(T(1)

we have the following result.

®@UZ.,) fort>1.

Corollary 10.2. Below dimension p|vs|, the Cartan-Eilenberg Eo-term of Table 1

*—+ 8, % ~ *+5 (1)
Byt e Bty (T, @ Upiy)

is 1somorphic to
Alm+ )/ B{, Ty |2 0,2 <k < p}
E(h2,0,h1,1) ® P(bao,b1,1) ® &
Am+2)/1{7 | 0> 2}

where the bidegree of elements are U € Eg’l and y € E21’1 and the operators behave
as if they had the bidegree hao € EY', bag € ES?, hiy € Ey? and by, € E3°

Next we Consider the small descent spectral sequence for M = B,,;+1. Below
dimension |05 1 JoY | it collapses from Es-term since B, 41 is 2-free by Lemma 6.11

and we need only to compute d;. On the elements of ExtG(m+1) (T;)®Bm+1) (6.12),
we have

P0(Blre)) = Bicijer—1, Tp(Bpije,) =0 and Fpa_y(B],,) = Bioprin
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up to unit scalar multiplication (cf. | , B.2]). It may be helpful to demonstrate

the behavior of d; for p = 3. The following diagrams describes d; related to the
first set of (6.12):

(10.3)

Corresponding to the diagonal containing B\i /10 the subgroup of F; generated by

E(h1,1) @ P(b11) @ {8115 By}

reduces to simply {31 /1} on passage to Fy. The similar argument is true for the
diagonal containing Ep /1- On the other hand, corresponding to the diagonal con-

taining @/1 (2 < i < p) is the subgroup generated by

E(h1,1) @ P(b11) @ {Bi /15 Byjp—is1}

which is reduced to P@Ll) ® {B;/l, El,ﬁ;/p_iﬂ}. The similar argument is true for
the diagonal containing Ep /i (2 <i < p); the subgroup generated by

E(h1,1) ® P(b1,1) @ {Bpjis- - -+ Bop—isp}

reduces to P(b1 1)® {ﬁp/z, h1 152;7 i/p}- In particular, the subgroups corresponding

to B /1 and Bp /p survive to Ey entirely.

Remark 10.4. In the diagram (10.3) we can read off the existence of certain
Massey products. For example if we have a relation 7,(b) = a, then it we have the

Massey product <h1 1 h1 1,a), as we will explain in Appendix A. In general, if we
have a sequence

aigai_li)~~l>a1 (O<Z<p)
then we would have the Massey product (ﬁm, . ﬁl,l, ap) with i-factors of ﬁl’l
whose representative has the leading term ?1’ ® a;. In this paper we will denote this

Massey product by j;(a1). Note that it is denoted by pia; in | , 7.4.12).

Note that the entire configuration is 05-periodic. The diagram containing sz /1
corresponding to the right one of (10.3) is combined with the diagram for the second
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set of (6.12):

311/3 511/9

(10.5) BIO/S 310/9

/raA /SA

39/1 o e 59/7 Bo/s Bay9

Then, the summand corresponding to sz/k (1 <k < p?>—p+1) reduces to

~

{sz/k}, and the summand corresponding to f,2/p2 ¢ (0 < £ < p — 2) reduces to
P(b1,1) @ {Bp2/p2—t, h1,1Bp240/p2 }-

By these observations we have

Proposition 10.6 (] ,7.3]). Below dimensions WSQH/U{’Q |, the Cartan-Eilenberg
E5-term of Table 1
By = Bxt i) (T @ Boni)

has the following A(m + 1)/I2-basis:

P(ﬁg) ® {ﬂi7ﬁp/l} b {ﬂpz/k | 1<k SPQ —-p+ 1}

S
R P(@\S) ® {@/1;/];1713;/17,”17B\p/i,BLlB\zp,i/p |2<i< p}
P(bi1) ® R @
{5172/172_@, h1,15p2+€/p2 | 0 S 14 S p— 2}

subject to the caveat that ﬁgék/e = Ek_,_l/e. The bigrading of elements are (omitting

unnecessary subscripts) 5 € E%’O and the operators El,l and 31’1 behave as if they
had the bidegrees given in Corollary 10.2.

Note that the range of dimensions (i.e., |§§2+1/vf2 |) exceeds p|vs| for m > 0.

Now we have determined the Cartan-FEilenberg Fs-term for j = 1. In the fol-
lowings we will see that this spectral sequence has a rich pattern of differentials for
m > 0%, which is essentially independent of m.

For the differential

(1)

7 S s el s (1
dy : Byt = Extlyn ) (T ©@ U 1) — B30 = Extl | (T5) © Bung)-

notice that we may ignore the vo-torsion part of the source (i.e.,y-elements) since
the target is ve-torsion free. We have

Lemma 10.7. Assume that m > 0. The Cartan-Eilenberg spectral sequence of
Table 1 for j =1 has the following differentials®

(i) da(t;) = 102E1,1Bi+p—1/p

. it N - Z 0N A
(ii) do(hyau;) = <p B 1) v2b11Bi41/2

41t was described in [ , §7.3].
5The result for m = 0 is described in | , 7.3.12].
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for all i > 0. All differentials commute with multiplication by 3171.

Proof. We are considering the Cartan-Eilenberg spectral sequence for T,(n1 )& EL 11
and its Ext® for s > 0 is a quotient of (isomorphic to for s > 1) Ext® ' for
T ® E} .1/(v5°), so we can work in the cobar complex over G(m + 1) for the
latter comodule.

For (i), it follows from Proposition 8.11 that 7,(u;) = ivggiﬂ,,l/p up to a unit
scalar multiplication. Then, by Lemma 8.9, we have 7p2_,(U;) = (pil)UQB\iJrl/Q and
the differential (ii). O

Adding the information of d~2, the behavior of the Quillen operations and differ-
entials are described in the following diagram for p = 3 (cf. (10.3)):

B B i

(10.8)

In each case the graph now has 2p+ 1 instead of 2p components, three of which are
maximal. We can also refine (10.5) and we have the p?> components, p*> — p + 2 of
which are maximal.

In fact, each d; in the small descent spectral sequence behaves as it were the
Cartan-Eilenberg d>. In general, the bigrading of elements in the small descent
spectral sequence are 3 € E%2 4 € E%? and 5 € E%3, and each operator has
the same bigrading as that for Cartan-Eilenberg spectral sequence. So, the small

descent d,. correspond to the Cartan-Eilenberg cZ,H for r > 1. See Table 3.

Remark 10.9. Note that in the picture (10.8) the “virtual” element vy '4; lives in
ExtOG(mH)(Tﬁ)? Uf) but not in ExtOG(mH)(TSL) ®UZ 1) (Proposition 9.6). This
means that h171b’f71 Bi+p—1/p is actually nontrivial and it is chromatically renamed

%3’{1% (thus, it is the wa-torsion element). This situation does not happen for
m =0 (cf. | , 7.3.12]). For example, in the chromatic spectral sequence we
have

1~ ~ ~pt1 ~
doe1a) = g [ V20208 b Tals
e('UQ ul) = e 1 = U271

puv1 pUy pv1v2
~p7p pmtt—1~ o
1~ U2t1 Uy ’Ugtl o ~ ~
and di(UQ ul) = — D = 7h171ﬂp/p.
pvy pu1

The computation of d; is the same as Lemma 10.7 (i), and the second term in d; is
the product of ¢; with an invariant element . It is ignored because we are working
in T'(m)(), i.e., it is the coboundary of ¢; ® .
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TABLE 3. Bigradings of elements. Some subscripts have been omitted.

Cartan-Eilenberg spectral sequence for j =1

t=31 baou : hi,1b20U : b1,1b2,0U : h1,1b1,1b2 0

- A‘2777;T7\7;7;77‘

t=2 h20 ‘hl 1h20u‘b 1h20u‘h1,1b1,1h20u

T T T L T T T T T T T T T
t=1 u o hiau o biau o hiabiau

=~ T~ " =" "1~ X" =" T~ "X~ =~ 71
t=20 * | ﬁ | hl,lﬁ | b1715
s=0 s=1 §=2 s=3

t=4 Zzou h 1b20ﬂ | by 1b20ﬂ | hl 1by 1b20U

t=3 hz,ou | h1,1h2,0 | bl 1h20 | hl 151 1h2 ou

t=2 u : hl,lu : bl,lﬁ : hl 1b1 1u
~ | ~ ~ | ~ | -~
B 1+ hiaB 0 biaB 0 hiabiB
[———7T~— - - -~ I T - T - - 7 7
t=1 * [ |
s=0 s=1 §=2 s=3

Similarly, we can also see that blfjlﬂi_;’_l/g is renamed v”éh17lb’f71§1. For example,
in the chromatic spectral sequence we have

—1ap—1n ~2p—1 ~p—1~ 7p

Lo=1h 5 N (ol (R S R Uy Ustl_/ﬁ ~p—1n

(Vg hiatp—1) =de | 1] - =—=——=h11t, M
pu1 pUy

PY - Apy? - PN
and dl(’l); hl,lup,l) = _tl R —==——+ = bl,lﬁp/Q'
p”1
The following result concerns higher Cartan-Eilenberg differentials, and we will
prove it in the next section.

Theorem 10.10. Assume that m > 0. The Cartan-FEilenberg spectral sequence of
Table 1 for j =1 has the following differentials (along with those of Lemma 10.7)
and no others in our range of dimensions:

(i) d3(h2 ouz) = U2b1 1@“ for’ zgéO modp
(i) d3(h2 on oli) = U2h1 1b1 1h2 062 0 Ui foriF0 modp, k> 1 ande =0 or

1.
(111) d2k+3(h1 1h270b’2‘370ﬂi) = U2+1h,1 1bk+1 i1/ k41 fO’I‘ 1= —1 modp and 0 <
k<p-—1.

(iv) d2k-+2(h,1 1b2 oli) = vzﬂb 5l+1/k+2 fori=—-1modp andl <k <p-—1
(the case k =0 is Lemma 1() 7(ii)).

(v) d2p 1(h1 1b b0 u,) =vb” 1b’1)71ul —pt1 fori=—1 mod p.

All differentials commute with multiplication by ’51,1,
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We will prove Theorem 10.10 in the next section.

Since each source of the stated differentials lies in E%* or EY*, it cannot be
the target of another differential. Moreover, each differential has maximal length
for the bidegree of its source. Thus, the source should be a permanent cycle if a
differential is trivial.

Remark 10.11. We can define a decreasing filtration on B,,4+1 and U,,4+1 by
Bi/ill =i—3—1, Jwll=i+[i/p], and ||pl| = [Jor]] = [Jvz]| = 1.

In (10.8) all elements along the same diagonal (e.g., Bg, Eé/2, 33/3 and vy '@ in
filtration 0) have the same filtration, and the source and target of each differential

listed in Theorem 10.10 have the same filtration. A similar filtration for m = 0 is
discussed in | , 7.4.6].

Remark 10.12. Again, we obtained the differentials of the form d,.(z) = viy
(t > 1), each of which doesn’t kill y but makes y into a vi-torsion element, as we
have already seen in Remark 10.9. For example, the differential in (i) means that

3171 Bg 41 is killed by vz in the Ext group. In the chromatic cobar complex we have
d(vy ' haotl;) = —b1 1B}, 1 £ Vsha 071,

SO :t%ﬁQ,Oﬁl is the new name for 31,131’.“. Similarly, ﬁl,ﬁl,lﬁg,oﬁ’;}glm,l is re-

named @ﬁ;oﬁ’g,o% by (ii), and ﬁl,lgmﬁ;’j is renamed ﬁg_lﬁmﬁmﬁl by (iii).

We will now demonstate the ramifications of these differentials for p = 3. There
is a family of them associated with each nonmaximal component of (10.8). For

example, for B\g at p = 3 we have

FiaBe BB MiabiaB B8 huabi
A P

~ =~ = = < = ~ 5 ~
5&/2 h1715§/2 h1,1b1,1ﬂé/2 s bl,lﬂé/Q hl,lbl,lﬂé/Q

1 hi121 bi121 hiabipz /g

g

2o hi122

where z;, = vy kﬁg’oggz)lﬂk, and the boxed elements are elements not killed by
differentials. The underlined elements also survive, however, each of these changes
into vo-torsion element (cf. Remark 10.9 and 10.12)

By Remark 10.4, EM@/Q corresponds to ug(@) = (ﬁlyl,ﬁl’l,@). Here d, for
r > 2 denotes a differential in the Cartan-Eilenberg spectral sequence for j = 1,
while d; is related to the action 7,. Thus we have

51,135/3/2 = M2(32), 61,132 = Ml(uz(gz)) and 711,131,13;/:,/2 = Mz(#l(m(@)))
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Note that 51,1 Eg is renamed ﬁg/ﬁm% by Remark 10.12. Similarly, for 33 /3 We have

33/3 E1,1§3/3 31,133/3 ﬁ1,131,1§3/3 6%,133/3

e B
Y1 hiay biayr  hiabian /g
ds x5 /

Y2 hi1Y2

where y, = Uz—k@\’;;)lﬂk. Note that 7L1,133/3 is renamed ¥27; by Remark 10.12. We
also have

33/2 E1,1/§3/2 31,133/2

Bas  hiaBuss /a,

da

z h1712’
where z = v; 'y, and we have hi1B4/3 = p2(Bs)2)-

Theorem 10.13. Assume that m > 0. Below dimension p|vs| the Cartan-Eilenberg

E-term of Table 1 for j =1 is the direct sum of the followings:
(i) the A(m+1)/Is ® P(05)-module generated by

{ﬁiaﬂév s 7/8éa ﬁp/laﬂp/Q; hl,lﬁzl)}

(&)
P(b13) @ {h1B) 41 Bpyi 1 2<i<p—1,3< ) <p}
S5
P(b11) ® {iio}
E(ﬁz,o) ® P@z,o) ® 8 ;

{Emﬁi |0 SiSP—2}
(ii) the A(m+1)/I3 ® P(v5)-module generated by
B(h11) @ {351} P
R R ‘ ® U5 hiaba oA,
E(hg,0) @ P(b11,b20)® | {0571 |2<i<p—2} / 05 b 1bo o1
R U5b1,1b2,071
{v2M1 }
where the second summand is only for p > 5;
(iii) the A(m + 1)/I3-module generated by
{B\zﬂ/k |1 SkSpQ—p+1}
2
{BpQ/pZ—éa h1,16p2+5/p2 | 0<i<p-— 2}
P(b11)® & s and
B, h20) @ P(ba0) @ {@ |2 <k <p}
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(iv) the A(m + 2)/Is-module generated by
E(h1,1,h2,0) @ P(b11,B20) @ {70 | £ > 2}

Remark 10.14. By Theorem 10.10 (iii) and (iv) we know that some elements in
the second summand of Theorem 10.13 (i) have higher vo-torsion. They should be
renamed chromatically so as to be understood explicitly that they are vo-torsion.

Now we have computed EXtF(m+1)(T1—(nl) ® E2,,,) and obtain
Exty (1) (T)) & Exthp gpy (BP., BP(T(m)1)))

for n > 2 (Proposition 5.3). There are no Adams-Novikov differentials in this range
because there are no elements in filtration > 2p 4 1, the first such element being
523’1)31%, which is out of our range. Thus, Theorem 10.13 gives us the homotopy
groups of T'(m) as desired.

The elements for (p,m) = (3, 1) are listed in Figure 1 and depicted in Figure 2.

’tfs\ Element ‘

’ t—s \ Element ‘ ’ t—s \ Element ‘
32 g; 296 | buadio 355 | hiabaotio

112 Bas 297 Y2 357 hi,1Us
16 3 298 Be/3 358 B7
50 ;32 302 Bojz_ 359 | Tha.obaotio

B 304 | hy1ho oty 361 ha 03
154 ﬂz 306 g‘lﬁ 382 | 02by 1ho o1
189 @\2’771 ﬂﬁ/\ 383 ﬁgbl,lﬁl
193 | hi1185) 308 b2£u0 394 | 2ha b2 071
TR 2:1),(1) _ bus _ 395 j%bg,oﬁl
201 Py 1o Y2 1717/1 hi1ha 072
202 5s 335 | T by 396 | Dyhz0M
9505 | Trwofin 339 | 03h1,1ho 0Vt Uahi 172

: 343 Vabo o7y 397 iy
240 | Dahaoin 272,0M —2 1
511 55:71 344 hA141A72 400 ’Ug/}\LQQ/’\()’}/Q
959 | y1ho.otio 345 Va1 _ 401 V572 _
253 ;11 1&1 347 b171h270u0 406 h1’1h2’0b2/,\0’U,0
254 ’55 348 ha 072 407 h1,1b2,oli1
TR 349 [ 7B 408 | T, ol
988 i)\%}Ll 1,/7\1 2)2’}/2/ 409 h1,1U4
592 53112:0:7\1 353 hi.15 410 Bs

FIGURE 1. The elements of Ext®}’

ppr.(5p)(BP(T(1)))) for p =3,
and t — s < 426.
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11. THE PROOF OF THEOREM 10.10

In this section we will give a detailed proof of Theorem 10.10 for m > 0°. Recall
that the reduced Cartan-Eilenberg spectral sequence is a quotient of the Cartan-
Eilenberg spectral sequence as is characterized in Lemma 1.4, and it is enough to

prove each differential by computing in Cr 1) (T(l) ® N2)

As shorthand, we will also use the symbols bl 1 and bg o for their cobar repre-
sentatives, namely

i+l +1 i+
R IGAN R DI GO T

0<b<pitt

and 32705p71(%®1+1®Z‘2’—(?2®1+1®?2)p)

T rlpent me

0<l<p

Lemma 11.1. For m > 0, we have a cocycle
ho=p""(ofbi1 +d(#))
in Cr(m+1), which projects to 62’0 in Crim+2)-

Proof. If follows from d(f}) = (B ®@1+10 % — (@ 14+ vibio+1®5&)P). O

It also follows that 32,0 ® x is permanent for a permanent cycle z.

Lemma 11.2. Let ?3 be the conjugation Of%\g. Then we have
_ _ o ’7)2 o~
= = = ~ ~ t t orm=1
A(tg) :t3®1+1®t37’01b2_’0 7U2b171+ 1 ®h f
form > 2.

The difference between ?3 and —t3 has trivial image in T'(m + 2).

Proof. By definition, ?3 = —tAg, + tAlH'p2 for m =1 and ?3 = —tAg, for m > 2. Since

-~ 2
1 t: 7. b > ot fo =1
A(t3):t3®1+1®t3+711b2,0+v2b171+ 1 ® 1 T m
0 for m > 2.
we have the result. .

6The case m = 0 is very different and was treated in | , §7.4].
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50 N

Proof of Theorem 10.10 (i). Notice that we may use —— instead of 7; because
b1

these have the same §'6°-image (8.3) into U2, ;. For i > 0, we have

PN LD ~ 2 M1~ i
d<t2®1® 23>f2®(’02?17 -y h)ele =
pu1 pu1
p'rrt.+1 ~ p'"L+1 —~
~ < W v o~ v v
dlbotie 2—2|=hetole 2—2
b1 pu1

~ ~
d(tgff2®1®%> =—(t2®?’1’2+€§’2®t2)®1®%

yZCh buy
2 vo 0Lt 2 Vol ~ voOitt
d(ﬂj ®1®.222>:?€ ®t2®1®ﬁ+b171®1®.272-
(i 4+ 1)p2vy puUy (i + 1)pny

The sum of the preimages on the left is a cochain representing EQ,Oai; summing on
the right gives the desired result. O

Proof of Theorem 10.10 (ii). We will prove this for kK = 1 and ¢ = 1. The gen-

eral case follows because we can replace 32,0 by 3’2’0 (Lemma 11.1) and tensor all
)kt

~

equations on the left with the cocycle (b5 o
We have

nr(V2) =0a + 2 mod Ipm+1,

where I = (p,v1,...) and z = v1#¥ + pty. By this and Lemma 11.2 we have

A(boo ® 1@ i) = bap ® d(1® W)

; ~itp—k
~ t+p\ & Vg
_b2,0®v2 Z ( >Z ®1®+7p+1
0<k<p k (zpp)pvl

(“tP)pol

N . ;ﬁi+p71
d{~ts@uvo | —(i+P @1® 22—y + -+
(p )pvl

~i+p—1
~ ~ . v
_(Ule,O + U2b1,1) ® v2 <—(Z +p)?f ®R1I® W + - )
p

~ i}\i-i-p—l
= —b20 ® vo (i+p)%717®1®27+... ,

~ _ i+ p— 1\ oit
t3®v2(z+p)€f®< p >271) ®1®#
p ("7 )pvr

=N %\i—‘rp—l
:_b2,0®v2 _(Z‘f'p)?f@l@ﬁ‘F
( P )pvl

~i+p—1
~ . v
— v @va | —(i+ ) @ 1@ 2y -
(> )pvi
oy ot vy
+’L’U2t3®t1®t1 ®1® )
2G5
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and

71{)\3
d(—zt3®t1®1® )

pu1
R 1%, it
=i P10 22 heBeounl @l 2—
pu1 pur

The sum of the terms on the left represents d(/b\g’oai), and the terms on the right
add up to

L o~—1s . 2~i+p—1
~ 12V U 1+ p)vjv
b1,1®?‘1’®1®<— 2Uy U3 (14 p)vaty >+

‘ )
pu1 ("It
~—1 ~+p—1
- L e U2 V3 'UQ
=—2b 10 ®1I® - — +
S por (el

The 1nspect10n of E3 as described in Corollary 10.2 shows that the element rep-
resents —ZUth 1b1 1U;—1 as claimed. O

We will derive (iii), (iv) and (i) from (i) and (ii) using Massey product arguments.

Figure 3 illustrates these products and others like them for p = 5 and m > 0. The
arrows labeled ds are related to the differential of (ii). For example, the differential
d3(b2,0ﬂ4) = 02h171b171ﬂ3 is denoted

T~ d_3 T~
b2,0U4 — U2b1,1U3-

Proof of Theorem 10.10 (iii). For k = 0 this is a direct consequence of (i) via mul-
tiplication by ﬁl,l- We will illustrate with the case i = p — 1 and k < 2 (the other
cases are similarly shown). For k = 1, we have the sequence analogous to that of
Remark 10.4:

~ ds  ~ N o o o~ o
ba oUp—1 — vab1 1Up—2 —> V31182 3/p —> -+ —> V3b115,)3-

This allows us to identify ’Ughl 1b1 1Up_o with the Massey product Hp— 1(v2b1 15;;/3)
up t to unit scalar. It follows that the differential on hg 0h1 1(b2 oUp— 1) is the value
of hgyohlylup_l(v2b1716p/3). Now h270h171 (resp. b171) is the image of ﬂg (resp. ﬂp/p)
under a suitable reduction map, so we have

v3ha,0h1,1b11 p—1(Bp/3) = v3b1,1 B4 1(/6;0/3)

= ”531,1/1;7—1(52 by Lemma A.8

~

)Bp
= Ug/b\l,lﬂp—l(52)v Bp/p 1_37}%6%71”17—1(62)-
By Example A.9 we have v{’*3pp,1(32) 112 Bp 1), 8

~

pa(
ds(h1 1o obz 0Up—1) = Uzb1 ww2(Bp—1) = Ug h1 1517/2

as claimed. For k = 2, consider the sequence7

72~ d3 NN ~ d3 272 ~
by gUup—1 —> v2b1,1b2 0Up—2 —> V30T 1Up—3 2, ”2b1 152p 4/p Sy ’Uzb1 15;0/4

"Note that we may assume that p > 5since 0 <k <p—1.
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~

)
)

Bs Bs - Bo o By

\ \ \ G 7

v2ﬁ5/2 ‘\A 56/2 »37/2 68/2 ~ 59/2 \ 510/2

U%/I;l,lﬂs/?\;\A U256/3 \ 57/3 »38/3 R 59/3 \ 610/3
73 73 m m 3

vggf’lgg,/z;\Avgfh 1ﬂ6/4\A 2B/ (\ Bs)a ~ Boys \ 510/4
7 73 m T3

vg@il,@g,m i 1123%,136/5 ) v231,1§7/5 ) 0258/5 N 59/5 5{0/5

U2b1,1u

N
=

[
Y
A %

)

oy o PN R
v3b7 1ba oz waby 1baous b2 oUs

JA
ﬁ
ﬁ

)

@ )
w
%
=
B

272 P2~ 72
U2b1’1b2’0 2 ’Ugbl 1b
&

e
U2b171b270’UJ3

w

~
b27OU4

)ﬁ

4 -~
b2,0u4

FiGUrE 3. The case p =5 and m > 0.

which allows us to identify ’1)2/};1’1/[)\1’132’0@:072 with up,l(vg’gilgpﬂ). It follows that
the differential on ﬁl,lﬁz’o@%’oﬂp,l) is the value of El,lﬁz,o(up,l(vé’@%ﬁpﬂ)). By
Example A.9 we have vf74u;71(32) = ug(Bp,Q), S0

dr (b1 1ha b3 0y —1) = ha,0h 11 (0303 1 Bpya) = M; 1(ha,0h 1 )v3bT 1 B4
= 712b1 1.Up 1(ﬁ2)/8p/4 = ’Uf_ 1 1Up 1(/82)/8;0/;0
= 7)2 1 1#3(517 2) = U2b1 1h1 lﬁp/:s
as claimed. 0
Proof of Theorem 10.10 (iv) and (v). Look at the elements Z’ioﬂp_l in the last col-
umn of Figure 3.
We have the sequence
gk ~ ds b k+1 b k+1 b
2,0Up—1 —7 ° -y vy by 1Up—1— L, Uy 07 15217 2—k/p Ly vy 07 15p/k+2
for k< p—1, and
ds ds lbp

bpoup1—> S vy b g
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for k = p — 1. Thus we have

R B k+1’5k ) for k -1
dr<b’57oap_1)_{ﬂp (5B Byjaa) for k<p

Ap_lA) fork=p—1

-1
,up,l(vg b171 Uo
up to unit scalar multiplication. Since 711,1 Hp—1(x) = 31,156 we have

k+17k+173
0GBty ) = {2 03 Oz fork<p—1
r — - —17 ~
TP vh 1beJuO fork=p—1
as claimed. O

APPENDIX A. MASSEY PRODUCTS

Here we recall the definition of Massey products very briefly (cf. [ , Al.4])
and prove some results used in this paper. Let C be a differential graded al-
gebra, which makes H*(C) a graded algebra. For x € C or z € H*(C), let
7 = (—1)"19e@) g where deg(z) denotes the sum of its internal and cohomogi-
cal degrees of z. We have d(Z) = —d(z), (zy) = —TF, and d(zy) = d(z)y — Zd(y).

Let ay, € H*(C) (k= 1,2,...) be a finite collection of elements and with repre-
sentative cocycles ap—1, € C. When @yae = 0 and @za3 = 0, there are cochains
ap2 and ag 3 such that d(ag2) = @o,101,2 and d(a13) = a12a2,3, and we have a
cocycle by 3 = @p2a2,3 + @p1a1,3. The corresponding class in H*(C) represents the
Massey product {aq, e, as), which is the coset comprising all cohomology classes
represented by such bg 3 for all possible choices of a; ;. Two choices of ag2 or a1 3
differ by a cocycle. The indeterminacy of (a1, as, as) is the set

OélH‘OQagl (C) + ]{‘0410‘2| (C)Otg.

If the triple product contains zero, then one such choice yields a by 3 which is the
coboundary of a cochain ag 3.

If we have two 3-fold Massey products (aj, as, as) and {(as, asz, ay) contain-
ing zero, then the a;,_;; and a;_2, can be chosen so that here are cochains ag 3
and aj 4 with d(ag,3) = bo3 and d(a1,4) = b14, and the 4-fold Massey product
(o1, a9, o, ). represented by the cocycle by 4 = Gp3a34 + o 2024 + To101 4.
More generally, if we have the series of cocycles b;; and cochains a; ) satisfying

(A1) bjx = Z ajeap, fori<j<k<i+n
J<t<k
n-fold Massey products (@1, .., Q;+n) represented by b; ;+n. The cochains aj i

chosen above are called the defining system for the Massey product (cf. | ,
A1.4.3]).

If two products (o, ..., ap—1) and {(ag, ..., a,) are strictly defined (meaning
all the lower order products in sight have trivial indeterminacy), then we have

Oél<042, RS an> = <ala RS an—1>an

(cf. | , A1.4.6(c)]). In fact, we can relax the hypothesis of strict definition in
the following way.

Lemma A.2. Suppose that (a1, ..., an—1) and (az, ..., an) are defined and have
representatives © and y respectively with the common defining system a; ; (0 <i <
j <n). Then, the cocycle Tan_1 y is cohomologous to ag1y.
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Proof. If both  and y contain zero, then we would have cochains a; , and ag,—1
satisfying d(apn—1) = « and d(a1,,) = y. Hence we could define the cocycle by .,
(A.1). In that case we would have

d(bo,n) = d(@5101,0) + d(@ 7 Tan-1,) + dlbo,n)
= —ap1Y +Tap_1n + d(go,n) =0

bo,n = E g, i -

1<i<n-—1

where

Even if  and y do not contain zero, so we don’t have cochains a; , and ag n—1, we
can still define by . A routine calculation gives the desired value of d(bg ). O

We also have Massey products in the spectral sequence associated with a filtered
differential graded algebra or a filtered differential graded module over a filtered dif-
ferential graded algebra. Our Cartan-Eilenberg spectral sequence is not associated
with such a filtration, but we can get around this as follows. Let T = @,5, 1",
be a bigraded comodule algebra with i being the second grading. Then the algebra
structure of T} is given by the pairings T ® TJ, — T+,

Recall that for a Hopf algebroid (A,T") and a comodule algebra M the cup
product in the cobar complex C' = Cr(M) is given by

(M@ @Y @m1) U (Ys41 ® +++ @ Yoyt ® Ma)

=R RV mg”%ﬂ ®R--® mgt)%ﬂ ® m§t+1)m2

(cf. [ , A1.2.15]) where 7; € T'(m + 1) and m; € M, and mgl) ®-® mgtﬂ)

is the iterated coproduct on m;. The coboundary operator is a derivation with
respect to this product and C'is a filtered differential graded algebra, i.e., we have

d(zUy) =d(z) Uy + (1)@ z U d(y).
Now we have two quadrigraded Cartan-Eilenberg spectral sequences:
(A.3) Extg(mt1) (Extrim42)(T),)) = Extrin4n(Th,),

which is associated with a filtration on C' = Cp(y,,41)(T};,), and
(A.4) ExtG(m+1) (Extroms2) (T, ® Epy1)) = Extrinan (T, ® Ep),

which is associated with a filtration on C" = Cr(q1)(Th, ® B}, 1). We may regard
the Cartan-Eilenberg spectral sequence of (6.1) as a quotient of the degree p* — 1
component of (A.4).

Since C” is a left differential module over C, (A.4) is a module over (A.3). x
Then we can make a similar product (o, ..., a;) with a; € H*(C) (1 < i < j)
and a; € H*(C'). In particular, we will be interested in Massey products of the
form

(A-5) Mk(y) = (ﬁm, cee 7};1,17 y> and Mk(w) = <33, ﬁ1,17 S ,ﬁ1,1>

with k factors El,l- Specially, p1(y) is the ordinary product Bl,ly. For 1 < k < p,
pi(y) is defined only if 0 € pp—1(y). If px(pp—k(y)) is defined for some k, then it

contains b1 1y.
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Remark A.6. 5171 € Extlla(mﬂ)(T,(nl)) is represented in the cobar complex by
r=—dB)=thol+leh) —1ot=el mod (p),

which means that ﬁl,l becomes trivial when we pass to Ext%(m +1)(Th,). Similarly,

we have
xe:d(mU?f) =d<z <];>?ﬁ®%pz>

i>0
Thus ﬁ1,1 U/ﬁl,l € Ext%(mﬂ)(Tfnp_z) maps trivially to Ext%(mﬂ)(Tff—l),
Lemma A.7. Let x1 = x as above and define x; inductively on i by
z; = (zi—1 Ufl{*%}fUIEi_l) /i (1<i<p).

Then x; is in C’p(m+1)(T7§f_1)(p_1)) and it satisfies

;= (1) @ 1/i!  mod (p) and d(x;) = Z x5 Uxi_j.
0<j<i

Proof. We prove these statements by induction. For the first statement, assume
that z; € Cr(mq1) (TS~ D®=D) This means that it has the form ¢f: 7P~ D®~1

TG D=1y

modulo Cp (1) ( for some scalar ¢, and so we have

zip = (2 UB =B Um) /(i +1)
= C(%’ier*l ® g(li—l)(p—l)er . ?Trp*l ® ggi—l)(p—l)er)/(i +1)=0
modulo Cp(mﬂ)(Tf,ﬁ”*”). For the congruence, we see that
i+ Dlaip = il UB — B Uz) = () (o D UE -B U@ o)
= (—1)i+! (ﬂp ® gflv _ g§i+1)p ©1— Pip ®;;17> _ (_1)i+2’t‘§i+1)P @ 1.
For the derivation formula, we see that

(’L =+ 1)d(l’z+1) — X U r1 — I U ZT;
= d(z;) UH — ] Ud(x;)

Z r; Ux;j U?‘lf—?fu Z ;Ui

0<y<i 0<j<i
= (ij(xz‘ij?f—%U%fjH(% U%—%U%‘)Uxm‘)
0<j<i
= Z ((Z + 1 — j)il'j U .’L’i+17j + (] + 1).%']‘+1 @] {Ei,j)
0<j<i
= (l+ 1) Z T UTip1—j. ([l
1<j<i

We can use these elements to define the Massey products that we need. The
following result follows easily from Lemma A.7.
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Lemma A.8. Suppose that o, 3 € Extr(m+1)(T)h ® E2 ) are represented by co-
cycles a1 and by, and that there are cochains

iy by € Cr(myny (T D @ B2 ) forl<i<k
satisfying
d(a;) = Z ai_;Ux; and d(b;) = Z z; Ubi_j,
0<j<i 0<j<i
where x; are as in Lemma A.7. Then the Massey products

i, (a), pi(B) € Extp(m+1)(TTerL+k(p—1) ® Eﬁm)

are defined and are represented by the cocycles

Z Ak4+1—4 Ux; and Z x; U bk+1—i~

0<i<k+1 0<i<k+1

Moreover, we have ap,(8) = u,.(@)B using these representatives.

Here are two examples of such products.

~

Example A.9. For 0 < k < p and ¢ > 0, the Massey product px(B,,_4.1) is
defined and it is represented by

ji (L= K)!
0<;+1xi U= mﬁpf+l—i/k+1_i.

~ ~

We have an equality vk (B q_1) = tk—1(Bppra_p)/(k — 1 —pl) for k > 1.

Example A.10. For 0 < k < p and ¢ > 0, the Massey product Mk(Bp@/p_jrz_k) is
defined and it is represented by

RPN ; pl+ k)~
r1 U, 1upg+k,1,p + Z z; U (_1>z+1€(]§£+k)i)lﬂp£+ki/p+2i.

1<i<k+1
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