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This paper is the first in a series aimed at clarifying and extending of parts of the
last chapter of [Rav86], in which we described a method for computing the Adams-
Novikov E2-term and used it to determine the stable homotopy groups of spheres
through dimension 108 for p = 3 and 999 for p = 5. The latter computation was a
substantial improvement over prior knowledge, and neither has been improved upon
since. It is generally agreed among homotopy theorists that it is not worthwhile
to try to improve our knowledge of stable homotopy groups by a few stems, but
that the prospect of increasing the know range by a factor of p would be worth
pursuing. This possibility may be within reach now, due to a better understanding
of the methods of [Rav86, Chapter 7] and improved computer technology. This
paper should be regarded as laying the foundation for a program to compute π∗(S0)
through roughly dimension p3|v2|, i.e., 432 for p = 3 and 6,000 for p = 5.

The method referred to in the title involves the connective p-local ring spectra
T (m) of [Rav86, §6.5], which satisfy

BP∗(T (m)) = BP∗[t1, . . . , tm] ⊂ BP∗(BP ).

T (0) is the p-local sphere spectrum, and there are maps

S0 = T (0)→ T (1)→ T (2)→ · · · → BP.

The map T (m)→ BP is an equivalence below dimension |vm+1| − 1 = 2pm+1 − 3.
To descend from π∗(T (m)) to π∗(T (m − 1)) we need some spectra interpolat-

ing between T (m − 1) and T (m). Note that BP∗(T (m)) is a free module over
BP∗(T (m − 1)) on the generators {tjm : j ≥ 0}. In Lemma 1.15 we show that for
each h there is a T (m− 1)-module spectrum T (m− 1)h with

BP∗(T (m− 1)h) = BP∗(T (m− 1)){tjm : 0 ≤ j ≤ h}.
We have inclusions

T (m− 1) = T (m− 1)0 → T (m− 1)1 → T (m− 1)2 → · · ·T (m)
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and the map T (m−1)h → T (m) is an equivalence below dimension (h+1)|tm|−1 =
2(h+ 1)(pm − 1)− 1.

For example when m = i = 0, the spectrum T (m)pi−1 is S0 while T (m)pi+1−1 is
the p-cell complex

Y = S0 ∪α1 e
q ∪α1 e

2q · · · ∪α1 e
(p−1)q,

where q = 2p− 2.
We will be particularly interested in the cases where the subscript h is one less

that a power of the prime p. In Theorem 1.21 we give a spectral sequence for
computing π∗(T (m− 1)pi−1) in terms of π∗(T (m− 1)pi+1−1). Its E1-term is

E(hm,i)⊗ P (bm,i)⊗ π∗(T (m− 1)pi+1−1)

where the elements

hm,i ∈ E
1,2pi(pm−1)
1

and bm,i ∈ E
2,2pi+1(pm−1)
1

are permanent cycles.
In the case m = i = 0 cited above, the E1-term of this spectral sequence is

E(h1,0)⊗ P (b1,0)⊗ π∗(Y ).

where h1,0 and b1,0 represent the homotopy elements α1 and β1 (α2
1 for p = 2)

respectively.
Thus to compute π∗(S0) below dimension p4(2p−2) we could proceed as follows.

In this range we have
BP ∼= T (4) ∼= T (3)p−1.

We then use the spectral sequence of 1.21 to get down to T (3), which is equivalent
in this range to T (2)p2−1, then use it twice to get down to T (2) ∼= T (1)p3−1, and so
on. This would make for a total of ten applications of 1.21. Fortunately we have
some shortcuts that enable us to get by with less.

The Adams-Novikov E2-term for T (m) is

ExtBP∗(BP )(BP∗, BP∗(T (m))).

From now on we will drop the first variable when writing such Ext groups, since
we will never consider any value for it other than BP∗. There is a change-of-rings
isomorphism that equates this group with

ExtΓ(m+1)(BP∗)

where
Γ(m+ 1) = BP∗(BP )/(t1, . . . , tm) = BP∗[tm+1, tm+2, . . . ].

In §3 we will quote earlier determinations of Ext0
Γ(m+1)(BP∗) (Proposition 3.6) and

Ext1
Γ(m+1)(BP∗) (Theorem 3.17) in all dimensions, and construct a 4-term exact

sequence
0→ BP∗ → D0

m+1 → D1
m+1 → E2

m+1 → 0

of Γ(m+1)-comodules. The two Di
m+1 are weak injective, meaning that all of their

higher Ext groups (above Ext0) vanish (we study such comodules systematically in
§2), and below dimension p2|vm+1|

Ext0
Γ(m+1)(D

i
m+1) ∼= ExtiΓ(m+1)(BP∗).
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It follows that in that range

ExtsΓ(m+1)(E
2
m+1) ∼= Exts+2

Γ(m+1)(BP∗) for all s ≥ 0.

The comodule E2
m+1 is (2pm+2 − 2p− 1)-connected. In Theorem 4.5 we determine

its Ext groups (and hence those of BP∗) up to dimension p2|vm+1|. There are no
Adams-Novikov differentials or nontrivial group extensions in this range (except in
the case m = 0 and p = 2), so this also determines π∗(T (m)) in the same range.

Thus Theorem 4.5 gives us the homotopy of T (1)p3−1 in our range directly with-
out any use of 1.21. In a future paper [NR] we will determine the Ext group for
T (1)p2−1 in this range and study the spectral sequence of 1.21 for the homotopy of
T (m− 1)p−1 below dimension p3|vm|. There are still no room for Adams-Novikov
differentials, so the homotopy and Ext calculations coincide. For m = 1 this com-
putation was the subject of [Rav85] and [Rav86, §7.3].

It is only when we pass from T (m − 1)p−1 to T (m − 1)0 = T (m − 1) that we
encounter Adams-Novikov differentials below dimension p2|vm+1|. For m = 1 the
first of these is the Toda differential

d2p−1(βp/p) = α1β
p
1

of [Tod67] and [Tod68]. We have established a partially analogous differential for
m > 1 in [Rav].

Theorem 0.1. The first nontrivial differential in the Adams–Novikov spectral se-
quence for the spectrum T (1) at an odd prime p is

d2p−1(b3,0) = h2,0b
p
2,0

where b3,0 ∈ E2,2p4−2p
2 .

For m > 1 the first nontrivial differential in the Adams–Novikov spectral sequence
for the spectrum T (m) at an odd prime p is

d2p−1(v̂1b̂2,0) = v2ĥ1,0b̂
p
1,0

where v̂1b̂2,0 ∈ E2,2p3ω+2pω−2p−2
2 . In this case there is also a nontrivial group

extension in π∗(T (m)), namely

pb̂2,0 = v2b̂
p
1,0.

For p = 3 this is illustrated for m = 1 and m = 2 in Figures 1 and 2 respectively.

This paper owes much to some stimulating conversations with Hirofumi Nakai
and to the hospitality provided by Johns Hopkins University and the Japan-U.S.
Mathematical Institute during its program on Recent Progress in Homotopy The-
ory.

1. Basic algebraic methods

We refer to [Rav86, A1] for the definitions of Hopf algebroids, comodules, and
and related objects.

First we define some Hopf algebroids that we will need.
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Figure 1. The Adams-Novikov E2-term for T (1) at p = 3 in di-
mensions ≤ 154, showing the first nontrivial differential. Elements
on the 0- and 1-lines divisible by v1 are not shown. Elements on
the 2-line and above divisible by v2 are not shown.

Definition 1.1. Γ(m+ 1) is the quotient BP∗(BP )/(t1, t2, . . . , tm),

A(m) = BP∗2Γ(m+1)BP∗ = Z(p)[v1, v2, . . . , vm]

and

G(m+ 1, k − 1) = Γ(m+ 1)2Γ(m+k+1)BP∗ = A(m+ k)[tm+1, tm+1 . . . , tm+k]

We abbreviate G(m+ 1, 0) by G(m+ 1). It will be understood that G(m+ 1,∞) =
Γ(m+ 1).

In particular, Γ(1) = BP∗(BP ).
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Figure 2. The Adams-Novikov E2-term for T (2) at p = 3 in
dimensions ≤ 530. Elements on the 0- and 1-lines divisible by v1

or v2 are not shown. Elements on the 2-line and above divisible by
v2 or v3 are not shown except for v3b4,0 and v2h3,0b

3
3,0, the source

and target of the first differential.

Proposition 1.2. G(m+ 1, k− 1)→ Γ(m+ 1)→ Γ(m+k+ 1) is a Hopf algebroid
extension [Rav86, A1.1.15]. Given a left Γ(m+ 1)-comodule M there is a Cartan-
Eilenberg spectral sequence [Rav86, A1.3.14] converging to ExtΓ(m+1)(BP∗,M) with

Es,t2 = ExtsG(m+1,k−1)(A(m+ k),ExttΓ(m+k+1)(BP∗,M))

and dr : Es,tr → Es+r,t−r+1
r .
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Corollary 1.3. Let M be a Γ(m+1)-comodule concentrated in nonnegative dimen-
sions. Then

ExtΓ(m+k+1)(BP∗,M) = ExtΓ(m+1)(BP∗, G(m+ 1, k − 1)⊗A(m+k) M).

In particular, Exts,tΓ(m+1)(BP∗,M) for t < 2(pm+1−1) is isomorphic to M for s = 0
and vanishes for s > 0. Moreover for the spectrum T (m) constructed in [Rav86,
6.5] and having BP∗(T (m)) = BP∗[t1, . . . , tm],

ExtBP∗(BP )(BP∗, BP∗(T (m))) = ExtΓ(m+1)(BP∗, BP∗).

The following characterization of the Cartan-Eilenberg spectral sequence is a
special case of [Rav86, A1.3.16].

Lemma 1.4. The Cartan-Eilenberg spectral sequence of 1.2 is the one associated
with the decreasing filtration of the cobar complex CΓ(m+1)(BP∗,M) (see below)
defined by saying that

γ1 ⊗ · · · ⊗ γs ⊗ m ∈ CsΓ(m+1)(BP∗,M)

is in F i if i of the γ’s project trivially to Γ(m+ k + 1).

The method of infinite descent for computing ExtBP∗(BP )(BP∗,M) for a connec-
tive comodule M (e.g. the BP-homology of a connective spectrum) is to compute
over Ext over Γ(m+ 1) by downward induction on m. To calculate through a fixed
range of dimensions k, we choose m so that k ≤ 2(pm+1 − 1) and use 1.3 to start
the induction. For the inductive step we could use the Cartan-Eilenberg spectral
sequence of 1.2, but it is more efficient to use a different spectral sequence, which
we now describe.

The theory of the chromatic spectral sequence of [Rav86, 5.1] generalizes immedi-
ately to Γ(m+1)-comodules. Recall [Rav86, A1.2.11] that for a left Γ-comodule M ,
the cobar resolution D∗Γ(M) is the cochain complex with Ds

Γ(M) = Γ⊗AΓ
⊗s⊗AM ,

where Γ = ker ε, and

ds(γ0 ⊗ γ1 ⊗ . . .⊗ γs ⊗m)

=
s∑
i=0

(−1)iγ0 ⊗ . . .⊗ γi−1 ⊗∆(γi)⊗ γi+1 ⊗ . . .⊗m+

(−1)s+1γ0 ⊗ . . .⊗ γs ⊗ ψ(m).

The cobar complex C∗Γ(M) is A2ΓD
∗
Γ(M). When Γ = Γ(m + 1), we can define

the chromatic cobar complex CC∗Γ(m+1)(BP∗) as in [Rav86, 5.1.10]; the additive
structure of the latter is given by

CCsΓ(m+1)(M) =
⊕

0≤n≤s

Cs−nΓ(m+1)(M
n ⊗BP∗ M).

Similarly we can define the chromatic cobar resolution CD∗Γ(m+1)(BP∗) additively
by

(1.5) CDs
Γ(m+1)(M) =

⊕
0≤n≤s

Ds−n
Γ(m+1)(M

n ⊗BP∗ M)

with a suitable coboundary. Here Mn denotes the nth chromatic comodule of
[Rav86, 5.1.5] defined inductively by short exact sequences

(1.6) 0→ Nn →Mn → Nn+1 → 0
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where N0 = BP∗ and Mn = v−1
n Nn. Every element of Nn and Mn is annihilated

by a power of the invariant prime ideal In = (p, v1, . . . , vn−1). We denote elements
in these comodules by fractions of the form

(1.7)
x

pe0ve11 . . . v
en−1
n−1

where x is in BP∗ (respectively v−1
n BP∗) but not in In, and all exponents in the

denominator are positive. We call such an expression a chromatic fraction. It is
killed by multiplication by any element in BP∗ which leads to a fraction where the
denominator has one or more nonpositive exponents.

Definition 1.8. A comodule M over a Hopf algebroid (A,Γ) is weak injective
(through a range of dimensions) if Exts(M) = 0 for s > 0.

We will study the properties of such comodules in the next section.

Definition 1.9. For a left G(m + 1, k − 1)-comodule M let r̂j : M → Σj|tm+1|M
be the group homomorphism defined by

M G(m+ 1, k − 1)⊗M Σj|tm+1|M//
ψM //

ρj⊗M

where ρj : G(m + 1, k − 1) → A(m + k) is the A(m + k)-linear map sending tjm+1

to 1 and all other monomials in the tm+i to 0.
We will refer to this map as a Quillen operation.

It follows that
ψ(x) =

∑
j

tjm+1 ⊗ r̂j(x) + . . . ,

where the missing terms involve t` for ` > m+ 1.

Lemma 1.10. The Quillen operation r̂j of 1.9 is a comodule map and for j > 0 it
induces the trivial endomorphism in Ext.

Proof. The fact that r̂j is a comodule map is equivalent to the commutativity of
the following diagram, in which we abbreviate G(m+ 1, k − 1) by Γ.

M Γ⊗M Σj|tm+1|M

Γ⊗M Γ⊗ Γ⊗M Γ⊗ Σj|tm+1|M

//
ψM

��

ψM

//
ρj⊗M

��

Γ⊗ψM

��

ψ
Σj|tm+1|M

//
ψΓ⊗M

//
ρj⊗Γ⊗M

The left hand square commutes by the coassociativity of ψ, and the commutativity
of the right hand square is obvious.

To show that r̂j induces the trivial endomorphism of Ext groups we start with
Ext0. An element in Ext0(M) ⊂ M is by definition in the kernel of r̂j for j > 0.
Now consider the short exact sequence of comodules

0→M → Γ⊗M → Γ⊗M → 0.

Since Γ⊗M is weak injective, the long exact sequence of Ext groups reduces to a
4-term sequence

0→ Ext0(M)→M → Ext0(Γ⊗M)→ Ext1(M)→ 0
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and isomorphisms
Exti(Γ⊗M) ∼= Exti+1(M)

for i > 0. Thus the triviality of r̂j in Ext0 implies its triviality in all higher Ext
groups. �

Definition 1.11. Let Thm ⊂ G(m + 1, k − 1) denote the sub-A(m + k)-module
generated by {tjm+1 : 0 ≤ j ≤ h}. A G(m + 1, k − 1)-comodule M is i-free if the
comodule tensor product T p

i−1
m ⊗A(m+k) M is weak injective.

We have suppressed the index k from the notation Thm because it will usually
be clear from the context. In the case k = ∞ the Ext group has the topological
interpretation given in Lemma 1.15 below. The following lemma is useful in dealing
with such comodules.

Lemma 1.12. For a left G(m+ 1)-comodule M , the group

Ext0
G(m+1)(A(m+ 1), T p

i−1
m ⊗A(m+k) M)

is isomorphic as an A(m)-module to

L =
⋂
j≥pi

ker r̂j ⊂M.

Proof. We will show that the map

L −→ Ext0
G(m+1)(A(m+ 1), T p

i−1
m ⊗A(m+1) M)

L 3 y 7→ (1⊗ c)ψM (y)

is an isomorphism.
Let y ∈ L, then we claim that

(c⊗ 1)ψM (y) =
∑

0≤j<pi c(tjm+1)⊗ r̂j(y)
=

∑
0≤j<pi(−1)jtjm+1 ⊗ r̂j(y)

is primitive. This will follow from the commutativity of the following diagram for
an arbitrary comodule M over a Hopf algebroid Γ.

(1.13)

M Γ⊗M Γ⊗M

Γ⊗M Γ⊗ Γ⊗ Γ⊗M

Γ⊗M Γ⊗ Γ⊗ Γ⊗M

Γ⊗ Γ⊗M

//
ψ

��

ψ

//
c⊗M

��

∆⊗ψ

��

c⊗M
��

Γ⊗t⊗M

**TTTTTTTTTTTTTTTTTT

��

µ⊗Γ⊗M

In this diagram, t denotes the transposition map, µ denotes the multiplication in Γ,
and the unlabelled map sends γ⊗m to 1⊗γ⊗m. The composite in the right column
is the comodule structure on Γ⊗M . Thus the commutativity of the diagram means
that c(m′)⊗ m′′ ∈ Γ⊗M is a comodule primitive, where m′ ⊗ m′′ denotes ψ(m).
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The see that the diagram commutes we use the fact that a Γ-comodule M is
formally dual to a set X acted on by a groupoid G. For (g1, g2, x) ∈ G×G×X, in
the dual diagram we have

g−1
2 (x)

(
g−1

2 g−1
1 , g1(x)

)
(g1g2, g1(x))

(
g−1

2 , x
)

(g1, g2, g1, x)

(g2, x) (g1, g1, g2, x)

(g1, g2, x) ,

oo oo

OO OO

OO OO

OO
kkWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

and the commutativity of (1.13) follows.
Conversely, we can show that any primitive x ∈ G(m+1)⊗M is written uniquely

in this form, i.e., that

Ext0
G(m+1)(G(m+ 1)⊗M) ∼= M.

Let x =
∑
j≥0 t

j
m+1⊗xj be primitive and assume inductively that xj = (−1)jrj(x0)

for j < l. (This is trivially true for j = 0).
The Cartan formula implies that

r̂l(x) =
∑
t,j≥0

r̂t(t
j
m+1)⊗ r̂l−t(xj).

Moreover, for tjm+1 ∈ T p
i−1

m we can deduce the formula

r̂t(t
j
m+1) =

(
j

t

)
tj−tm+1

by its comodule structure, and for y ∈M

r̂s(r̂t(y)) =
(
s+ t

s

)
r̂s+t(y)

by the comodule associativity of M .
Because x is primitive, we have r̂l(x) = 0 for l > 0. Thus we have

0 = r̂l(x) =
∑
t,j≥0

r̂t(t
j
m+1)⊗ r̂l−t(xj) =

∑
t,j≥0

(
j

t

)
tj−tm+1 ⊗ r̂l−t(xj).

Collecting terms where the exponent of tm+1 is zero (i.e., t = j) gives

0 =
∑
r̂l−j(xj)

= xl +
∑
j<l r̂l−j(xj)

= xl +
∑
j<l(−1)l−j r̂l−j(r̂j(x0)) by the assumption

= xl +
∑
j<l(−1)l−j

(
l
j

)
r̂l(x0)

Using the identity
∑
j(−1)l

(
l
j

)
= 0, we obtain xl = (−1)lr̂l(x0) as desired.
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Since T p
i−1

m ⊗M ⊂ G(m+ 1)⊗M , a primitive in it must have the same form,
which implies that r̂t(x0) = 0 for t ≥ pi, i.e., that x0 ∈ L. �

Lemma 1.14. Let D be a weak injective comodule over Γ(m+1). Then T p
i−1

m ⊗D
is also weak injective with

Ext0
Γ(m+1)(T

pi−1
m ⊗ D) ∼= A(m)

{
tjm+1 : 0 ≤ j ≤ pi − 1

}
⊗ Ext0

Γ(m+1)(D).

Given x0 ∈ Ext0
Γ(m+1)(D), the element isomorphic to tjm+1 ⊗ x0 is∑

0≤k≤j

(−1)k
(
j

k

)
tkm+1 ⊗ xj−k ∈ T p

i−1
m ⊗ D

where xj ∈ D satsifies

ψ(xj) =
∑

0≤k≤j

(
j

k

)
tj−km+1 ⊗ xk.

Proof. The comodule T p
i−1

m has a skeletal filtration in which Fk is the sub-A-
module generated by elements in dimensions ≤ k. Since T p

i−1
m is free over A, each

subquotient Fk/Fk−1 is a direct sum of a finite number of copies of ΣkA.
We can compute ExtΓ(m+1)(T p

i−1
m ⊗D) in terms of ExtΓ(m+1)(D) by a spectral

sequence based on the skeletal filtration of T p
i−1

m . It must collapse since D has no
higher Ext groups, giving the desired isomorphism.

It follows from Lemma 2.2 below that D is also weak injective over Γ(m + 2)
and that Ext0

Γ(m+2)(D) is weak injective over G(m+ 1). Given x0 ∈ Ext0
Γ(m+1)(D)

we will construct elements xj ∈ Ext0
Γ(m+2)(D) as advertized by induction on j.

Suppose we have found xk for k < j. Then the expression

yj =
∑

0≤k<j

(
j

k

)
tj−km+1 ⊗ xk

is a cocycle in the cobar complex CΓ(m+1)(D). If it is not a coboundary, then it
represents a nontrivial element in Ext1, contradicting the weak injectivity of D.
Hence there must be an element xj with the desired property.

Then we find that

r̂k(xj) =
(
j

k

)
xj−k,

and a calculation similar to the one in the proof of Lemma 1.12 shows that for
j < pi, the element∑

0≤k≤j

(−1)ktkm+1 ⊗ r̂k(xj) =
∑

0≤k≤j

(−1)k
(
j

k

)
tkm+1 ⊗ xj−k

= (−1)jtjm+1 ⊗ x0 + . . .

is the desired primitive. �
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Lemma 1.15. For each nonnegative m and h there is a spectrum T (m)h where
BP∗(T (m)h) ⊂ BP∗(BP ) is a free module over

BP∗(T (m)) = BP∗[t1, . . . , tm]

on generators {tjm+1 : 0 ≤ j ≤ h}. Its Adams-Novikov E2-term is

ExtBP∗(BP )(BP∗, BP∗(T (m)h)) ∼= ExtΓ(m+1)(BP∗, T
h
m).

Proof. We will construct these spectra by induction on h. Recall that T (m) =
T (m)0 is a p-local summand of the Thom spectrum X(pm+1 − 1) associated with
the map

ΩSU(pm+1 − 1)→ ΩSU = BU.

This is proved in [Rav86, §6.5]. We have a fibration

ΩSU(pm+1 − 1)→ ΩSU(pm+1)→ ΩS2pm+1−1,

and T (m + 1) is a p-local summand of X(pm+1). We know that ΩS2pm+1−1 is
homotopy equivalent to the the James construction J∞S

2pm+1−2, which is a CW-
complex with one cell in each dimension divisible by 2pm+1 − 2. Its (2pm+1 − 2)h-
skeleton is denoted by JhS2pm+1−2 and is a certain topological quotient (originally
defined by I. M. James) of the h-fold Cartesian product of S2pm+1−2. Thus we have
a diagram

ΩSU(pm+1 − 1) ΩSU(pm+1) ΩS2pm+1−1

ΩSU(pm+1 − 1) Bh JhS
2pm+1−2.

// //

// //

OO OO

i

where the bottom row is the fibration induced from the top row by the inclusion i.
We will construct T (m)h as a p-local summand of the Thom spectrum Fh associated
with Bh.

We have a cofiber sequence

Fh−1 → Fh → Σ(2pm+1−2)hX(pm+1 − 1).

Assuming inductively that T (m)h−1 is a p-local summand of Fh−1, we get the
following diagram in which all spectra have been localized at p.

Fh−1 Fh Σ(2pm+1−2)hX(pm+1 − 1)

T (m)h−1 F ′h Σ(2pm+1−2)hX(pm+1 − 1)

T (m)h−1 T (m)h Σ(2pm+1−2)hT (m)

//

��

//

��

// //

// //

OO OO

The two lower rows are cofiber sequences and each is induced from the one above
it by the evident map. �
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To pass from ExtG(m+1,k−1)(T p
i+1−1

m ⊗M) to ExtG(m+1,k−1)(T p
i−1

m ⊗M) we can
make use of the tensor product (over A(m+ k)) of M with the long exact sequence

(1.16) 0→ T p
i−1

m R0 R1 R2 · · · ,//i //d0
//d1

//d2

where

R2s+e = Σ(ps+e)2pi(pm+1−1)T p
i+1−1

m for e = 0, 1

and ds =
{
r̂pi for s even
r̂(p−1)pi for s odd,

which leads to a spectral sequence as in [Rav86, A1.3.2].

Theorem 1.17. For a G(m + 1, k − 1)-comodule M there is a spectral sequence
converging to ExtG(m+1,k−1)(M ⊗ T p

i−1
m ) with

E∗,t1 = E(hm+1,i)⊗ P (bm+1,i)⊗ ExttG(m+1,k−1)(T
pi+1−1
m ⊗M)

with hm+1,i ∈ E1,0
1 , bm+1,i ∈ E2,0

1 , and dr : Es,tr → Es+r,t−r+1
r . If M is (i+ 1)-free

in a range of dimensions, then the spectral sequence collapses from E2 in the same
range.

Moreover d1 is induced by the action on M of r̂pi∆m+1 for s even and r̂(p−1)pi

for s odd.
The action of d1 is as follows. Let

x =
∑

0≤j<pi+1

tjm+1 ⊗ mj ∈ T p
i+1−1

m ⊗M

Then d1 is induced by the endomorphism

x 7→


−

∑
0≤k<pi

∑
k≤j<pi+1

(
j

k

)
tj−km+1 ⊗ r̂(pi−k)(mj) for s even

−
∑

0≤k<(p−1)pi

∑
k≤j<pi+1

(
j

k

)
tj−km+1 ⊗ r̂((p−1)pi−k)(mj) for s odd.

We will refer to this as the small descent spectral sequence.

Proof. Additively this spectral sequence is a special case of the one in [Rav86,
A1.3.2] associated with M tensored with the long exact sequence (1.16), and the
collapsing for (i + 1)-free M follows from the fact that the spectral sequence is in
that case concentrated on the horizontal axis.

For the identification of d1, note that by (1.16) it is induced by the endomorphism

x 7→


∑

0≤j<pi+1

r̂pi(tjm+1)⊗ mj for s even∑
0≤j<pi+1

r̂(p−1)pi(tjm+1)⊗ mj for s odd

=


∑

pi≤j<pi+1

(
j

pi

)
tj−p

i

m+1 ⊗ mj for s even

∑
(p−1)pi≤j<pi+1

(
j

(p− 1)pi

)
t
j−(p−1)pi

m+1 ⊗ mj for s odd.
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It follows from Lemma 1.10 that r̂pi∆m+1 and r̂(p−1)pi∆m+1 each induce trivial en-
domorphisms in Ext, so d1 is also induced by

x 7→


−r̂pi(x) +

∑
0≤j<pi+1

r̂pi(tjm+1)⊗ mj for s even

−r̂(p1)pi(x) +
∑

0≤j<pi+1

r̂(p−1)pi(tjm+1)⊗ mj for s odd,

which leads to the stated formula.
The multiplicative structure requires some explanation. The elements hm+1,i

and bm+1,i correspond under Yoneda’s isomorphism [HS70, page 155] to the tensor
product of M with the exact sequences

0→ T p
i−1

m → T 2pi−1
m → Σp

i|tm+1|T p
i−1

m → 0
and

0→ T p
i−1

m → T p
i+1−1

m → Σp
i|tm+1|T p

i+1−1
m → Σp

i+1|tm+1|T p
i−1

m → 0

respectively. Products of these elements correspond to the splices of the these. It
follows that these two elements are permanent cycles and that the spectral sequence
is one of modules over the algebra E(hm+1,i)⊗ P (bm+1,i). �

In practice we will find higher differentials in this spectral sequence by computing
in the cobar complex CG(m+1,k−1)(M⊗T p

i−1
m ) or its subcomplex CG(m+1,k−1)(M).

As explained in [Rav86, proof of A1.3.2], it can be embedded by a quasi-isomorphism
(i.e., a map inducing an isomorphism in cohomology) into the double complex
B = ⊕Bs,t≥0 defined by

Bs,t = CtG(m+1,k−1)(M ⊗ R
s)

with coboundary
∂ = d+ (−1)sds,

where d is the coboundary operator in the cobar complex. Our spectral sequence
is obtained from the filtration of B by horizontal degree, i.e., the one defined by

(1.18) F rB =
⊕

s≥r,t≥0

Bs,t.

Theorem 1.17 also has a topological counterpart in the case M = BP∗. Before
stating it we need to define topological analogs of the operations r̂pi and r̂(p−1)pi .
One can show that there are cofiber sequences

(1.19) T (m)pi−1 → T (m)pi+1−1 → Σ2pi(pm+1−1)T (m)pi(p−1)−1

and

(1.20) T (m)pi(p−1)−1 → T (m)pi+1−1 → Σ2pi(p−1)(pm+1−1)T (m)pi−1.

We define
T (m)pi+1−1 Σ2pi(pm+1−1)T (m)pi+1−1

//
ρpi

and
T (m)pi+1−1 Σ2pi(p−1)(pm+1−1)T (m)pi+1−1

//
ρpi(p−1)
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to be the composites

T (m)pi+1−1 → Σ2pi(pm+1−1)T (m)pi(p−1)−1 → Σ2pi(pm+1−1)T (m)pi+1−1

and

T (m)pi+1−1 → Σ2pi(p−1)(pm+1−1)T (m)pi−1 → Σ2pi(p−1)(pm+1−1)T (m)pi+1−1.

Theorem 1.21. Let T (m)h be the spectrum of Lemma 1.15. There is a spectral
sequence converging to π∗(T (m)pi−1) with

Es,t1 = E(hm+1,i)⊗ P (bm+1,i)⊗ π∗(T (m)pi+1−1)

with hm+1,i ∈ E1,2pi(pm+1−1)
1 , bm+1,i ∈ E2,2pi+1(pm+1−1)

1 , and dr : Es,tr → Es+r,t−r+1
r .

Moreover d1 is ρpi for s even and ρ(p−1)pi for s odd. The elements hm+1,i and
bm+1,i are permanent cycles, and the spectral sequence is one of modules over the
ring

R = E(hm+1,i)⊗ P (bm+1,i)
We will refer to this as the topological small descent spectral sequence.

Proof. This the spectral sequence based on the Adams diagram

X ΣaX ′ ΣbX Σa+bX ′ . . .

Y ΣaY ΣbY Σa+bY
��
� �
� �
� �
� �
� �

oo

��
� �
� �
� �
� �
� �

oo

��
� �
� �
� �
� �
�

oo

��
� �
� �
� �
� �
�

oo

where

a = 2pi(pm+1 − 1)− 1,

b = 2pi+1(pm+1 − 1)− 2,
X = T (m)pi−1,

X ′ = T (m)pi(p−1)−1,

and Y = T (m)pi+1−1.

We will show that the elements hm+1,i and bm+1,i can each be realized by maps
of the form

S0 X Σ−?X// //
f

For hm+1,i, f is the boundary map for the cofiber sequence

T (m)p
i−1 → T (m)2pi−1 → Σh+1T (m)p

i−1,

and for bm+1,i it is the composite (in either order) of the ones for (1.19) and (1.20).
�

Example 1.22. When m = i = 0, the spectrum T (m)pi−1 is S0 while T (m)pi+1−1

is the p-cell complex

Y = S0 ∪α1 e
q ∪α1 e

2q · · · ∪α1 e
(p−1)q,

where q = 2p− 2. The E1-term of the spectral sequence of Theorem 1.21 is

E(h1,0)⊗ P (b1,0)⊗ π∗(Y ).
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where h1,0 and b1,0 represent the homotopy elements α1 and β1 (α2
1 for p = 2)

respectively.

We will use this spectral sequence through a range of dimensions in the following
way. For each spectrum T (m)pi+1−1 the elements of Adams-Novikov filtration 0
and 1 are all permanent cycles, so we ignore them, replacing π∗(T (m)pi+1−1) by
an appropriate subquotient of ExtΓ(m+1)(E

2
m+1 ⊗ T p

i+1−1
m ). Let N be a list of

generators of this group arranged by dimension. When an element x has order
greater than p, we also list its nontrivial multiples by powers of p. Thus

N⊗ E(hm+1,i)⊗ P (bm+1,i)

contains a list of generators of the E1-term in our range. Rather than construct
similar lists for each Er term we use the following method.

Procedure 1.23. We make two lists I (input) and O (output). I is the subset
of N ⊗ E(hm+1,i) that includes all elements in our range. Then O is constructed
by dimensional induction starting with the empty list as follows. Assuming O has
been constructed through dimensions k− 1, add to it the k-dimensional elements of
I. If any of them supports a nontrivial differential in the spectral sequence, remove
both the source and target from O. (It may be necessary to alter the list of (k− 1)-
dimensional elements by a linear transformation so that each nontrivial target is a
“basis” element.) Then if k > |bm+1,i|, we append the product of bm+1,i with each
element of O in dimension k − |bm+1,i|. This completes the inductive step.

Note that each element in E1 of filtration greater than 1 is divisible by bm+1,i.
Since the spectral sequence is one of R-modules, that same is true of each Er. In
1.23 we compute the differentials originating in filtrations 0 and 1. If dr(x) = y is
one of them, there is no chance that for some minimal t > 0

dr′(x′) = btm+1,iy with r′ < r

because such an x′ would have to be divisible by bm+1,i. This justifies the removal
of btm+1,ix and btm+1,iy for all t ≥ 0 from consideration.

2. Weak injective comodules

In this section we will study comodules M over a general Hopf algebroid (A,Γ)
over Z(p). We will abbreviate ExtΓ(A,M) by Ext(M).

The definition 1.8 of a weak injective should be compared with other notions of
injectivity. A comodule I (or more generally an object in an abelian category) is
injective if any homomorphism to it extends over monomorphisms, i.e., if one can
always fill in the following diagram.

I

0 M N//

OO

//i

__

This definition is rather limiting. For example if A is a free Z(p)-module, then an
injective I must be p-divisible since a homomorphism A → I must extend over
A⊗ Q.

There is also a notion of relative injectivity [Rav86, A1.2.7] requiring I to be a
summand of Γ⊗A I, which implies that the diagram above can always be completed



16 DOUGLAS C. RAVENEL

when i is split over A. This implies weak injectivity as we have defined it here (see
[Rav86, A1.2.8 (b)]), but we do not know if the converse is true. In any case
the requirements of our definition can be said to hold only through a range of
dimensions.

Lemma 2.1. A connective comodule M over (A,Γ) is weak injective in a range of
dimensions iff Ext1(M) = 0 in the same range.

Proof. The comodule Γ⊗AM is weak injective with

Ext0(Γ⊗AM) = M.

From the short exact sequence

0 M Γ⊗AM N 0// //
ψ

// //

(where ψ is the comodule structure map for M) we see that for s > 0,

Exts(N) ∼= Exts+1(M).

Γ has a skeletal filtration {Ft} with F0 = A and each subquotient Ft/Ft−1 is a
direct sum of finitely many copies of the same suspension of A. We conclude by
induction on t that Ext1(M ⊗A Ft/F0) = 0. Passing to the limit gives

0 = Ext1(N) = Ext2(M).

Arguing by induction on s we conclude that Exts(N) = 0 for all s > 0 (making
N a weak injective), so Exts(M) = 0 for all s > 1. Hence M is weak injective as
claimed. �

Lemma 2.2. Let
(D,Φ)→ (A,Γ)→ (A,Σ)

be an extension [Rav86, A1.1.15] of graded connected Hopf algebroids of finite type,
and suppose that M is a weak injective comodule over Γ. Then M is also weak
injective over Σ, and Ext0

Σ(A,M) is weak injective over Φ with

Ext0
Φ(D,Ext0

Σ(A,M)) ∼= Ext0
Γ(A,M).

Proof. The change-of-rings-isomorphism [Rav86, A1.3.12] says that

(2.3) ExtΣ(A,M) ∼= ExtΓ(A,Γ2ΣM).

We also know by [Rav86, A1.1.17] that

Γ ∼= Φ⊗D Σ

as Σ-comodules. It follows that

Γ2ΣM ∼= (Φ⊗D Σ)2ΣM ∼= Φ⊗D M.

Recall that Φ has a skeletal filtration in which Fk is the sub-D-module generated
by elements of dimension ≤ k and each Fk/Fk−1 is a direct sum of finitely many
copies of ΣkD. It follows that the skeletal filtration on Φ induces a filtration on
Γ2ΣM in which each subquotient is a finite direct sum of copies of suspensions of
M . From this we can infer that Γ2ΣM is weak injective over Γ, and therefore (by
(2.3)), M is weak injective of Σ as claimed.



THE METHOD OF INFINITE DESCENT I 17

Now consider the Cartan-Eilenberg spectral sequence for the extension in ques-
tion, with

E2 = ExtΦ(D,ExtΣ(A,M)).

Since M is weak injective over Σ, this reduces to an isomorphism

ExtΓ(A,M) = ExtΦ(D,Ext0
Σ(A,M)).

Since M is weak injective over Γ, N = Ext0
Σ(A,M) is weak injective over Φ with

Ext0(N) as claimed. �

In order to proceed further we need a method of recognizing weak injectives
without computing any higher Ext groups. Here is a useful technical tool.

Definition 2.4. Let H be a graded connected torsion abelian p-group of finite type,
and let Hi have order phi . Then the Poincaré series for H is h(t) = Σhiti.

Example 2.5. Let I ⊂ BP∗ be the maximal ideal so that BP∗/I = Z/(p). Then
the Poincaré series for Γ(m+ 1)/I is

Gm(t) =
∏
i>0

(1− t|vm+i|)−1.

Theorem 2.6. Let (A,Γ) be a graded connected Hopf algebroid over Z(p), and let
M be a connected torsion Γ-comodule of finite type. Let I ⊂ A be the maximal ideal
(so that A/I = Z/(p)). Then

g(M) ≤ g(Ext0(M))g(Γ/I),

meaning that each coefficient of the power series on the left is dominated by the
corresponding one on the right, with equality holding if and only if M is a weak
injective (1.8).

Proof. We will construct a decreasing filtration {F i} on M such that the associated
bigraded comodule E0M is annihilated by I and Ext0(E0M) = E0Ext0(M), so
that Ext0(E0M) has the same Poincaré series as Ext0(M). Then we will prove the
lemma by by showing it is true for E0M .

For any comodule M as above we will construct a subcomodule M ′ ⊂ M con-
taining IM such that Ext0(IM) = Ext0(M ′) and the short exact sequence

(2.7) 0→M ′ →M →M ′′ → 0

induces a short exact sequence in Ext0. Then the desired filtration can be defined
by F k+1M = (F kM)′.

Define short exact sequences

0→M ′i →M →M ′′i → 0

inductively as follows. Let M ′0 = IM and let Ki = Ext0(M ′′i )/im Ext0(M). Since
M ′′i is annihilated by I we can choose a splitting Ki → Ext0(M ′′i ). Ki is then a
sub A-module and therefore a subcomodule (with trivial Γ-coaction)) of M ′′i and
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we can define M ′′i+1 = M ′′i /Ki. Then we have short exact sequences

0 M ′i M ′i+1 Ki 0

0 M ′i M M ′′i 0

// //

� �
� �
� �
�

� �
� �
� �
�

//

��
� �
� �
� �
� �

//

��
� �
� �
� �
� �

// // // //

Ki was chosen so that Ext0(Ki) maps monomorphically to Ext1(M ′i), so Ext0(M ′i) =
Ext0(M ′i+1). It follows that Ext0(IM) = Ext0(M ′) where M ′ = lim→M ′i .

Now we need to show that Ext0(M) maps onto Ext0(M ′′) where M ′′ = lim→M ′′i .
Consider the following diagram with exact rows and columns.

0 0

Ki Ki

Ext0(M) Ext0(M ′′i ) Ext1(M ′i)

Ext0(M) Ext0(M ′′i+1) Ext1(M ′i+1)

�� ��

�� ��

// //

�� $$JJJJJJJJJJJJJJ

α

zz

β

��

// //

The map α is trivial because the two maps to Ext1(M ′i) have the same image, so
the lifting β exists. When we pass to the limit it induces a splitting map

Ext0(M ′′)→ Ext0(M),

so (2.7) induces a short exact sequence in Ext0 as claimed.
Defining F k+1M = (F kM)′ gives a decreasing filtration of M subordinate to the

I-adic filtration (in the sense that E0M is annihilated by I) with Ext0(E0M) =
E0Ext0(M). Hence it suffices to prove the lemma for E0M , in other words for
comodules N annihilated by I.

Assume this N is (t− 1)-connected and let N t be its t-skeleton. The A-module
splitting N → N t induces a comodule splitting Γ⊗N → Γ⊗N t. Let f : N → Γ⊗N t

denote the composite of this map with the comodule structure map on N . Let Ñ
and N denote the kernel and image of f , so we have a short exact sequence

0→ Ñ → N → N → 0

with N t ⊂ N ⊂ Γ/I ⊗ N t. It follows that Ñ is more highly connected than N and
that Ext0(N) is a quotient of Ext0(N). Let g(M) denote the Poincaré series for
M . Then

g(N) ≤ g(Ext0(N))g(Γ/I).



THE METHOD OF INFINITE DESCENT I 19

We can define a complete decreasing filtration on N (different from the one we
defined on M earlier) by F i+1N = F̃ iN . Then we have

g(N) =
∑
i≥0

g(F iN/F i+1N)

=
∑
i≥0

g(F iN)

≤
∑
i≥0

g(Ext0(F iN))g(Γ/I) since F iN ⊂ Ext0(F iN)⊗ Γ/I

= g(Ext0(N))g(Γ/I)

as claimed.
Now suppose we have equality above, i.e., for each i

g(F iN) = g(Ext0(F iN))g(Γ/I).

Since F iN ⊂ Ext0(F iN)⊗Γ/I, this means that F iN = Ext0(F iN)⊗Γ/I, which is
a weak injective. Then a standard filtration argument says that N is itself a weak
injective as claimed. Finally a similar argument says that the weak injectivity of
each subquotient of M above implies that of M itself.

Conversely, suppose that M is weak injective. Since the short exact sequence
(2.7) induces a short exact sequence in Ext0, it follows that Ext1(M ′) = 0, so M ′

is weak injective, as is M ′′. Thus each subquotient in our filtration of M is weak
injective. Thus it suffices to prove that if N is a weak injective annihilated by I,
then its Poincaré series satisfies the indicated equation.

For such an N we have

Ext1(A/I,N) = Ext1(A,N) = 0.

From this we can deduce that Ext1(L,N) = 0 for any connective L of finite type
annilihated by I. In particular the short exact sequence

0 N Γ⊗A N Γ⊗A N 0// //
ψ

// //

is split. This means we must have N ∼= Γ⊗A Ext0(N). �
It would be nice if for any comodule M one could find a map M →W to a weak

injective inducing an isomorphism in Ext0, but this is not always possible.

Example 2.8. Let (A,Γ) = (A(1), G(1)) and M = A/(p2). Then a simple calcu-
lation shows that

Ext0(M) = Z/(p2)[vp1 ]⊕ Z/(p)[vp1 ]{pv1, pv
2
1 , . . . , pv

p−1
1 }

so if such a W exists we would have

g(W ) =
(

1
1− t|v1|

)(
1

1− tp|v1|
+

1
1− t|v1|

)
.

Also for p ≥ 3, Ext1(M) is generated by the elements

(2.9)

{
vi−1

1 t1 + (p(i− 1)/2)vi−2
1 t21 : i ≥ 1

}
∪
{
pvpj−1

1 t1 : j ≥ 1
}

∪
{
pvi1t

pk

1 : i ≥ 0, k ≥ 1
}
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In order to kill the first of these we must adjoin a |v1|-dimensional element x1 to
A/(p2) with

ψ(x1) = t1 ⊗ 1 + 1⊗ x1.

This implies that v1−px1 is primitive, so in order to avoid enlarging Ext0 we must
have px1 = v1 or x1 = v1/p. Similarly we need to adjoin elements xi = vi1/p

i for
all i ≥ 1. These will kill all of the elements in Ext1 in the first two subsets listed
in (2.9). For the others we adjoin elements vi1ypj (for i ≥ 0 and j > 0) of order p
in dimension (pj + i)|v1| satisfying

ψ(ypj) = p
∑

0≤k≤j

(
j

k

)
tpj−pk1 ⊗ ypk where y0 = 1.

Adjoining these elements would give us a comodule W with the desired Poincaré
series. However the element pp

2−1xp2 = vp
2

1 /p is invariant and has order p3, so the
map M →W does not induce an isomorphism in Ext0.

3. A 4-term exact sequence

In this section we will consider various Γ(m+1)-comodules M and will abbreviate
ExtΓ(m+1)(BP∗,M) by ExtΓ(m+1)(M) or simply Ext(M).

Excluding the case m = 0 and p = 2, we will construct a diagram of 4-term
exact sequences of Γ(m+ 1)-comodules
(3.1)

0 BP∗ D0
m+1 D1

m+1 E2
m+1 0

0 BP∗ D0
m+1 v−1

1 E1
m+1 E1

m+1/(v
∞
1 ) 0

0 BP∗ M0 M1 N2 0

// // // //

��

//

��

// // //

��

//

��

//

��

// // // // //

where each vertical map is a monomorphism, M i and N2 are as in (1.6), the
Di
m+1 are weak injectives with Ext0(D0

m+1) = Ext0(BP∗), Ext0(D1
m+1)) contains

Ext1(BP∗), and E1
m+1 = D0

m+1/BP∗. Ext0(BP∗) and Ext1(BP∗) are given in 3.6
and 3.17 respectively.

We will construct the map from BP∗ to the weak injective D0
m+1, inducing an

isomorphism in Ext0 , explicitly in Theorem 3.12. For m > 0 we cannot construct
a similar map out of E1

m+1 = D0
m+1/BP∗. Instead we will construct a map to a

weak injective D1
m+1 which enlarges Ext0 by as little as possible. We will do this
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by producing a comodule E2
m+1 ⊂ E1

m+1/v
∞
1 and using the induced extension

(3.2)

0 E1
m+1 v−1

1 E1
m+1 E1

m+1/(v
∞
1 ) 0

0 E1
m+1 D1

m+1 E2
m+1 0

// // // //

// // //

OO

//

OO

The comodule E2
m+1 for m > 0 will be described in the next section. For m = 0

and p odd a map from E1
1 to a weak injective D1

1 inducing an isomorphism in Ext0

will be constructed in below in Lemma 4.1.
We will use the following notations for m > 0. We put hats over the symbols in

order to distinguish this notation from the usual one for elements in ExtBP∗(BP )(BP∗).
For m = 0 we will use similar notation without the hats.

(3.3)

 v̂i = vm+i, t̂i = tm+i, ω = pm,

ĥi,j = hm+i,j , and b̂i,j = bm+i,j .

We will show that in dimensions below p2|v̂1|, E2
m+1 is the A(m + 1)-module

generated by the set of chromatic fractions

(3.4)
{

v̂e22

pe0ve11

: e0, e1 > 0, e2 ≥ e0 + e1 − 1
}
,

and its Ext group in this range is

(3.5) A(m+ 1)/I2 ⊗ E(ĥ1,0)⊗ P (̂b1,0)⊗
{
v̂e22

pv1
: e2 ≥ 1

}
,

where ĥ1,0 ∈ Ext1,2(pω−1) corresponds to the primitive t̂1 ∈ Γ(m + 1), and b̂1,0 ∈
Ext1,2p(pω−1) is its transpotent. In both cases there is no power of v1 in the numer-
ator when m = 0. These statements will be proved below as Theorem 4.5.

An Adams-Novikov differential for T (m) originating in the 2-line would have to
land in filtration 2p+1, which is trivial in the is range of dimensions, so by proving
4.5 we have determined π∗(T (m)) in this range.

Our first goal here is to compute Ext0 and Ext1. The following generalization
of the Morava-Landweber theorem [Rav86, 4.3.2] is straightforward.

Proposition 3.6.

Ext0
Γ(m+1)(BP∗/In) = A(n+m)/In.

For n = 0 each of the generators is a permanent cycle.

Proof. The indicated elements are easily seen to be invariant in Γ(m + 1). In
dimensions less that |v̂1|−1, T (m) is homotopy equivalent to BP , so the generators
vi for i ≤ m are permanent cycles as claimed. �
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Theorem 3.7. Let Wm+1,n be the ring

Wm+1,n = Γ(m+ 1)/(p, v1, . . . , vn−1, ηR(vm+n+1), ηR(vm+n+2), . . . ).

It is weak injective over Γ(m + 1) and the map BP∗/In → Wm+1,n induces an
isomorphism in Ext0.

Proof. In the comodule algebra Γ(m+ 1)/In the ideal

(ηR(vm+n+1), (ηR(vm+n+2), . . . )

is invariant and regular. Let

Li = Γ(m+ 1)/(p, v1, . . . , vn−1, ηR(vm+n+1), . . . , (ηR(vm+n+i)),

so for each i ≥ 0 we have a short exact sequence

0→ Σ|vm+n+i|Li → Li → Li+1 → 0.

Since L0 = Γ(m+ 1)/In is weak injective with

Ext0(L0) = BP∗/In = A(m+ n)[vm+n+1, vm+n+2, . . . ]/In,

we can argue by induction on i that Li is weak injective with

Ext0(Li) = A(m+ n)[vm+n+i+1, vm+n+i+2, . . . ]/In.

Letting i go to infinity we get Wm+1,n with the desired properties. �

Example 3.8. If we replace In by an invariant regular ideal Jn with n genera-
tors, a similar construction will lead to a map from BP∗/Jn to a weak injective
Wm+1,Jn with Ext0 being A(m + 1)/Jn. In general this group is not the same as
Ext0(BP∗/Jn). The simplest nonprime example of such an ideal is (p2), which was
the basis for the counterexample 2.8.

Now we will give an alternate description of a map from BP∗ to a weak injective
D0
m+1 inducing an isomorphism in Ext0. We will leave it to the interested reader to

prove thatD0
m+1 = Wm+1,0. D0

m+1 was incorrectly described in the proof of [Rav86,
7.1.9] as BP∗[p−1v̂i : i > 0]. It is the sub-A(m)-algebra of p−1BP∗ generated by
certain elements λ̂m+i for i > 0 congruent to v̂i/p modulo decomposables.

To describe them we need to recall Hazewinkel’s formula [Haz77] relating poly-
nomial generators vi ∈ BP∗ to the coefficients `i of the formal group law, namely

(3.9) p`i =
∑

0≤j<i

`jv
pj

i−j .

This recursive formula expands to

`1 =
v1

p

`2 =
v2

p
+
vp+1

1

p2

`3 =
v3

p
+
v1v

p
2

p2
+
v2v

p2

1

p2
+
v1+p+p2

1

p3

...



THE METHOD OF INFINITE DESCENT I 23

We need to define reduced log coefficients ̂̀k obtained from the `m+k by subtracting
the terms which are monomials in the vj for j ≤ m. Thus for m = 1 we have

̂̀
1 =

v̂1

p

̂̀
2 =

v̂2

p
+
v1v̂

p
1

p2
+
v̂1v

p2

1

p2

...

The analog of Hazewinkel’s formula for these elements is

(3.10) p̂̀i =


0 if i ≤ 0∑
0≤j<i

`j v̂
pj

i−j +
∑

0<j<min(i,m+1)

̂̀
i−jv

pi−jω
j if i > 0.

We use these to define our generators λ̂i recursively for i > 0 by

(3.11) ̂̀
i =

∑
0≤j<i

`j λ̂
pj

i−j

Theorem 3.12. The BP∗-module D0
m+1 ⊂ p−1BP∗ described above is a subcomod-

ule over Γ(m+ 1) that is weak injective (1.8) with Ext0 = A(m).

Proof. We show first that it is a subcomodule. The right unit on the `m+i is given
by

ηR(`m+i) = `m+i +
∑

0≤j<i

`j t̂
pj

i−j .

Since `m+i and ̂̀i differ by terms that are invariant under ηR it follows that

(3.13) ηR(̂̀i) = ̂̀
i +

∑
0≤j<i

`j t̂
pj

i−j .

Using (3.11) we have

ηR(̂̀i) =
∑

0≤j<i

ηR(`j)ηR(λ̂p
j

i−j)

=
∑

0≤j<i

`jηR(λ̂p
j

i−j) +
∑

0≤j<i

∑
0≤k<j−m

`kt
pk

j−kηR(λ̂p
j

i−j)

Combining this with (3.13) and (3.11) gives∑
0≤j<i

`j λ̂
pj

i−j +
∑

0≤j<i

`j t̂
pj

i−j

=
∑

0≤j<i

`jηR(λ̂p
j

i−j) +
∑

0≤j<i

∑
0≤k<j−m

`kt
pk

j−kηR(λ̂p
j

i−j)

Summing over all i and reindexing, we can rewrite this as∑
i≥0, j>0

`i(λ̂
pi

j + t̂p
i

j ) =
∑

i≥0, j>0

`iηR(λ̂p
i

j ) +
∑

i≥0, j,k>0

`it̂
pi

j ηR(λ̂p
i+jω
k ).
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Applying the formal exponential to both sides gives∑
j>0

FF (λ̂j , t̂j) =
∑
j>0

F ηR(λ̂j) +F

∑
j,k>0

F t̂jηR(λ̂p
jω
k ),

so
∑
j>0

F ηR(λ̂j) =
∑
j>0

FF (λ̂j , t̂j)−F
∑
j,k>0

F t̂jηR(λ̂p
jω
k ).

We can use this to solve for ηR(λ̂j) by induction on j, and the answer lies in

Γ(m+ 1)⊗BP∗ D0
m+1.

A recursive formula is given by∑
0≤j<i

`jηR

(
λ̂p

j

i−j

)

=
∑

0≤j<i

`j

λ̂pj

i−j + t̂p
j

i−j −
∑

0<k<i−j−m

t̂p
j

k ηR

(
λ̂p

j+kω
i−j−k−m

) .(3.14)

This shows that D0
m+1 is a comodule over Γ(m+ 1) as claimed. In particular we

get

(3.15) ηR(λ̂i) ≡ λ̂i + t̂i mod decomposables.

We will show D0
m+1 is a weak injective by filtering it by powers of p, analyzing

the Poincaré series of each subquotient, and applying 2.6. Since D0
m+1 is free over

Z(p), all the subquotients are isomorphic and it suffices to analyze

D0
m+1/(p) = A(m)/(p)[λ̂1, λ̂2, . . .].

Note first that Ext0(D0
m+1) contains Ext0(BP∗) = A(m) as a subgroup. It

follows that Ext0(D0
m+1/(p)) contains A(m)/(p) as a subgroup. The Poincaré series

of D0
m+1/(p) is the same as that of Γ(m+1)/I⊗A(m)/(p), so the weak injectivity of

D0
m+1/(p) and hence D0

m+1 itself will follow from showing that its Ext0 contains no
additional elements. The comodule structure of D0

m+1 is partially given by (3.15);
a similar formula follows for each monomial in the λ̂i, and no linear combination
of them can be in Ext0. There are no additional elements in Ext0 and the weak
injectivity of D0

m+1 follows. �

For future reference will need the Poincaré series of E1
m+1 = D0

m+1/BP∗.

Lemma 3.16. Let

gm(t) =
∏

1≤i≤m

1
1− t|vi|

and Gm(t) =
∏
i>m

1
1− t|vi|

,

the series for A(m)/(p) and Γ(m+ 1)/I respectively. Then the Poincaré series for
E1
m+1 = D0

m+1/BP∗ is

gm(t)Gm(t)
∑
i>0

t|v̂i|

1− t|v̂i|
.
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Proof. We define the I-adic valuation || · || on BP∗ by setting ||p|| = ||vi|| = 1. It
can be extended to p−1BP∗, and by restriction to D0

m+1, in an obvious way. From
(3.11) we find that ||λ̂i|| = 0.

We have bigraded objects E0BP∗ and E0D
0
m+1 which can be described by

Poincaré series g̃(s, t) in two variables with s corresponding to the valuation. More
precisely, if M is a comodule with a decreasing filtration such that the associated
bigraded object E0M is torsion of finite type, we define

g̃(M) =
∑
i,j

gi,js
itj

where pgi,j is the order of F iMj/F
i+1Mj .

Thus we have

g̃(A(m)) =
∏

0≤i≤m

1
1− st|vi|

,

g̃(BP∗) =
∏
i≥0

1
1− st|vi|

= g̃(A(m))
∏
i>0

1
1− st|v̂i|

and g̃(D0
m+1) = g̃(A(m))

∏
i>0

1
1− t|v̂i|

.

It follows that
g(E1

m+1) = lim
s→1

(
g̃(D0

m+1)− g̃(BP∗)
)
,

which we will compute using some calculus. Thus we have

g(E1
m+1) = lim

s→1

1
1− s

∏
0<i≤m

1
1− st|vi|

(∏
i>0

1
1− t|v̂i|

−
∏
i>0

1
1− st|v̂i|

)

= gm(t) lim
s→1

1
1− s

(∏
i>0

1
1− t|v̂i|

−
∏
i>0

1
1− st|v̂i|

)

= gm(t)
∂

∂s

∏
i>0

1
1− st|v̂i|

∣∣∣∣∣
s=1

by definition of ∂
∂s

= gm(t)
∏
i>0

1
1− st|v̂i|

∑
i>0

t|v̂i|

1− st|v̂i|

∣∣∣∣∣
s=1

= gm(t)Gm(t)
∑
i>0

t|v̂i|

1− t|v̂i|
. �

For Ext1 we have

Theorem 3.17. Unless m = 0 and p = 2 (which is handled in [Rav86, 5.2.6]),
Ext1

Γ(m+1)(BP∗, BP∗) is the A(m)-module generated by the set{
α

(
v̂j1
jp

)
: j > 0

}
,
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where α is the connecting homomorphism for the short exact sequence

0→ BP∗ →M0 → N1 → 0

as in (1.6). Its Poincaré series is

gm(t)
∑
i>0

tp
i−1|v̂1|

1− tpi−1|v̂1|
.

Moroever each of these elements is a permanent cycle.

Proof. The Ext calculation follows from [Rav86, 6.5.11] and [Rav86, 7.1.3]. For the
Poincaré series, note that the set of A(m)-module generators of order pi is{

α

(
v̂jp

i−1

1

pi

)
: j > 0

}
,

and its Poincaré series is
tp

i−1|v̂1|

1− tpi−1|v̂1|
.

To show that each of these elements is a permanent cycle, we will study the
Bockstein spectral sequence converging to π∗(T (m)) with

E1 = Z/(p)[v0]⊗ π∗(V (0) ∧ T (m)).

V (0)∧T (m) is a ring spectrum in all cases except m = 0 and p = 2. We know that
T (m) is a ring spectrum for all m and p and that V (0) is one for p odd. The case
p = 2 and m > 0 will be dealt with in Lemma 3.18 below.

Low dimensional calculations reveal that v̂1 ∈ Ext0(BP∗/p) is a homotopy ele-

ment. The elements α̂j = v̂j
1
p can then be constructed in the usual way using the

self-map of V (0) ∧ T (m) inducing multiplictation by v̂j1 followed by the pinch map

V (0) ∧ T (m)→ ΣT (m).

In the Bockstein spectral sequence it follows that v̂sp
i

1 survives to Ei+1, so α̂spi is
divisible (as a homotopy element) by pi. �

Lemma 3.18. For p = 2 and m > 0, V (0) ∧ T (m) is a ring spectrum.

Proof. For m = 1 we make use of the ring spectrum y(1) introduced in [MRS01].
It is the Thom spectrum associated with the composite

ΩS2 → BO

extending the nontrivial map S1 → BO. By precomposing with the loops on the
Hopf map

ΩSU(2) = ΩS3 → ΩS2

we get a map f : T (1)→ y(1) inducing a monomorphism in mod 2 homology. We
claim that

y(1) ∼= V (0) ∧ T (1).
We have an inclusion i : V (0)→ y(1), and the composite

V (0) ∧ T (1) y(1) ∧ y(1) y(1)//
i∧f

//
µ

(where µ is the multiplication on y(1)) is the desired homotopy equivalence.
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For m > 1 we consider the ring spectrum T (m) ∧ y(1) and show that it has
V (0) ∧ T (m) as a summand. We know that

T (m) ∧ T (1) ∼= ∨i≥0Σ2iT (m)

so
T (m) ∧ Y (1) ∼= T (m) ∧ T (1) ∧ V (0) ∼= ∨i≥0Σ2iT (m) ∧ V (0),

so T (m) ∧ V (0) is a ring spectrum. �

Lemma 3.19. (i) Let M1 = v−1
1 BP∗/(p∞) be the chromatic module of (1.6),

regarded as a comodule over Γ(m + 1). Then for m > 0 it is weak injective over
Γ(m+1) with Ext0 being the v−1

1 A(m)-module generated by the chromatic fractions
(1.7) {

1
pk

: k > 0
}
∪
{
v̂i1
ip

: i > 0
}
.

For m = 0 and p odd we have Ext1
Γ(1)(M

1) = Q/Z concentrated in degree 0, so M1

is not weak injective. Its Ext0
γ(1) is the Z(p)-module generated by{
1
pk

: k > 0
}
∪
{
vi1
ip

: i 6= 0
}
.

(ii) For m > 0, the Γ(m+ 1)-comodule v−1
1 E1

m+1 is a weak injective with

Ext0
Γ(m+1)(v

−1
1 E1

m+1) = v−1
1 Ext1

Γ(m+1)(BP∗)

and there is a short exact sequence

0→ Ext1(BP∗)/(v∞1 )→ Ext0(E1
m+1/(v

∞
1 ))→ Ext2(BP∗)→ 0.

Proof. All Ext groups here are understood to be over Γ(m+ 1).
(i) We compute Ext(M1) by the usual chromatic method using the Bockstein

spectral sequence assocated with the short exact sequence

0→M0
1 →M1 p−−→ M1 → 0.

Unless m = 0 and p = 2 we have

Ext(M0
1 ) = v−1

1 A(m+ 1)/(p)⊗ E(ĥ1,0).

For m > 0 we have

d

(
v̂j1
jp2

)
=
v̂j−1

1 t̂1
p

for each j > 0.

It follows that Ext(M1) is as claimed.
(ii) For m > 0, multiplication by v1 is a Γ(m+ 1)-comodule map. It follows that

v−1
1 BP∗ is a comodule which is flat as a BP∗-module. This means that inverting
v1 preverves exactness and hence weak injectivity. Inverting v1 in the short exact
sequence

0→ BP∗ →M0 → N1 → 0
gives

(3.20) 0→ v−1
1 BP∗ → v−1

1 M0 →M1 → 0.
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v−1
1 M0 is weak injective since M0 is, with

Ext0(v−1
1 M0) = p−1v−1

1 A(m).

From (i) we see that the long exact sequence of Ext groups associated with (3.20)
has the form

0→ Ext0(v−1
1 BP∗)→ Ext0(v−1

1 M0)→ Ext0(M1)→ Ext1(v−1
1 BP∗)→ 0,

and that it leads to

ExtsΓ(m+1)(v
−1
1 BP∗) =


v−1

1 A(m) for s = 0
v−1

1 Ext1
Γ(m+1)(BP∗) for s = 1

0 for s > 1.

Now consider the short exact sequence

0→ v−1
1 BP∗ → v−1

1 D0
m+1 → v−1

1 E1
m+1 → 0.

Since v−1
1 D0

m+1 is weak injective, the long exact sequence of Ext groups reduces to
pair of isomorphisms, one of which is

Ext0(v−1
1 E1

m+1) = Ext1(v−1
1 BP∗) = v−1

1 Ext1(BP∗).

For Ext0(E1
m+1/(v

∞
1 )) consider the short exact sequence

0→ E1
m+1 → v−1

1 E1
m+1 → E1

m+1/(v
∞
1 )→ 0

The long exact sequence of Ext groups reduces (since v−1
1 E1

m+1 is weak injective)
to the 4-term sequence leading to the desired short exact sequence. �

4. The comodule E2
m+1

In this section we will describe the comodule E2
m+1 needed above in (3.2) below

dimension p2|v̂1|. For m = 0 and p odd we can construct D1
1 in all dimensions

directly as follows.

Lemma 4.1. For p odd there is a map E1
1 → D1

1 to a weak injective inducing an
isomorphism in Ext0.

Proof. As noted in Lemma 3.19, M1 = v−1
1 E1

1 is not a weak injective for m = 0.
We will construct D1

1 as a union of submodules of M1 as follows. Let K0 =
E1

1 ⊂M1. For each i ≥ 0 we will construct a diagram

Li+1 Li+1

Ki M1 Li

Ki Ki+1 L′i

// //

OO� � � � � � � �

OO� � � � � � � �

//

� � � � � � � �

� � � � � � � �

//

OO� � � � � � � �

OO� � � � � � � �

in which each row and column is exact. L′i will be the sub-BP∗-module of Li =
M1/Ki generated by the positive dimensional part of Ext0(Li). It is a subcomodule
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of Li, Ki+1 is defined to be the induced extension by Ki, and Li+1 = M1/Ki+1.
Hence Ki, Ki+1, and L′i are connective while Li and Li+1 are not.

We know that in positive dimensions K0 = E1
1 has the same Ext0 as M1. We

will show by induction that the same is true for each Ki. In the long exact sequence
of Ext groups associated with the right column, the map Ext0(L′i)→ Ext0(Li) is an
isomorphism in positive dimensions, so the positive dimensional part of Ext0(Li+1)
is contained in Ext1(L′i), which has higher connectivity than Ext0(Li).

It follows that the connectivity of L′i increases with i, and therefore the limit
K∞ has finite type. The connectivity of the positive dimensional part of Ext0(Li)
also increases with i, so Ext0(L∞) is trivial in positive dimensions. From the long
exact sequence of Ext groups for the short exact sequence

0→ K∞ →M1 → L∞ → 0

we deduce that Ext1(K∞) = 0, so K∞ is a weak injective by Lemma 2.1. It has
the same Ext0 as E1

1 , so it is our D1
1. �

Now we are ready to study the hypothetical comodule E2
m+1 of (3.1) for m > 0.

Lemma 4.2. The Poincaré series for E2
m+1 is at least

gm(t)Gm(t)
∑
i>0

tp
i|v̂1|(1− t|vi|)

(1− tpi|v̂1|)(1− t|v̂i+1|)

(where gm(t) and Gm(t) are as in Lemma 3.16) and in dimensions less than p2|v̂1|
this simplifies to

gm+2(t)
(

tp|v̂1|(1− t|v1|)
(1− t|v̂2|)(1− tp|v̂1|)

)
.

A routine computation shows that the ith term in this series can be rewritten as

∑
1≤j≤i

g
(
BP∗/

(
p, vp

i−j

1

)) tp
i−j+1|v̂j |(

1− tpi−j+1|v̂j |
) (

1− tpi−j |v̂j+1|
) .

The (i, j)th term of this sum corresponds roughly to

BP∗/
(
p, vp

i−j

1

) v̂pi−j

j+1

vp
i−j

1

,
v̂p

i−j

j+1

p

 v̂p
i−j

j+1

pi+1vp
i−j

1

+ . . .


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Proof of Lemma 4.2. The relevant Poincaré series (excluding the case m = 0 and
p = 2) are

g(E1
m+1) = gm(t)Gm(t)

∑
i>0

t|v̂i|

(1− t|v̂i|)
by 3.16

= gm(t)Gm(t)

(
t|v̂1|

1− t|v̂1|
+
∑
i>0

t|v̂i+1|

1− t|v̂i+1|

)
,

and g(Ext0(E1
m+1)) = g(Ext1(BP∗))

= gm(t)
∑
i>0

tp
i−1|v̂1|

1− tpi−1|v̂1|
by 3.17

= gm(t)

(
t|v̂1|

1− t|v̂1|
+
∑
i>0

tp
i|v̂1|

1− tpi|v̂1|

)
.

If there were a map E1
m+1 → D1

m+1 to a weak injective inducing an isomorphism
in Ext0, we would have

g(D1
m+1) = Gm(t)g(Ext0(E1

m+1)) by 2.6

= Gm(t)g(Ext1(BP∗))

= gm(t)Gm(t)

(
t|v̂1|

1− t|v̂1|
+
∑
i>0

tp
i|v̂1|

1− tpi|v̂1|

)
.

It follows that

g(E2
m+1) ≥ gm(t)Gm(t)

(
t|v̂1|

1− t|v̂1|
+
∑
i>0

tp
i|v̂1|

1− tpi|v̂1|

)
− g(E1

m+1)

= gm(t)Gm(t)
∑
i>0

(
tp

i|v̂1|

1− tpi|v̂1|
− t|v̂i+1|

1− t|v̂i+1|

)

= gm(t)Gm(t)
∑
i>0

tp
i|v̂1|(1− t|vi|)

(1− tpi|v̂1|)(1− t|v̂i+1|)
.

In our range of dimensions we can replace gm(t)Gm(t) by gm+2(t), and only the
first term of the last sum is relevant. Hence we have

g(E2
m+1) ≡ gm+2(t)

(
tp|v̂1|(1− t|v1|)

(1− t|v̂2|)(1− tp|v̂1|)

)
mod (tp

2|v̂1|). �

Corollary 4.3. For a subcomodule E ⊂ E1
m+1/(v

∞
1 ), let D denote the induced

(as in (3.2)) extension by E1
m+1 and let K denote the kernel of the connecting

homomorphism
δ : Ext0(E)→ Ext1(E1

m+1) = Ext2(BP∗).

Then D is weak injective if and only if the Poincaré series g(E) is g(K)Gm(t)
plus the series specified in Lemma 4.2. In particular it is weak injective if δ is a
monomorphism and g(E) is the specifed series.
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Proof. The specified series is Gm(t)g(Ext0(E1
m+1))− g(E1

m+1), and

g(Ext0(D)) = g(Ext0(E1
m+1)) + g(K).

Hence our hypothesis implies

g(D) = g(E1
m+1) + g(E)

= g(E1
m+1) +Gm(t)g(Ext0(E1

m+1))− g(E1
m+1) + g(K)Gm(t)

= Gm(t)(g(Ext0(E1
m+1) + g(K))

= Gm(t)g(Ext0(D)),

which is equivalent to the weak injectivity of D by Theorem 2.6. �

Now we need to identify some elements in E1
m+1/(v

∞
1 ).

Lemma 4.4. The comodule E1
m+1/(v

∞
1 ) contains the elements

(i)
v̂1+e0

1

p1+e0v1+e1
1

for all e0, e1 ≥ 0

(ii)
v̂1+e0+e1

2

p1+e0v1+e1
1

for all e0, e1 ≥ 0.

These generators will be discussed further in Theorem 4.5 below.

Proof. (i) The element in question is the image of v−1−e1
1 λ̂1+e0

1 .
(ii) In D0

m+1 we have

λ̂2 = ̂̀
2 − `1λ̂p1

=
v̂2

p
+
v1v̂

p
1

p2
+
vpω1 v̂1

p2
− v1λ̂

p
1

p

=
v̂2

p
+
v1

p

(
pp−1λ̂p1 + vpω−1

1 λ̂1 − λ̂p1
)

so
v̂2

p
= λ̂2 +

v1

p
µ

where µ = λ̂p1(1− pp−1)− vpω−1
1 λ̂1 ∈ D0

m+1.
Hence in p−1v−1

1 BP∗ we have

v̂1+e0+e1
2

p1+e0v1+e1
1

=
pe1

v1+e1
1

(
v̂2

p

)1+e0+e1

=
pe1

v1+e1
1

(
λ̂2 +

v1

p
µ

)1+e0+e1

=
pe1

v1+e1
1

∑
k≥0

(
1 + e0 + e1

k

)
λ̂1+e0+e1−k

2

vk1
pk
µk

=
∑
k≥0

(
1 + e0 + e1

k

)
pe1−k

v1+e1−k
1

λ̂1+e0+e1−k
2 µk.
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The image of this element in p−1BP∗/(v∞1 ) is∑
0≤k≤e1

(
1 + e0 + e1

k

)
pe1−k

v1+e1−k
1

λ̂1+e0+e1−k
2 µk.

The coefficient of each term is an integer, so the expression lies in D0
m+1/(v

∞
1 ), and

its image in E1
m+1/(v

∞
1 ) is the desired element.

�

We will now construct a comodule E2
m+1 ⊂ E1

m+1/(v
∞
1 ) satisfying the conditions

of Corollary 4.3 with δ monomorphic below dimension p2|v̂1|.

Theorem 4.5. Let E2
m+1 ⊂ E1

m+1/(v
∞
1 ) be the A(m+ 2)-module generated by the

set {
v̂1+e0+e1

2

p1+e0v1+e1
1

: e0, e1 ≥ 0
}
.

Below dimension p2|v̂1| it has the Poincaré series specified in Lemma 4.2, it is a
comodule, and its Ext group is

A(m+ 1)/I2 ⊗ E(ĥ1,0)⊗ P (̂b1,0)⊗
{
v̂e22

pv1
: e2 ≥ 1

}
.

In particular Ext0 maps monomorphically to Ext2(BP∗) in that range.

Proof. Recall that the Poincaré series specified in Lemma 4.2 in this range is

gm+2(t)
(

tp|v̂1|(1− t|v1|)
(1− t|v̂2|)(1− tp|v̂1|)

)
= g(BP∗/I2)

tp|v̂1|

(1− t|v̂2|)(1− tp|v̂1|)
.

Each generator of E2
m+1 can be written as

xe0,e1 =
v̂1+e0+e1

2

p1+e0v1+e1
1

=
v̂2

pv1

(
v̂2

p

)e0 ( v̂2

v1

)e1
with e0, e1 ≥ 0. Since | v̂2

pv1
| = p|v̂1|, the Poincaré series for this set of generators is

tp|v̂1|

(1− t|v̂2|)(1− tp|v̂1|)
.

We can filter E2
m+1 by defining Fi to be the submodule generated by the xe0,e1

with e0 + e1 ≤ i. Then each subquotient is a direct sum of suspensions of BP∗/I2,
so the Poincaré series is as claimed.

To see that E2
m+1 is a comodule, we will use the I-adic valuation as defined in

the proof of Lemma 3.16. In our our range the set of elements with valuation at
least −1 is the A(m)-submodule M generated by{

v̂i1v̂
j
2

p1+e0v1+e1
1

: e0, e1 ≥ 0, i+ j ≥ 1 + e0 + e1

}
,

while E2
m+1 is generated by a similar set with j ≥ 1 + e0 + e1. Thus it suffices to

show that the decreasing filtration on M defined by letting F kM be the submodule
generated by all such generators with j − e0 − e1 ≥ k is a comodule filtration. For
this observe that modulo Γ(m+ 1)⊗ F 1+j−e0−e1M we have

ηR(v̂i1v̂
j
2)

p1+e0v1+e1
1

≡ v̂i1(v̂2 + v1t̂
p
1 + pt̂2)j

p1+e0v1+e1
1

∈ Γ(m+ 1)⊗ F j−e0−e1M,
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so E2
m+1 = F 1M is a subcomodule.

We use the same filtration for the Ext computation. Assuming that j ≥ 1 + e0 +
e1 > 1 we have

ηR(v̂i1v̂
j
2)− v̂i1v̂

j
2

p1+e0v1+e1
1

≡ v̂i1(v̂2 + v1t̂
p
1 + pt̂2)j − v̂i1v̂

j
2

p1+e0v1+e1
1

≡
(

j

e0 + e1

)
v̂i1v̂

j−e0−e1
2 (v1t̂

p
1 + pt̂2)e0+e1

p1+e0v1+e1
1

+ . . .

≡ (e0, e1, j − e0 − e1)
v̂i1v̂

j−e0−e1
2 t̂pe11 t̂e02

pv1
+ . . .

where the missing terms involve higher powers of v̂2. The multinomial coefficient
(e0, e1, j−e0−e1) is always nonzero since j < p. This means no linear combination
of such elements is invariant, and the only invariant generators are the ones with
e0 = e1 = 0, so Ext0 is as claimed.

We will use this to show that E2
m+1 is 1-free (as defined in 1.11), i.e., that

E2
m+1 ⊗BP∗ T p−1

m is weak injective in this range. For 0 ≤ k ≤ p− 1 we have

ψ(v̂i1v̂
j
2 t̂
k
1)− v̂i1v̂

j
2 t̂
k
1

p1+e0v1+e1
1

= (e0, e1, j − e0 − e1)t̂pe1+k
1 t̂e02 ⊗

v̂i1v̂
j−e0−e1
2

pv1
+ . . . .

This means that
Ext0(E2

m+1 ⊗BP∗ T p−1
m ) = Ext0(E2

m+1).
It follows that

g(Ext0) = gm+1(t)(1− t|v1|)
tp|v̂1|

1− t|v̂2|

so g(E2
m+1) = g(Ext0)

1
(1− tp|v̂1|)(1− t|v̂2|)

,

and g(E2
m+1 ⊗BP∗ T p−1

m ) = g(Ext0)
1

(1− t|v̂1|)(1− t|v̂2|)

= g(Ext0)Gm(t)

This makes E2
m+1 ⊗BP∗ T p−1

m weak injective in this range by Theorem 2.6.
We can use the small descent spectral sequence of Theorem 1.17 to pass from

Ext(E2
m+1⊗BP∗ T p−1

m ) to Ext(E2
m+1). It collapses from E1 since the two comodules

have the same Ext0. This means that Ext(E2
m+1) is as claimed.

The statement about Ext2(BP∗) is proved in Lemma 4.6 below. �

Lemma 4.6. The group Ext0(E2
m+1) specified in Theorem 4.5 maps monomorphi-

cally to Ext2(BP∗).

Proof. The chromatic method tells us that Ext2(BP∗) is a certain subquotient of
Ext0(M2), namely the kernel of the map to Ext0(M3) modulo the image of the
map from Ext0(M1). We know that the latter is the A(m)-module generated by

the elements
v̂i1
pi

, and the elements in question, the A(m + 1) multiples of
v̂i2
pv1

are

not in the image. The latter map trivially to Ext0(M3) because they involve no
negative powers of v2. �
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