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This paper is the first in a series aimed at clarifying and extending of parts of the
last chapter of [Rav86], in which we described a method for computing the Adams-
Novikov Fs-term and used it to determine the stable homotopy groups of spheres
through dimension 108 for p = 3 and 999 for p = 5. The latter computation was a
substantial improvement over prior knowledge, and neither has been improved upon
since. It is generally agreed among homotopy theorists that it is not worthwhile
to try to improve our knowledge of stable homotopy groups by a few stems, but
that the prospect of increasing the know range by a factor of p would be worth
pursuing. This possibility may be within reach now, due to a better understanding
of the methods of [Rav86, Chapter 7] and improved computer technology. This
paper should be regarded as laying the foundation for a program to compute 7, (S°)
through roughly dimension p3|vs], i.e., 432 for p = 3 and 6,000 for p = 5.

The method referred to in the title involves the connective p-local ring spectra
T(m) of [Rav86, §6.5], which satisfy

BP.(T(m)) = BP,[t1,...,tm] C BP.(BP).
T(0) is the p-local sphere spectrum, and there are maps
S0 =T1(0) - T(1) - T(2) — --- — BP.

The map T(m) — BP is an equivalence below dimension |v,,,1| — 1 = 2p™*! — 3.

To descend from 7. (T(m)) to m.(T(m — 1)) we need some spectra interpolat-
ing between T(m — 1) and T(m). Note that BP.(T(m)) is a free module over
BP.(T(m — 1)) on the generators {t/ : j > 0}. In Lemma 1.15 we show that for
each h there is a T'(m — 1)-module spectrum T'(m — 1), with

BP,(T(m — 1)) = BP,(T(m —1)){t},: 0 < j < h}.
We have inclusions
Tm—-1)=T(m—-1)g—=T(m—-1); = T(m—1)3 — ---T(m)

The author acknowledges support from NSF grant DMS-9802516.
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and the map T'(m—1);, — T(m) is an equivalence below dimension (h+1)|t,,|—1 =
2h+1)(p™ — 1) — 1.

For example when m = i = 0, the spectrum T'(m),:_; is S° while T'(m)i+1_ is
the p-cell complex

y =5° Uay €7 Uny e .. Uy elP—1a,
where ¢ = 2p — 2.

We will be particularly interested in the cases where the subscript h is one less
that a power of the prime p. In Theorem 1.21 we give a spectral sequence for
computing 7, (T (m — 1),:_1) in terms of m,(T'(m — 1),i+1_1). Its Ey-term is

E(him,i) ® P(bm,i) @ m(T(m — 1)piv1_1)
where the elements
hm,i c E1172P1(Pm*1)

i+1 mo__
and by, € EP*@TD

are permanent cycles.
In the case m = ¢ = 0 cited above, the Ei-term of this spectral sequence is

E(h1,0) ® P(b1,0) ® m(Y).

where h; o and by o represent the homotopy elements a; and (4 (a% for p = 2)
respectively.

Thus to compute 7, (SY) below dimension p*(2p—2) we could proceed as follows.
In this range we have

BP =T(4) = T(3)p-1-

We then use the spectral sequence of 1.21 to get down to T'(3), which is equivalent
in this range to T'(2),2_1, then use it twice to get down to T'(2) = T'(1),5_1, and so
on. This would make for a total of ten applications of 1.21. Fortunately we have

some shortcuts that enable us to get by with less.
The Adams-Novikov Es-term for T'(m) is

Extpp, (pp)(BPs, BP.(T(m))).

From now on we will drop the first variable when writing such Ext groups, since
we will never consider any value for it other than BP,. There is a change-of-rings
isomorphism that equates this group with

Extp(pmi1)(BP)
where
I'(m+ 1) = BP.(BP)/(t1,...,tm) = BPi[tm+1,tm+2,. -]
In §3 we will quote earlier determinations of Ext%(mﬂ) (BP,) (Proposition 3.6) and
Ext%(m +1)(BPs) (Theorem 3.17) in all dimensions, and construct a 4-term exact
sequence
0—BP,— D). — D, . —E.,  —0
of I'(m+1)-comodules. The two D!, are weak injective, meaning that all of their
higher Ext groups (above Ext®) vanish (we study such comodules systematically in
§2), and below dimension p?|v,, 1|

EXtIO"(m—Q—l)(Din—O—l) = EXt%(m+1)(BP*)~
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It follows that in that range

EXtP(np1) (Bimg1) = Extifs ) (BP.)  forall s > 0.

The comodule EZ | is (2p™*? — 2p — 1)-connected. In Theorem 4.5 we determine
its Ext groups (and hence those of BP,) up to dimension p?|v,,,1|. There are no
Adams-Novikov differentials or nontrivial group extensions in this range (except in
the case m = 0 and p = 2), so this also determines 7, (7'(m)) in the same range.

Thus Theorem 4.5 gives us the homotopy of T'(1),s_; in our range directly with-
out any use of 1.21. In a future paper [NR] we will determine the Ext group for
T'(1)p2_1 in this range and study the spectral sequence of 1.21 for the homotopy of
T(m — 1),—1 below dimension p?|v,,|. There are still no room for Adams-Novikov
differentials, so the homotopy and Ext calculations coincide. For m = 1 this com-
putation was the subject of [Rav85] and [Rav86, §7.3].

It is only when we pass from T'(m — 1),-1 to T(m — 1)g = T'(m — 1) that we
encounter Adams-Novikov differentials below dimension p?|v,,+1|. For m = 1 the
first of these is the Toda differential

dap—1 (5p/p) = alﬂjlg

of [Tod67] and [Tod68]. We have established a partially analogous differential for
m > 1 in [Rav].

Theorem 0.1. The first nontrivial differential in the Adams—Novikov spectral se-
quence for the spectrum T(1) at an odd prime p is

dap—1(b3,0) = ha,obb o

4
where b o € B3P~
Form > 1 the first nontrivial differential in the Adams—Novikov spectral sequence

for the spectrum T(m) at an odd prime p is
dap—1(01b2,0) = v2hy obY
~ 3
where Tybyg € Ey* “T*PY72P72 1 In this case there is also a montrivial group
extension in m.(T'(m)), namely

p/6270 = 1)2/6}17’0.
For p = 3 this is illustrated for m = 1 and m = 2 in Figures 1 and 2 respectively.

This paper owes much to some stimulating conversations with Hirofumi Nakai
and to the hospitality provided by Johns Hopkins University and the Japan-U.S.
Mathematical Institute during its program on Recent Progress in Homotopy The-
ory.

1. BASIC ALGEBRAIC METHODS

We refer to [Rav86, Al] for the definitions of Hopf algebroids, comodules, and
and related objects.
First we define some Hopf algebroids that we will need.
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FIGURE 1. The Adams-Novikov Es-term for T'(1) at p = 3 in di-
mensions < 154, showing the first nontrivial differential. Elements
on the 0- and 1-lines divisible by v; are not shown. Elements on
the 2-line and above divisible by v5 are not shown.

Definition 1.1. I'(m + 1) is the quotient BP,(BP)/(t1,t2,...,tm),
A(m) = BP,Op(y41)BP. = Zp)[v1, 02, ..., 0]
and
Gm+1,k—1) =T(m+ 1)0Or(niit 1y BPe = A(m +E) [ty tmst -+ btk

We abbreviate G(m + 1,0) by G(m + 1). It will be understood that G(m + 1,00) =
I(m+1).

In particular, I'(1) = BP.(BP).
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FIGURE 2. The Adams-Novikov FEs-term for T'(2) at p = 3 in
dimensions < 530. Elements on the 0- and 1-lines divisible by v,
or vy are not shown. Elements on the 2-line and above divisible by
vy or v are not shown except for v3by o and Ughg,obgo, the source
and target of the first differential.

Proposition 1.2. G(m+1,k—1) > T'(m+1) > T(m+k+1) is a Hopf algebroid
extension [Rav86, A1.1.15]. Given a left I'(m + 1)-comodule M there is a Cartan-
FEilenberg spectral sequence [Rav86, A1.3.14] converging to Extr(p41)(BPx, M) with

Ezs’t = Ext&(mi1,0—1)(A(m + k), EXt{“(erkJrl)(BP*’ M)

and d, : B3t — Estrt=r+l
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Corollary 1.3. Let M be a I'(m+1)-comodule concentrated in nonnegative dimen-
sions. Then

EXtF(m+k+l)(BP*’ M) = EXtF(m+1)(BP*, Gm+1,k—-1) @ A(m+k) M).

In particular, Ext?(tm_H)(BP*, M) fort < 2(p™+L—1) is isomorphic to M for s =0

and vanishes for s > 0. Moreover for the spectrum T(m) constructed in [Rav86,

6.5] and having BP.(T(m)) = BP,[t1,...,tm],
EXth*(Bp)(BP*, BP*(T(TTL))) = EXtF(m+1)(BP*, BP*)

The following characterization of the Cartan-Eilenberg spectral sequence is a
special case of [Rav86, A1.3.16].

Lemma 1.4. The Cartan-FEilenberg spectral sequence of 1.2 is the one associated
with the decreasing filtration of the cobar complex Crp(m41)(BPy, M) (see below)
defined by saying that

N @Y @m € le(m+1)(BP*,M)
is in F* if i of the v’s project trivially to T'(m + k + 1).

The method of infinite descent for computing Extgp, (gp)(BPx, M) for a connec-
tive comodule M (e.g. the BP-homology of a connective spectrum) is to compute
over Ext over I'(m + 1) by downward induction on m. To calculate through a fixed
range of dimensions k, we choose m so that k < 2(p™*! — 1) and use 1.3 to start
the induction. For the inductive step we could use the Cartan-Eilenberg spectral
sequence of 1.2, but it is more efficient to use a different spectral sequence, which
we now describe.

The theory of the chromatic spectral sequence of [Rav86, 5.1] generalizes immedi-
ately to I'(m+1)-comodules. Recall [Rav86, A1.2.11] that for a left I'-comodule M,

the cobar resolution D} (M) is the cochain complex with D (M) =T ®4 T w4 M,
where T = kere, and

ds(H @M ... ®7s @m)

S

= Z(_l)i'YO@“-@%—l®A(’Yi)®’}/i+1®...®m—|—
=0

(1) My ®... @7 @ ¥(m).

The cobar complex Cf(M) is AOpDf(M). When I' = T'(m + 1), we can define
the chromatic cobar complex CC}. BP,) as in [Rav86, 5.1.10]; the additive
structure of the latter is given by

CCminy(M) = P Ciin .y (M" @pp, M).

(m+1)(

0<n<s
Similarly we can define the chromatic cobar resolution CDy,, +1)(BP*) additively
by
(15) CD}iy(M) = €D Din iy (M" @5p. M)

0<n<s

with a suitable coboundary. Here M™ denotes the nth chromatic comodule of
[Rav86, 5.1.5] defined inductively by short exact sequences

(1.6) 0— N"— M"— N"t -0
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where N° = BP, and M" = v;lN”. Every element of N™ and M™ is annihilated
by a power of the invariant prime ideal I,, = (p,v1,...,v,—1). We denote elements
in these comodules by fractions of the form

x
o P

where z is in BP, (respectively v, !BP,) but not in I,,, and all exponents in the
denominator are positive. We call such an expression a chromatic fraction. It is
killed by multiplication by any element in BP, which leads to a fraction where the
denominator has one or more nonpositive exponents.

Definition 1.8. A comodule M over a Hopf algebroid (A,T) is weak injective
(through a range of dimensions) if Ext®*(M) =0 for s > 0.

We will study the properties of such comodules in the next section.

Definition 1.9. For a left G(m + 1,k — 1)-comodule M let 7; : M — Siltm+1lpf
be the group homomorphism defined by
QM
M Gm Lk —1) @M 225 sty
where pj : G(m+ 1,k — 1) — A(m + k) is the A(m + k)-linear map sending tan
to 1 and all other monomials in the t,,+; to 0.
We will refer to this map as a Quillen operation.

It follows that }
bla) =Yt @F@) +...,
J

where the missing terms involve t, for £ > m + 1.

Lemma 1.10. The Quillen operation 7; of 1.9 is a comodule map and for j > 0 it
induces the trivial endomorphism in Ext.

Proof. The fact that r; is a comodule map is equivalent to the commutativity of
the following diagram, in which we abbreviate G(m + 1,k — 1) by T.

5 ® M )
M L} Te M L E]\tm+1|M

wMJ F®1/1MJ( szjltﬂl«#lkj
Yreo M

Q@ M .
re M — F@F@Mp];) F@Z]‘tm‘*llM

The left hand square commutes by the coassociativity of ¢, and the commutativity
of the right hand square is obvious.

To show that 7; induces the trivial endomorphism of Ext groups we start with
Ext’. An element in Ext’(M) C M is by definition in the kernel of 7; for j > 0.
Now consider the short exact sequence of comodules

0—-M-—->TM—->T® M —D0.

Since I' ® M is weak injective, the long exact sequence of Ext groups reduces to a
4-term sequence

0 — Ext®(M) - M — Ext®(T ® M) — Ext' (M) — 0
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and isomorphisms o ‘

Ext!(T ® M) = Ext™™ (M)
for 4 > 0. Thus the triviality of 7; in Ext® implies its triviality in all higher Ext
groups. O

Definition 1.11. Let Th C G(m + 1,k — 1) denote the sub-A(m + k)-module
generated by {t],,,:0 < j < h}. AG(m+ 1,k —1)-comodule M is i-free if the

comodule tensor product Tf,’:_l ® A(m+k) M is weak injective.

We have suppressed the index k from the notation TZ}L because it will usually
be clear from the context. In the case k = oo the Ext group has the topological
interpretation given in Lemma 1.15 below. The following lemma is useful in dealing
with such comodules.

Lemma 1.12. For a left G(m + 1)-comodule M, the group
Ext¢(m 11y (A(m + 1), T2 @ gty M)

is isomorphic as an A(m)-module to
L= () ker#; C M.
jzp?
Proof. We will show that the map
L — Extgmin(A(m+ 1), T2 @ a(my1) M)
Ly — (1® ) (y)

is an isomorphism.
Let y € L, then we claim that

(cx)Ym(y) = Zogj<pi C(tzn-y-y) ®7(y)
= Docjep (1)t ®@Ti(y)
is primitive. This will follow from the commutativity of the following diagram for
an arbitrary comodule M over a Hopf algebroid T'.

M—rTeoM 2 rem

‘| I
reM rerelrreM
(1.13) C®MJ reteM
reM rererreM
\ pOT@M

'elrre M

In this diagram, ¢ denotes the transposition map, p denotes the multiplication in T',
and the unlabelled map sends y®m to 1®y®m. The composite in the right column
is the comodule structure on I'® M. Thus the commutativity of the diagram means
that ¢(m’) @ m” € ' ® M is a comodule primitive, where m’ ® m' denotes 1)(m).
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The see that the diagram commutes we use the fact that a I-comodule M is
formally dual to a set X acted on by a groupoid G. For (g1,g2,7) € G x G x X, in
the dual diagram we have

9 (z) +— (92_191_1791(33)) — (9192, 1 (%))

(92_1’1‘) (gla927gl7x)
(92, 2) (91,91, 92, %)
(913927-(5) 9

and the commutativity of (1.13) follows.
Conversely, we can show that any primitive z € G(m+1)® M is written uniquely
in this form, i.e., that

EXtey o1y (G(m +1) @ M) 2 M.
Letz =35 th+1 ®x; be primitive and assume inductively that z; = (—1)7r;(z¢)
for j < I. (This is trivially true for j = 0).

The Cartan formula implies that

ri(z) = Z ?t(tin-u) ® Ti—t(z;).

t,j>0

Moreover, for ;€ TP ~! we can deduce the formula

=04 AW
Tt(tfnﬂ) = <t>t£n+1
by its comodule structure, and for y € M

R = ()Rt

by the comodule associativity of M.
Because z is primitive, we have 7(z) = 0 for [ > 0. Thus we have

~ ~ ,d ~ I\t o~
0=7iz) = Y Felth 1) ® Fislz) = Y <t>tin+1 ® Ti—i(x;).
t,j>0 t,j>0
Collecting terms where the exponent of t,,1 is zero (i.e., t = j) gives
0 = Xrlz;)
= T+ Ti-(z;)
x; + Zj<l(—1)l_1ﬂ_j(?j(xo)) by the assumption

1+ 3 (=) (7o)

Using the identity Zj(—l)l(;.) =0, we obtain x; = (—1)!7(z0) as desired.
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Since T,’,’;il ® M C G(m+ 1) ® M, a primitive in it must have the same form,
which implies that 7;(zo) = 0 for t > p', i.e., that zo € L. O

Lemma 1.14. Let D be a weak injective comodule over T'(m+1). Then Tf,’:_l ®D
is also weak injective with

EXt%(m+1)(Tfr):71 ® D) = A(m) {tfn+15 0<;5< pi - 1} ® Ethq(m-i-l)(D)-

Given xg € Exth(erl)(D), the element isomorphic to tfn_H ® xo 18

> V(] wae e
0<k<j

where x; € D satsifies

v = 3 (])atoa.
0<k<j
Proof. The comodule T? ~' has a skeletal filtration in which Fj is the sub-A-
module generated by elements in dimensions < k. Since T},’: ~1 is free over A, each
subquotient Fy/Fy_1 is a direct sum of a finite number of copies of YkA.

We can compute Extp(mH)(Tf,’;*l ® D) in terms of Extp(,,41)(D) by a spectral
sequence based on the skeletal filtration of TT’,’: —L. It must collapse since D has no
higher Ext groups, giving the desired isomorphism.

It follows from Lemma 2.2 below that D is also weak injective over I'(m + 2)
and that EXt(I)‘(m-i-Q) (D) is weak injective over G(m+1). Given z € Ext%(erl)(D)
we will construct elements x; € Extg(m +2)(D) as advertized by induction on j.
Suppose we have found zj, for £ < j. Then the expression

I\ ,i—k
yj = Z <k>tzn+1®33k
0<k<j

is a cocycle in the cobar complex Cr(p,41)(D). If it is not a coboundary, then it
represents a nontrivial element in Ext', contradicting the weak injectivity of D.
Hence there must be an element x; with the desired property.

Then we find that
ri(x;) = (2) Tj—k

and a calculation similar to the one in the proof of Lemma 1.12 shows that for
j < p*, the element

- J
Z (=DMt @ Tr(zy) = Z (1" (k)t’;zﬂ Q Tj—k
0<k<j 0<k<j

= (-1, ®@x+...

is the desired primitive. (I
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Lemma 1.15. For each nonnegative m and h there is a spectrum T(m)y, where
BP.(T(m)) C BP.(BP) is a free module over

BP.(T(m)) = BP.[t1, ..., tm]
on generators {tan: 0 <j <h}. Its Adams-Novikov Ey-term is

Extgp, (ppy(BPs, BP.(T(m)n)) 2 Extr, 1) (BP., Tj,).

*ytm

Proof. We will construct these spectra by induction on h. Recall that T'(m) =
T(m)o is a p-local summand of the Thom spectrum X (p™*! — 1) associated with
the map

QSU(p™*t — 1) — QSU = BU.
This is proved in [Rav86, §6.5]. We have a fibration

7n+171
)

QSU(p™t —1) — QSU (™) — Q8%

m+1_q

and T(m + 1) is a p-local summand of X (p™T!). We know that Q5?7 is
homotopy equivalent to the the James construction Joo 52" 2, which is a CW-
complex with one cell in each dimension divisible by 2p™*! — 2. Tts (2p™*! — 2)h-

skeleton is denoted by J,S 20" =2 4nd is a certain topological quotient (originally

defined by I. M. James) of the h-fold Cartesian product of 52" =2 Thus we have
a diagram

QST (™1 — 1) —— QSU(™) ——— gt

! |

QsU(p™tt —1) By, JpS2" =2,

where the bottom row is the fibration induced from the top row by the inclusion i.
We will construct T'(m);, as a p-local summand of the Thom spectrum F}, associated
with Bjy,.

We have a cofiber sequence

m+1

Fp_y — F, - 2" =2k x (pm+l _ 1),

Assuming inductively that T'(m)p—; is a p-local summand of Fj,_1, we get the
following diagram in which all spectra have been localized at p.

Fh_l Fh 2(2p7n+1—2)hx(p7n+1 _ 1)
T(m)p_1 F] E(2pm+172)hX(pm+1 ~1)

T

T(m)p—1 ———— T(m)p ——— 5" =2hp ()

The two lower rows are cofiber sequences and each is induced from the one above
it by the evident map. [
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To pass from Extg(mﬂ,k_l)(Tﬁ:“’l ® M) to Extg(m1,k—1) (T}Z:’l ® M) we can
make use of the tensor product (over A(m +k)) of M with the long exact sequence

(116)  o—7rt —— R —— Rl —T g2 T,
where
R2ste  _  y(pste)2p’ (- 1)TPHrl 1 fore=0,1
s Tpi for s even
and & = { Pp—1)pi  for s odd,

which leads to a spectral sequence as in [Rav86, A1.3.2].

Theorem 1.17. For a G(m + 1,k - 1)-comodule M there is a spectral sequence
converging to Extg(m41,5—1)(M @ TP =1 with
i+1
E* !t = E(hm+1 7) ® P(bm-‘rl z) ® EXtG(m+1 k— 1)(Tp !

with R4, € El’ s by, € El’ , and d,. : B3t — ESTHUrRL O If M s (i 4 1)-free
in a range of dimensions, then the spectral sequence collapses from FEo in the same
range.

Moreover dy is induced by the action on M of 7,
for s odd.

The action of dy is as follows. Let

. i1
z= > toemell oM

0<j<pitt

® M)

pi Ay JOT S even and T(,_1)pi

Then dy is induced by the endomorphism

Z Z (i) t1 @ P iy (my) for s even

0<k<p® k<j<pitl

J ~
B Z Z <k> tz”fl ® T((p—1)pi—k)(my)  for s odd.

0<k<(p—1)p* k<j<pit!

T —

We will refer to this as the small descent spectral sequence.

Proof. Additively this spectral sequence is a special case of the one in [Rav86,
A1.3.2] associated with M tensored with the long exact sequence (1.16), and the
collapsing for (i + 1)-free M follows from the fact that the spectral sequence is in
that case concentrated on the horizontal axis.

For the identification of dy, note that by (1.16) it is induced by the endomorphism

Z Tpi (tfﬁﬂ) ® m; for s even
P '

Z T(p—1)p (tin-&-l) & m; for s odd
0<j<pit?

Z <‘7 )tfnfl ®@ m; for s even

_ p<j<pit? P )
J j—(p—1)p*
Z ((p B 1)pi)tin+11) P ®m; for s odd.

(p—Dpi<j<pit?
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It follows from Lemma 1.10 that 7pia,, ., and 7y each induce trivial en-

domorphisms in Ext, so d; is also induced by

P—1)pi A1

—7pi(x) + Z Tpi (tf;nﬂ) ® m; for s even
. R 0sj<pt )
—Tpy)pi () + Z Tp—1)pi (th 1) @ my  for s odd,
0<j<pitt

which leads to the stated formula.

The multiplicative structure requires some explanation. The elements Ay,41
and by, +1; correspond under Yoneda’s isomorphism [HS70, page 155] to the tensor
product of M with the exact sequences

0— Tf;:_l _ Tglpl_l N Zp’t‘thrﬂTf;:—l =0
and

) i1 ) i1 41 )
0 — Trlr):_l N Tpl -1 _, Ep1|tm+1\Trzr): -1 _, Zpl |tm+1‘T£,:_1 =0

m
respectively. Products of these elements correspond to the splices of the these. It
follows that these two elements are permanent cycles and that the spectral sequence
is one of modules over the algebra E(hp,4+1,i) @ P(bm+1,:)- d

In practice we will find higher differentials in this spectral sequence by computing
in the cobar complex Cg(p1,k—1)(M @ TP ~1) or its subcomplex Ca(m+1,k—1)(M).
As explained in [Rav86, proof of A1.3.2], it can be embedded by a quasi-isomorphism
(i.e., a map inducing an isomorphism in cohomology) into the double complex
B = ®B*'20 defined by

B>t = Cé‘(m%»l,kfl)(M ® R?)
with coboundary
O=d+ (-1)°d’,
where d is the coboundary operator in the cobar complex. Our spectral sequence
is obtained from the filtration of B by horizontal degree, i.e., the one defined by

(1.18) F'B= @ B

s>r,t>0

Theorem 1.17 also has a topological counterpart in the case M = BP,. Before
stating it we need to define topological analogs of the operations 7, and 7(,_1)pi-
One can show that there are cofiber sequences

i omA41_
(1.19) T(m)pi 1 — T(m)pirr_y — S22 =DT(m) i, 1)

and

(1.20) T(m) i (p1y—1 — T(m)pis1_y — NP E=DE" =Dy o
We define

Ppi i metl
T(m)ysn_; —2 s y2'(0 + 71)T(m)pi+171

and

Ppi(p—1)
I

T(m)pi+1_1 22#‘(?*1)(17”“fl)T(m)leil
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to be the composites

T(m)pi+171 R AR

WL+171)

T(m)pi(p71)71 — EZpi(p T(m)pi+1,1

and

T(m)pi+1_1 BN 3 ACE

DT (m) iy — S EDET D ()

Theorem 1.21. Let T(m), be the spectrum of Lemma 1.15. There is a spectral
sequence converging to m,(T(m),yi_q) with

Ef’t = E(hmt1,i) @ P(bm+1,:) ® my (T(m)pi‘*'l—l)

. 1.2p%(p™m T -1 2.9pitl(pmtl_q B
with hy1s € By T by € EPPTOTTTD Jandd, Bt — Bt

Moreover dy is py: for s even and p,—1y,: for s odd. The elements hy, 1 and
bm+1,i are permanent cycles, and the spectral sequence is one of modules over the
ring
R = E(hmt1,:) © P(bmi1,:)
We will refer to this as the topological small descent spectral sequence.

Proof. This the spectral sequence based on the Adams diagram

X X! DX 4 DX e
Y Y »by yatby
where
a = 2°(p" -1) -1,
b — Zpi“(pm“ —1) -2
X = T(m)yi_q,
X = T(m)pi(p-1)-15
and Y = T(m)pit1_.

We will show that the elements hy,1,; and by,41,; can each be realized by maps
of the form

S0 x Lo norx
For Ap1,4, f is the boundary map for the cofiber sequence
T(m)P —* — T(m)*' 1 — ST (m)P' 1,

and for b, 41 ; it is the composite (in either order) of the ones for (1.19) and (1.20).
]

Example 1.22. When m =i =0, the spectrum T(m),i_y is S° while T(m)yi+1_4
is the p-cell complex

y =5° Uay €7 Uny e ... Uy elP—1a_
where ¢ = 2p — 2. The Ey-term of the spectral sequence of Theorem 1.21 is
E(hlyo) ® P(bl,O) & W*(Y)
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where hyo and b1 o represent the homotopy elements ay and (3, (oz% forp =2)
respectively.

We will use this spectral sequence through a range of dimensions in the following
way. For each spectrum T'(m),i+1_; the elements of Adams-Novikov filtration 0
and 1 are all permanent cycles, so we ignore them, replacing 7, (T'(m)yi+1_1) by

m
generators of this group arranged by dimension. When an element z has order

greater than p, we also list its nontrivial multiples by powers of p. Thus
N ® E(hms1,i) ® P(bmy1,i)

contains a list of generators of the E;j-term in our range. Rather than construct
similar lists for each E, term we use the following method.

Procedure 1.23. We make two lists I (input) and O (output). 1 is the subset
0of N ® E(hpm+1,) that includes all elements in our range. Then O is constructed
by dimensional induction starting with the empty list as follows. Assuming O has
been constructed through dimensions k — 1, add to it the k-dimensional elements of
L. If any of them supports a nontrivial differential in the spectral sequence, remove
both the source and target from O. (It may be necessary to alter the list of (k —1)-
dimensional elements by a linear transformation so that each nontrivial target is a
“basis” element.) Then if k > |bpt1,i|, we append the product of by,+1,; with each
element of O in dimension k — |by41,i|. This completes the inductive step.

an appropriate subquotient of Ex‘cr(,wrl)(E?nJrl ® Tpl“_l). Let N be a list of

Note that each element in F; of filtration greater than 1 is divisible by by,41,:.
Since the spectral sequence is one of R-modules, that same is true of each E,.. In
1.23 we compute the differentials originating in filtrations 0 and 1. If d,.(x) = y is
one of them, there is no chance that for some minimal ¢t > 0

dp(2') = b}, 41y withr! <r

because such an 2’ would have to be divisible by by, +1 ;. This justifies the removal
of bl ;o and b, ;y for all t > 0 from consideration.

2. WEAK INJECTIVE COMODULES

In this section we will study comodules M over a general Hopf algebroid (A,T)
over Zyy. We will abbreviate Extr(A, M) by Ext(M).

The definition 1.8 of a weak injective should be compared with other notions of
injectivity. A comodule I (or more generally an object in an abelian category) is
injective if any homomorphism to it extends over monomorphisms, i.e., if one can
always fill in the following diagram.

1

i

0 M —— N
This definition is rather limiting. For example if A is a free Z,)-module, then an
injective I must be p-divisible since a homomorphism A — I must extend over
A®Q.
There is also a notion of relative injectivity [Rav86, A1.2.7] requiring I to be a
summand of I'® 4 I, which implies that the diagram above can always be completed
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when 7 is split over A. This implies weak injectivity as we have defined it here (see
[Rav86, A1.2.8 (b)]), but we do not know if the converse is true. In any case
the requirements of our definition can be said to hold only through a range of
dimensions.

Lemma 2.1. A connective comodule M over (A,T") is weak injective in a range of
dimensions iff Ext' (M) = 0 in the same range.
Proof. The comodule I' ® 4 M is weak injective with
Ext’(T ®4 M) = M.
From the short exact sequence

0 M- TesM N 0

(where 9 is the comodule structure map for M) we see that for s > 0,

Ext*(N) = Ext**(M).
T has a skeletal filtration {F;} with Fy = A and each subquotient F;/F;_; is a
direct sum of finitely many copies of the same suspension of A. We conclude by
induction on t that Ext' (M ®4 F;/Fy) = 0. Passing to the limit gives

0 = Ext'(N) = Ext*(M).

Arguing by induction on s we conclude that Ext®(N) = 0 for all s > 0 (making
N a weak injective), so Ext®(M) = 0 for all s > 1. Hence M is weak injective as
claimed. O

Lemma 2.2. Let

(D,®) = (A,T') = (A,%)
be an extension [Rav86, A1.1.15] of graded connected Hopf algebroids of finite type,
and suppose that M is a weak injective comodule over I'. Then M is also weak
injective over ¥, and Ext% (A, M) is weak injective over ® with

Exty (D, Ext%(A, M)) = ExtX(A, M).

Proof. The change-of-rings-isomorphism [Rav86, A1.3.12] says that
(23) Exty (A,M) = EXtF(A,FDEM).

We also know by [Rav86, A1.1.17] that
r2oé¢epx
as X-comodules. It follows that
FOsM = (® ®p $)0xM = & ®p M.

Recall that ® has a skeletal filtration in which F} is the sub-D-module generated
by elements of dimension < k and each Fj/Fy_1 is a direct sum of finitely many
copies of X¥D. It follows that the skeletal filtration on ® induces a filtration on
I'Ox M in which each subquotient is a finite direct sum of copies of suspensions of
M. From this we can infer that T'Dx M is weak injective over I', and therefore (by
(2.3)), M is weak injective of ¥ as claimed.
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Now consider the Cartan-Eilenberg spectral sequence for the extension in ques-
tion, with

FEy = Eth>(D, Exts: (A, M))
Since M is weak injective over X, this reduces to an isomorphism

Extr(A, M) = Extg (D, Ext%(A, M)).

Since M is weak injective over I, N = Ext$%(A, M) is weak injective over ® with
Ext’(N) as claimed. O

In order to proceed further we need a method of recognizing weak injectives
without computing any higher Ext groups. Here is a useful technical tool.

Definition 2.4. Let H be a graded connected torsion abelian p-group of finite type,
and let H; have order p"i. Then the Poincaré series for H is h(t) = Yh;t'.

Example 2.5. Let I C BP, be the mazimal ideal so that BP,/I = Z/(p). Then
the Poincaré series for T'(m +1)/I is

G(t) = ] = tlomeehy =L,

i>0

Theorem 2.6. Let (A,T) be a graded connected Hopf algebroid over Zy, and let
M be a connected torsion I'-comodule of finite type. Let I C A be the mazimal ideal
(so that AJI =1Z/(p)). Then

9(M) < g(Ext®(M))g(T'/I),

meaning that each coefficient of the power series on the left is dominated by the
corresponding one on the right, with equality holding if and only if M is a weak
injective (1.8).

Proof. We will construct a decreasing filtration { F} on M such that the associated
bigraded comodule EgM is annihilated by I and Ext®(EqM) = EoExt®(M), so
that Ext’(EyM) has the same Poincaré series as Ext’(M). Then we will prove the
lemma by by showing it is true for EqM.

For any comodule M as above we will construct a subcomodule M’ C M con-
taining M such that Ext®(IM) = Ext’(M’) and the short exact sequence

(2.7) 0—-M —-M-—M'—0

induces a short exact sequence in Ext’. Then the desired filtration can be defined
by FFIM = (FFMY'.
Define short exact sequences

O—>M{—>M—>Mi”—>0

inductively as follows. Let M} = IM and let K; = Ext®(M/")/im Ext’(M). Since
M!" is annihilated by I we can choose a splitting K; — Ext’(M!"). K; is then a
sub A-module and therefore a subcomodule (with trivial I-coaction)) of M/ and
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we can define M’ | = M;'/K;. Then we have short exact sequences
M;
K; was chosen so that Ext’(K;) maps monomorphically to Ext! (M), so Ext®(M!) =
Ext’(M],,). It follows that Ext’(IM) = Ext’(M’) where M’ = lim_, M.

Now we need to show that Ext” (M) maps onto Ext”(M") where M” = lim_, M".
Consider the following diagram with exact rows and columns.

0

M, K; 0

0

M M! 0

0 0

Ext’(M) —— Ext®(M]") ——— Ext'(M])

=
Ext’(M) —— Ext®(M/},) —— Ext'(M/,,)

The map « is trivial because the two maps to Extl(Mi’ ) have the same image, so
the lifting 3 exists. When we pass to the limit it induces a splitting map

Ext’(M") — Ext® (M),

s0 (2.7) induces a short exact sequence in Ext’ as claimed.

Defining F¥*1M = (FFM)' gives a decreasing filtration of M subordinate to the
I-adic filtration (in the sense that FyM is annihilated by I) with Ext®(EoM) =
EoExt’(M). Hence it suffices to prove the lemma for EqM, in other words for
comodules N annihilated by 1.

Assume this N is (t — 1)-connected and let N* be its ¢-skeleton. The A-module
splitting N — N*? induces a comodule splittingT® N — T'@N*. Let f: N — T®N?
denote the composite of this map with the comodule structure map on N. Let N
and N denote the kernel and image of f, so we have a short exact sequence

0—>N-—=N-=N=0

with Nt Ciﬁ C T/I® N*. It follows that N is more highly connected than N and
that Ext®(NV) is a quotient of Ext’(N). Let g(M) denote the Poincaré series for
M. Then

9(N) < g(Ext(N))g(T/1).
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We can define a complete decreasing filtration on N (different from the one we
defined on M earlier) by Fi*!N = FiN. Then we have

g(N) = Y g(F'N/F"*'N)
i>0
= Zg(m)
i>0
< Y gExt’(F'N))g(T/I)  since F'N C Ext’(F'N)® /I

= g(Ext®(N))g(T/1)

as claimed.
Now suppose we have equality above, i.e., for each ¢

9g(F'N) = g(Ext’(F'N))g(T/I).

Since FiN C Ext’(F'N)®T/I, this means that FiN = Ext’(F*N)®T/I, which is
a weak injective. Then a standard filtration argument says that N is itself a weak
injective as claimed. Finally a similar argument says that the weak injectivity of
each subquotient of M above implies that of M itself.

Conversely, suppose that M is weak injective. Since the short exact sequence
(2.7) induces a short exact sequence in Ext?, it follows that Ext'(M’) = 0, so M’
is weak injective, as is M. Thus each subquotient in our filtration of M is weak
injective. Thus it suffices to prove that if N is a weak injective annihilated by I,
then its Poincaré series satisfies the indicated equation.

For such an N we have

Ext'(A/I, N) = Ext'(A4,N) = 0.

From this we can deduce that Extl(L, N) = 0 for any connective L of finite type
annilihated by I. In particular the short exact sequence

0 N v F'®aN ——T®s N ———0

is split. This means we must have N = T' ® 4 Ext’(N). O
It would be nice if for any comodule M one could find a map M — W to a weak
injective inducing an isomorphism in Ext®, but this is not always possible.

Example 2.8. Let (A,T) = (A(1),G(1)) and M = A/(p?). Then a simple calcu-
lation shows that

Ext’(M) = Z/(p*)[o}] © Z/(p) [ {pvr, pof, ... .0} '}

so if such a W exists we would have

1 1 1
g(W) = (1_t1}1|> (1_tp|111 +1-t“1|>.

Also for p > 3, Ext' (M) is generated by the elements

{o 7"+ (= D/20 i 2 1 U {pod T 2 1)
U{pv{t’fk: >0, k> 1}

(2.9)
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In order to kill the first of these we must adjoin a |vi|-dimensional element x; to
A/(p?) with

Y1) =t101+1® 2.

This implies that vi — pxy is primitive, so in order to avoid enlarging Ext® we must
have pxr1 = v1 or 1 = vy1/p. Similarly we need to adjoin elements x; = vli/pi for
all i > 1. These will kill all of the elements in Ext' in the first two subsets listed
in (2.9). For the others we adjoin elements viy,; (for i >0 and j > 0) of order p
in dimension (pj + i)|v1| satisfying

A
V(Ypi) =1 Z (k> ty’ e Ypk where yo = 1.
0<k<j

Adjoining these elements would give us a comodule W with the desired Poincaré

1

) 2_ 2, . :
series. However the element p* ~'x,2 = v} /p is invariant and has order 3, so the

map M — W does not induce an isomorphism in Ext®.

3. A 4-TERM EXACT SEQUENCE

In this section we will consider various I'(m~+1)-comodules M and will abbreviate
Extp(pm41)(BPs, M) by Extp(m41)(M) or simply Ext(M).

Excluding the case m = 0 and p = 2, we will construct a diagram of 4-term
exact sequences of I'(m + 1)-comodules

(3.1)

0 BP, Dy —— Dy » By ————— 0
0 » BP, Dppr —— v 'Epyr — Epyt/(07°) ——— 0
0 » BP, MO > M? N2 0

where each vertical map is a monomorphism, M? and N? are as in (1.6), the
D¢, ., are weak injectives with Ext®(DY, ;) = Ext"(BP,), Ext’(D},,)) contains
Ext'(BP,), and E} ,, = D% ,,/BP,. Ext®(BP,) and Ext!(BP,) are given in 3.6
and 3.17 respectively.

We will construct the map from BP, to the weak injective DY, 41, inducing an
isomorphism in Ext® , explicitly in Theorem 3.12. For m > 0 we cannot construct
a similar map out of E} _; = DY ., /BP,. Instead we will construct a map to a
weak injective D} 11 which enlarges Ext® by as little as possible. We will do this
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by producing a comodule E2, | C E} ., /vi° and using the induced extension
(3.2)

0O —— Eranrl — UflE;l+1 — E71n+1/(v?o) — 0

1 1 2
_— _— —_— _—
0 Eerl Dm+1 Em+1 0

The comodule EZ ,, for m > 0 will be described in the next section. For m = 0
and p odd a map from E{ to a weak injective D} inducing an isomorphism in Ext’
will be constructed in below in Lemma 4.1.

We will use the following notations for m > 0. We put hats over the symbols in
order to distinguish this notation from the usual one for elements in Ext g p_pp) (BPx).
For m = 0 we will use similar notation without the hats.

Ui = Umet, ti = tmi, w = pm,
(3.3) R R

hij = hmtij, and bij = by

We will show that in dimensions below p?(v1], EZ_; is the A(m + 1)-module
generated by the set of chromatic fractions

~e2
(3.4) {psiqzemel>0, 62>€0+61—1},
1

and its Ext group in this range is

(3.5) A(m+1)/I ® E(h1,0) ® P(b1o) ® {Zi Cep > 1} ,
1

where El,O € Exth2ee—1) corresponds to the primitive #; € I'(m+1), and 31’0 €
Ext"?P(P“=1) ig its transpotent. In both cases there is no power of v; in the numer-
ator when m = 0. These statements will be proved below as Theorem 4.5.

An Adams-Novikov differential for T'(m) originating in the 2-line would have to
land in filtration 2p+ 1, which is trivial in the is range of dimensions, so by proving
4.5 we have determined 7.(7T(m)) in this range.

Our first goal here is to compute Ext’ and Ext'. The following generalization
of the Morava-Landweber theorem [Rav86, 4.3.2] is straightforward.

Proposition 3.6.
Extp 1y (BPu /1) = A(n+m)/I,.
For n =0 each of the generators is a permanent cycle.

Proof. The indicated elements are easily seen to be invariant in I'(m + 1). In
dimensions less that [01|—1, T'(m) is homotopy equivalent to BP, so the generators
v; for i < m are permanent cycles as claimed. O
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Theorem 3.7. Let Wy,41.n be the ring

Wm+1,n = F(m + 1)/(pa Uly..,Un—1, nR(Um—O—n—O—l)a nR(vm—&-n—&-Q), ce )
It is weak injective over I'(m + 1) and the map BP./I, — Wiy11, induces an
isomorphism in Ext°.

Proof. In the comodule algebra I'(m + 1)/I,, the ideal

(R (Vm+n+1), MR(Vm+nt2)s )

is invariant and regular. Let
Li=T(m+1)/(p,v1,- - n—1, MR (Vmgnt1)s - - » (MR (Vm4nti))
so for each i > 0 we have a short exact sequence
0 — Slvmensilp, L, — L;y; — 0.
Since Lo = T'(m + 1)/1I,, is weak injective with
Ext’(Lg) = BP, /I, = A(m + 1) [Vmsni1, Umsnt2s - - -]/ In,
we can argue by induction on ¢ that L; is weak injective with
ExtO(Li) = A(m + 1) [Vmtntit1s Vmtntit2s--- )/ In-

Letting ¢ go to infinity we get Wy, , with the desired properties. O

Example 3.8. If we replace I,, by an invariant reqular ideal J, with n genera-
tors, a similar construction will lead to a map from BP,/J, to a weak injective
Wint1,s, with Ext® being A(m + 1)/J,. In general this group is not the same as
Ext’(BP,/J,). The simplest nonprime example of such an ideal is (p?), which was
the basis for the counterexample 2.8.

Now we will give an alternate description of a map from BP, to a weak injective
DY ., inducing an isomorphism in Ext®. We will leave it to the interested reader to
prove that DY, 11 = Wit DY, 41 was incorrectly described in the proof of [Rav86,
7.1.9] as BP.[p~'0; : i > 0]. It is the sub-A(m)-algebra of p~' BP, generated by
certain elements Xmﬂ» for ¢ > 0 congruent to ¥;/p modulo decomposables.

To describe them we need to recall Hazewinkel’s formula [Haz77] relating poly-
nomial generators v; € BP, to the coefficients ¢; of the formal group law, namely

(39) sz = Z gj’()f_j.

0<j<i
This recursive formula expands to
U1
b = —
p
1
V2 ’U{H_
by = — 5
p p
p p’ 1+p+p?
V3 V1Uy Va7 Uy
by = —+ +

p  p? p? p3
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We need to define reduced log coefficients Zk obtained from the ¢, by subtracting
the terms which are monomials in the v; for j < m. Thus for m = 1 we have

~

-~ v
6L o= =
p
~ /\ ~ 2
—~ Uy v0) vyl
b = —+— 2
p p p

The analog of Hazewinkel’s formula for these elements is

0 if¢ <0

S S Lt Y i

0<j<i 0<j<min(i,m+1)

o~

We use these to define our generators Xz recursively for i > 0 by

~ ~ i
(3.11) b= > LGN

0<j<i

Theorem 3.12. The BP,-module DY, ., C p~*BP, described above is a subcomod-
ule over T'(m + 1) that is weak injective (1.8) with Ext® = A(m).

Proof. We show first that it is a subcomodule. The right unit on the ¢,,,; is given
by

NR(Umti) = Lnti + Z gjffij-

0<j<i
Since £,,+; and E differ by terms that are invariant under ng it follows that
(3.13) nr(l;) = 6 + Z ity
0<j<i

Using (3.11) we have

nr(@) = > nr()nr(Y;)
0<j<i
= > e+ Y > a? knR()‘pJ)
0<j<i 0<j<i0<k<j—m

Combining this with (3.13) and (3.11) gives

SN Y g,

0<j<i 0<y<i
— v p*
= > mrO )+ ) > Uit _inr(A )
0<j<i 0<j<i 0<k<j—m
Summing over all ¢ and reindexing, we can rewrite this as

A~ 1 7 o~ 1 [ z+7w
SN + )= > e+ Y LB ar( ).

i>0,5>0 i>0,5>0 i>0, j,k>0
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Applying the formal exponential to both sides gives

ZFF(Xj,tAj) = ZFUR(XJ')-FF Z F?jmz(xij“’),

3>0 7>0 7,k>0
so > Tar(y) = Y TFEOGE) —p Y TEme(F ).
7>0 §>0 J k>0

~

We can use this to solve for nr(};) by induction on j, and the answer lies in
L(m+1) ®pp, Dy 41
A recursive formula is given by

Z g (Xfi j)

0<j<i

~d j j itk
(3.14) = Y- > W (W)

0<j<i 0<k<i—j—m

This shows that DY, ,, is a comodule over I'(m + 1) as claimed. In particular we
get

(3.15) nR(Xi) = Xz + #; mod decomposables.

We will show DY, is a weak injective by filtering it by powers of p, analyzing
the Poincaré series of each subquotient, and applying 2.6. Since D9, 41 is free over
Zp), all the subquotients are isomorphic and it suffices to analyze

DgnJrl/(p) = A(m)/(p)[A1, Az, - - |-

Note first that Ext”(DY,_,) contains Ext’(BP,) = A(m) as a subgroup. It
follows that Ext’(DY, ., /(p)) contains A(m)/(p) as a subgroup. The Poincaré series
of DY, .1 /(p) is the same as that of I'(m+1)/1® A(m)/(p), so the weak injectivity of
DY, 1/(p) and hence DY, ., itself will follow from showing that its Ext® contains no
additional elements. The comodule structure of DY, ,, is partially given by (3.15);
a similar formula follows for each monomial in the /):i, and no linear combination
of them can be in Ext’. There are no additional elements in Ext’ and the weak
injectivity of DY, ., follows. O

For future reference will need the Poincaré series of E} ., = DY, 41/ BP..

Lemma 3.16. Let
1
an® =TI 7=

1<i<m

1
>m
the series for A(m)/(p) and T'(m + 1)/1 respectively. Then the Poincaré series for
El,, =D, /BP, is
tloil
gm(t)Gm(1) Z Tl

>0
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Proof. We define the I-adic valuation || - || on BP, by setting ||p|| = ||v;|]| = 1. Tt
can be extended to p~!BP,, and by restriction to DY, 11, in an obvious way. From

(3.11) we find that ||\]| = 0.

We have bigraded objects EqBP. and EyDY, 41 which can be described by
Poincaré series §(s,t) in two variables with s corresponding to the valuation. More
precisely, if M is a comodule with a decreasing filtration such that the associated
bigraded object EyM is torsion of finite type, we define

g(M) = Zgi_’jsitj
4,J

where p9:7 is the order of F'M;/F" M.
Thus we have

iAm) = [ ——

0BP) = Tl

Z,Zol—sﬂ”i‘
— A [
AR § gy
>0
- N 1
and (D)) = Q(A(m))llm-

It follows that
g(EflnH) = i{% (g(DgnJrl) - Q(BP*)) )

which we will compute using some calculus. Thus we have

1 1 1 1
1 _ . _ -
9(Epi) = lLH} 1— s <H 1 — stlvil <1}J 1_ ¢loil H 1— stm)
m

0<i< ; i>0
. 1 1 1
0 >0
0 1 .. P
= 9m (t) % H m by definition of s
i>0 s=1
1 il
= () H 1= sthorl Z 1= stloi]
>0 >0 s=1
il
= gm(t)Gm(t) Z 1ol

>0

For Ext! we have

Theorem 3.17. Unless m = 0 and p = 2 (which is handled in [Rav86, 5.2.6]),
Ext%(m+1)(BP*, BP,) is the A(m)-module generated by the set

b))
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where « is the connecting homomorphism for the short exact sequence
0— BP. - M° > N'—>0

as in (1.6). Its Poincaré series is

Moroever each of these elements is a permanent cycle.

Proof. The Ext calculation follows from [Rav86, 6.5.11] and [Rav86, 7.1.3]. For the
Poincaré series, note that the set of A(m)-module generators of order p’ is

~jp'~ !
« i 13>0,,
pl

tpi—l Ial‘

and its Poincaré series is

To show that each of these elements is a permanent cycle, we will study the
Bockstein spectral sequence converging to m.(7'(m)) with
Ey = Z/(p)[vo] @ m.(V(0) AT(m)).

V(0) AT(m) is a ring spectrum in all cases except m = 0 and p = 2. We know that
T(m) is a ring spectrum for all m and p and that V' (0) is one for p odd. The case
p =2 and m > 0 will be dealt with in Lemma 3.18 below.

Low dimensional calculations reveal that 7, € Ext®(BP,/p) is a homotopy ele-

ment. The elements a; = % can then be constructed in the usual way using the
self-map of V(0) A T'(m) inducing multiplictation by 6{ followed by the pinch map
V(0) AT(m) — XT(m).

In the Bockstein spectral sequence it follows that 07" " survives to Eiy1, 50 Qg is
divisible (as a homotopy element) by p’. O

Lemma 3.18. Forp=2 and m > 0, V(0) AT(m) is a ring spectrum.

Proof. For m = 1 we make use of the ring spectrum y(1) introduced in [MRSO01].
It is the Thom spectrum associated with the composite

0S? — BO

extending the nontrivial map S' — BO. By precomposing with the loops on the
Hopf map
QSU(2) = Q5% — OS2

we get a map f : T(1) — y(1) inducing a monomorphism in mod 2 homology. We
claim that

y(1) = V(0) AT(1).
We have an inclusion i : V(0) — y(1), and the composite

inf

VO AT(1) = y(1) Ay(l) —— y(1)

(where p is the multiplication on y(1)) is the desired homotopy equivalence.
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For m > 1 we consider the ring spectrum T(m) A y(1) and show that it has
V(0) AT(m) as a summand. We know that

T(m) ANT(1) = VX% T(m)
T(m)AY (1) =2 T(m) AT(1) AV(0) 2 VX% T (m) A V(0),
so T(m) A V(0) is a ring spectrum. O

Lemma 3.19. (i) Let M* = v;'BP,/(p™) be the chromatic module of (1.6),
regarded as a comodule over T'(m + 1). Then for m > 0 it is weak injective over
L(m+1) with Ext® being the vi " A(m)-module generated by the chromatic fractions

(1.7)
{;:k>0}u{§i:i>0}.

Form =0 and p odd we have Extll«(l)(Ml) = Q/Z concentrated in degree 0, so M*
is mot weak injective. Its Extg(l) is the Z,)-module generated by

{Srsofu{tiizol.

(ii) For m > 0, the T'(m + 1)-comodule vi *E}, ., is a weak injective with
EXt01“(m+1)(”1_1Erln+1) = ”flEthl"(mH)(BP*)
and there is a short eract sequence
0 — Ext'(BP.)/(v{°) — Ext®(E}, 1 /(v{°)) — Ext*(BP,) — 0.
Proof. All Ext groups here are understood to be over I'(m + 1).

(i) We compute Ext(M?!) by the usual chromatic method using the Bockstein
spectral sequence assocated with the short exact sequence

0—>]\410—>M1 Lo Mmt .
Unless m = 0 and p = 2 we have
Ext(M}) = vy A(m + 1)/ (p) @ E(ha o).
For m > 0 we have
~j ~j—17
t
d 0—12 -4 n for each j > 0.
Jp p
It follows that Ext(M?) is as claimed.
(ii) For m > 0, multiplication by v; is a I'(m + 1)-comodule map. It follows that
vy IBP, is a comodule which is flat as a BP,-module. This means that inverting
v1 preverves exactness and hence weak injectivity. Inverting v; in the short exact

sequence
0— BP, - M° - N' =0

gives

(3.20) 0— vy 'BP, —v; "M% — M' — 0.
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vy P MO is weak injective since M? is, with
Ext®(vy ' M°) = p~loy T A(m).

From (i) we see that the long exact sequence of Ext groups associated with (3.20)
has the form

0 — Ext’(v; ' BP,) — Ext®(v; *M°) — Ext®(M') — Ext'(v; 'BP,) — 0,
and that it leads to

vyt A(m) for s=0
Extp 1y (v7 ' BP.) = ¢ vy 'Extr,, ) (BP.) fors=1
0 for s > 1.

Now consider the short exact sequence
-1 -11y0 —1 1
0—vy BPx—wv Dy —vy By —0.

Since vy 1D9n 11 is weak injective, the long exact sequence of Ext groups reduces to
pair of isomorphisms, one of which is

Ext’(v; 'E} 1) = Ext'(v; 'BP,) = v; 'Ext'(BP,).
For Ext’(E},,,/(v$°)) consider the short exact sequence

0— E;wrl - UflE;m+1 - Er1n+1/(vloo) — 0

The long exact sequence of Ext groups reduces (since vy gl 41 is weak injective)

to the 4-term sequence leading to the desired short exact sequence. O

4. THE COMODULE E2,_,

In this section we will describe the comodule E2, 41 needed above in (3.2) below
dimension p?[71]|. For m = 0 and p odd we can construct Di in all dimensions
directly as follows.

Lemma 4.1. For p odd there is a map E{ — D1 to a weak injective inducing an
isomorphism in ExtP.

Proof. As noted in Lemma 3.19, M = vflE% is not a weak injective for m = 0.
We will construct D] as a union of submodules of M! as follows. Let Ky =
Ell C M?'. For each i > 0 we will construct a diagram

Liyw == Lina

Ki —_— Kz’+1 —_— L;

in which each row and column is exact. L} will be the sub-BP,-module of L; =
M'/K; generated by the positive dimensional part of Ext’(L;). It is a subcomodule
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of L;, K;y1 is defined to be the induced extension by Kj;, and L;11 = M'/K; ;.
Hence K;, K;11, and L} are connective while L; and L;;1 are not.

We know that in positive dimensions Ko = E} has the same Ext® as M'. We
will show by induction that the same is true for each K;. In the long exact sequence
of Ext groups associated with the right column, the map Ext(L}) — Ext"(L;) is an
isomorphism in positive dimensions, so the positive dimensional part of ExtO(LH_l)
is contained in Ext'(L}), which has higher connectivity than Ext"(L;).

It follows that the connectivity of L/ increases with 4, and therefore the limit
K. has finite type. The connectivity of the positive dimensional part of Ext®(L;)
also increases with ¢, so ExtO(Loo) is trivial in positive dimensions. From the long
exact sequence of Ext groups for the short exact sequence

0— Ko —M' —L—0
we deduce that Ext'(K,) = 0, so K. is a weak injective by Lemma 2.1. It has

the same Ext® as E}, so it is our D!. O

Now we are ready to study the hypothetical comodule E2, ; of (3.1) for m > 0.

Lemma 4.2. The Poincaré series for E%_, is at least

tpilﬁl\(l _t|Ui|)
(1— tp'ilﬁl\)(l — t@ﬂ\)

Im (t)Gm (t) Z

>0

(where gm(t) and G,,(t) are as in Lemma 8.16) and in dimensions less than p?|0;|
this simplifies to

tpmll(l B t|v1‘)
gm+2(t) <(1 _ t|@2|)(1 — tpal)) '

A routine computation shows that the ith term in this series can be rewritten as
I gy

> a(Br/(net)) .
g P (1 - tpi’”llﬁjl) (1 — tp“"lﬁ_ﬁll) '

1<j<i

The (i, 7)th term of this sum corresponds roughly to

pi—Id . pi—d PR

i—j Viyqp Vigq Viiq
BP./ (pof ) |22, P
vy p ptiv]
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Proof of Lemma 4.2. The relevant Poincaré series (excluding the case m = 0 and
p=2) are

1ol
g(Erln+1) = gm(t)Gm(t) Z W by 3.16
= (1—t*)
t|@1‘ t\@i-u\
>0
and g(Ext’(E,, 1)) = ¢(Ext'(BP.))
i 1pn
tP [V1]
= gm(t)Zm by 3.17

i>0

ey 101
gm(t) (1 —l T ; T—l |

If there were a map E}, ., — D}, ., to a weak injective inducing an isomorphism
in Ext’, we would have

9(Dpi1) Gm(D)g(Ext’(Ep, (1)) by 2.6
— Gu(t)g(Ext' (BP.))
t\51| tpi|51|
= gm(t)Gm(t) <1 — 4l + Z 1_ il |-
>0
It follows that
) o1l tpi\ﬁll X
g(Eerl) > gm(t)Gm(t) 1— t|@1| + g 1— tpri|51| - g<Em+1)
0131 tigal
= gm(t)Gm(t)g (1 — tpq‘,"l;ll - 1— t|®i+1|

tpi\@ll(l — tlvil)
— Pl (1 — ¢loial)”

= G0 5

In our range of dimensions we can replace g, (t)Gn(t) by gmi2(t), and only the
first term of the last sum is relevant. Hence we have

plo1|(1 _ o1l .
9(Enmi1) = gmra(t) ((1 i t|52(;(1 ttp)m)) mod (7 11). O

Corollary 4.3. For a subcomodule E C E}, ., /(v{®), let D denote the induced
(as in (3.2)) extension by Ey, ., and let K denote the kernel of the connecting
homomorphism

6 : Ext’(E) — Ext'(E},,) = Ext*(BP,).
Then D is weak injective if and only if the Poincaré series g(E) is g(K)Gm(t)
plus the series specified in Lemma 4.2. In particular it is weak injective if § is a
monomorphism and g(E) is the specifed series.
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Proof. The specified series is Gy, (t)g(Ext’ (B}, 1)) — g(EL,.,), and
g(Ext’(D)) = g(ExtO(E,%,L+1)) +g(K).
Hence our hypothesis implies
9(D) = 9(Bpi) +9(E)
= 9(Epi1) + Gu(t)g(Ext®(En 1)) — 9(Epyy) + 9(K)Gr(t)
= Gu(t)(g(Bxt® (B 1) + 9(K))
G (1)g(Ext®(D)),

which is equivalent to the weak injectivity of D by Theorem 2.6. O

Now we need to identify some elements in E}.,_/(v(°).

Lemma 4.4. The comodule E}, | /(v§®) contains the elements

%\14»60
! [
_ or all eg,e1 >0
p1+60v}+€1 ’
(i)
1/}\1+60+€1

B A for all eg,e1 >0
p1+60v%+61 ’ -

These generators will be discussed further in Theorem 4.5 below.

Proof. (i) The element in question is the image of vl—l—elX}*eo.

(ii) In DY, ,; we have

S = Bt
o E)\Q Uli)\f ’Ufwij\l ’Ul/)\\zf
p P p? p
- v ~ NN
— ;24-;1 (pp_l)\’f—i—vfw 1)\1—)\11)>
- ~ v
S0 2 = X+ —1,u
p p

where = AP(1—pp=1) — o7 1); € DY ...

Hence in p~'v; ' BP, we have
. 1
U%-l—eo—&-el pe By +eoter
lereo,U%"rel v%+61 D

1+eo+e1
€1 ~ v
e </\2 + 1“)
vy p

o p€1 1+60+€1 Nl+ep+te —kU{c k
- (T
1 k>0

z 1+ ep + €1 pelik ;\\1+Eo+€1—k k
k v1+€1—/€ 2 ’LL :
1
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The image of this element in p~*BP,/(v$°) is
Z 1 + €0 + (] pel_k /):1+‘30+€1—k k
k U1+el—k’ 2 e
0<k<e; 1

The coefficient of each term is an integer, so the expression lies in DY, /(v$°), and

its image in B}, ,/(v3°) is the desired element.
O

We will now construct a comodule EZ | C E},,/(vi°) satisfying the conditions
of Corollary 4.3 with § monomorphic below dimension p?[|.
Theorem 4.5. Let E% | C E} ., /(v{°) be the A(m + 2)-module generated by the
set
6%+60+61
—_— > .
{p1+eov%+e1 €0, €1 = O}

Below dimension p?|0y| it has the Poincaré series specified in Lemma 4.2, it is a
comodule, and its Ext group s

o~ A~ A€2
Am+1)/I2 ® E(h1,) ® P(b1o) ® {Z; teg > 1} .
1

In particular Ext® maps monomorphically to ExtQ(BP*) i that range.
Proof. Recall that the Poincaré series specified in Lemma 4.2 in this range is
Pl (1 — ¢loil) plonl
t - = = g(BP,/I - —.
gm+2( ) ((1—t|“2)(1—tpvll)> g( / 2) (1_t|1}2\)(1_t1)‘111|)

Each generator of EZ | can be written as

R A AN A
Teger = o dFer — o\ —
piteop T pup \ p (I

with eg,e; > 0. Since |-22| = p|vy|, the Poincaré series for this set of generators is
b pUL )

tplo1]
(1 — tlo2l)(1 — teloal)”

We can filter B2, by defining F; to be the submodule generated by the e,
with eg + e; < 4. Then each subquotient is a direct sum of suspensions of BP,/Is,
so the Poincaré series is as claimed.

To see that E2 ., is a comodule, we will use the I-adic valuation as defined in
the proof of Lemma 3.16. In our our range the set of elements with valuation at
least —1 is the A(m)-submodule M generated by

W.eo,el_o,Z‘F]_ +€0+€1 ,
while Efnﬂ is generated by a similar set with j > 1 4 eg + e;. Thus it suffices to
show that the decreasing filtration on M defined by letting F* M be the submodule
generated by all such generators with j — ey — e; > k is a comodule filtration. For
this observe that modulo I'(m + 1) @ F*/=¢0~¢1 )] we have

G 3 (02 + 01t} + pto)’

= j—eo—e1
p1+eﬂvi+el = p1+60v%+€1 elm+1)® F M,
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so EZ ., = F*M is a subcomodule.
We use the same filtration for the Ext computation. Assuming that j > 14eg+
e1 > 1 we have

. . N > o~ .
nr(U10) =010 _ 01(D2 + it + ply)’ — 0103
p1+eOU%+e1 plteo ,U%‘i’el
_ (G \EET B o pl) ot
= 1+e +
€o —+ €1 p1+60,U1 1

/\i’\j*GO*elz’Pel/t\eo
. 1 2
= (eo,e1,J —eo —e1)

)

pu1
where the missing terms involve higher powers of U2. The multinomial coefficient
(eo, 1,7 —eog—e1) is always nonzero since j < p. This means no linear combination
of such elements is invariant, and the only invariant generators are the ones with
eg =e1 =0, s0 Ext® is as claimed.
We will use this to show that E2,_, is 1-free (as defined in 1.11), i.e., that

ETQ,LH ®@pp, TP~! is weak injective in this range. For 0 < k < p — 1 we have

=i~ 7k ~iITk ~imj—eo—e1
Y(V103tT) — Viusty (€0, €1,7 — €0 — 61)%‘pel+k%§0 ® V105 4
= (ep, €1, 1 PO =+ ...
p1+eov%+€1 pUY

This means that
Ext®(Epy ®pp, Tl ') = Ext(E], ).
It follows that

o o tplonl
1
2 _ 0
50 g(Eerl) - g(EXt )(1 _ tplal‘)(l . t‘62|)7
1
2 p—1 _ 0
and  g(E, ®p, T ") = g(Ext )(1 — A = )
= g(Ext")Gu(t)

This makes E7, |, ®pp, TE™! weak injective in this range by Theorem 2.6.

We can use the small descent spectral sequence of Theorem 1.17 to pass from
Ext(E?,®@pp, T2 ') to Ext(E? ;). It collapses from Ej since the two comodules
have the same Ext’. This means that Ext(E2,,,) is as claimed.

The statement about Ext*(BP,) is proved in Lemma 4.6 below. O

Lemma 4.6. The group ExtO(E?nH) specified in Theorem 4.5 maps monomorphi-
cally to Ext*(BP,).

Proof. The chromatic method tells us that Ext?(BP,) is a certain subquotient of
Ext"(M?), namely the kernel of the map to Ext’(M?3) modulo the image of the
map from Extol(M D). We know that the latter is the A(m)-module generated by

vy v}
the elements —, and the elements in question, the A(m + 1) multiples of — are
pi pu1
not in the image. The latter map trivially to Ext”(M?) because they involve no
negative powers of vs. O
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