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1. Brief introduction to a lengthy subject

Determining the stable homotopy groups of spheres has been a vexing and fas-
cinating problem in algebraic topology for the past 70 years. Recall

• πn+k(Sn) is defined to be the set of homotopy classes of maps from Sn+k

(the unit sphere in Rn+k+1) to Sn. The set has a natural abelian group
structure.

• πn+k(Sn) is known to be independent of n for n > k + 1. We denote this
group by πS

k or πk(S0).
• Here are its values for small k.

k 0 1 2 3 4 5 6 7 8 9
πS

k Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/2 (Z/2)3

• πS
k is known to be finite for k > 0.

• Elements of arbitrarily large order are known to occur for large k.
• The p-component of πS

k is known for
∗ k ≤ 60 for p = 2
∗ k ≤ 100 for p = 3
∗ k ≤ 1000 for p = 5

Many more details can be found in [Rav86].
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2. Chromatic theory

Elaborate algebraic machinery has been developed for studying this problem.
It involves homological algebra and ever increasing amounts of algebraic geometry
and algebraic number theory.

The values of k mentioned above have not changed in the past 20 years. Research
has focused instead on understanding the overall structure of the groups and of the
stable homotopy category.

Forty years ago there was very little one could have said or even guessed about
this overall structure. Now we have the chromatic approach to stable homotopy
theory. Roughly speaking it says that, after localizing at a prime p, the problem
can be broken up into various “layers,” one for each nonnegative integer n, which
can be analyzed separately. Each of them can be completely determined with a finite
amount of work.

These layers can be thought of in at least two different ways:
• Thinking of πS

∗ as a complicated function, the first n layers can be assembled
into an “nth order approximation” to πS

∗ , similar to the first n terms in a
power series.

• Thinking of πS
∗ as a complicated radio signal, the chromatic layers can be

thought of as messages being broadcast at various frequencies. They can
be decoded separately. Each layer is said to be monochromatic, meaning
that its information is all on the same frequency.

Many more details can be found in [Rav92].
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3. The Morava stabilizer group

The nth layer in the chromatic filtration is the Bousfield localization with respect
to the nth Morava K-theory, denoted by LK(n)S

0. It has been known since the
late ’70s that its structure is controlled by the continuous cohomology of a certain
profinite group Sn called the nth Morava stabilizer group. It is the automorphism
group of a certain 1-dimensional formal group law and can be described explicitly
in terms of a certain division algebra over the p-adic numbers.

Here are some of its properties.

• S0 is the trivial group.

• For n > 0, Sn is an extension of a pro-p-group by F×pn , the group of units
in the field Fpn , which is cyclic of order pn − 1.

• S1 is Z×p , the group of units in the p-adic integers.

• For n > 1, Sn and its pro-p-subgroup are nonabelian.

• Sn is p-torsion free unless p− 1 divides n.

• Sn has an element of order pk iff (p− 1)pk−1 divides n.

• Sn has virtual cohomological dimension n2.

• When p− 1 divides n, the cohomology ring of Sn has Krull dimension one.
Equivalently, every elementary abelian subgroup of Sn has oprder p.

• The finite subgroups of Sn have been determined by Hewett[Hew95].
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4. The Hopkins-Miller theorem

The relation between the Morava stabilizer group Sn and the nth chromatic layer
Sn became much more precise with the advent of the Hopkins-Miller theorem in
the early ’90s. It concerns the action of Sn on a certain spectrum called En, usually
referred to as Morava E-theory. Its homotopy groups are explicitly known and easy
to describe. Prior to their work we knew of an Sn-action on it defined only up to
homotopy.

Theorem 1. [Hopkins-Miller 1992, unpublished]. The action of Sn on En is such
that for any closed subgroup G ⊂ Sn, there is a homotopy fixed point set which we
will denote by EOn(G) with the following properties:

(i) For G = Sn, it is LK(n)S
0.

(ii) It is contravariantly natural in G, i.e., given subgroups

G1 ⊂ G2 ⊂ Sn

there is a restriction map EOn(G2) → EOn(G1). If G1 has finite index in
G2, then there is a transfer map going the other way.

(iii) There is a fixed point spectral sequence (also natural in G) of the form

H∗(G;π∗(En)) =⇒ π∗(EOn(G))

which coincides with the Adams-Novikov spectral sequence for π∗(EOn(G)).

The problem with using this result has been the difficulty of explicitly describing
the action of Sn on π∗(En).

A classical example: the case (p, n) = (2, 1)

The following was known long before the Hopkins-Miller theorem was proved,
and is the motivation for the “O” in EOn(G).

• E1 is the 2-adic completion of complex K-theory.

• S1 ' Z×2 (the 2-adic units), which is isomorphic to Z2 × Z/2, with Z/2 =
{±1}.

• The action of the generator of Z/2 is by complex conjugation.

• The fixed point set EO1(Z/2) is the 2-adic completion of real K-theory,
KO. The “O”here stands for “orthogonal group.”

• The relation between KO and LK(1)S
0 is well understood. See [Rav84].
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5. New results

Near Theorem 1. [HHR 2007] Let G ⊂ Sn be a finite subgroup.

(i) The action of G on π∗(En) has a certain explicit description which enables
us to compute its cohomology.

(ii) When the p-Sylow subgroup of G is Cp, then there are certain differen-
tials in the Hopkins-Miller spectral sequence related to the geometry of the
classifying space BCp.

(iii) In this case the Hopkins-Miller spectral sequence is rigid enough to preclude
any other differentials, and we can describe π∗(EOn(G)).

Remarks

• For n = (p−1)f , the order the maximal subgroup with an element of order
p is a metacyclic group of order p(p− 1)(pf − 1).

• For f = 1, p odd and G as above, the spectrum EOp−1(G) has been studied
before by Hopkins-Miller and Gorbunov-Mahowald [GM00], who denoted
the spectrum simply by EOp−1. The differentials in that case are closely
related to ones discovered long ago by Toda; see [Tod67] and [Tod68]. The
spectrum was used recntly by Nave [Nav] to prove the nonexistence of the
Smith-Toda complex V ((p + 1)/2) (see [Tod71]) for p ≥ 7.

• For (p, n) = (2, 2) there are two finite subgroups of interest. One is an
extension of the quaternion group by C3. It fixed point spectrum is the
K(2)-localization of tmf, which was originally introduced in [HM]. The
other case is the abelian extension of C2 by C3, which yields the K(2)-
localization of tmf(3), spectrum related to elliptic curves equipped with a
point of order 3.

• For p = 2, let G be the maximal subgroup containing an element of order 2.
It is cyclic of order 2(2n−1). Then EOn(G) has been studied previously by
Hu-Kriz [HK01] and Kitchloo-Wilson [KW07], who call a variant of it the
“real Johnson-Wilson spectrum” ER(n). They use ER(2) (which is tmf(3)
in [KW] to prove some nonimmersion results for real projective spaces.

• To my knowledge, no other fixed point spectra of finite groups have been
studied before. If n has the form (p − 1)pk−1s for s prime to p, then
there are k maximal finite subgroups, each having p-Sylow subgroup Cpi

for 1 ≤ i ≤ k. Their fixed point spectra form a pullback diagram which we
hope to study.
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