Toward higher chromatic analogs of elliptic cohomology

Doug Ravenel University of Rochester

> June 13, 2004 Halifax

1. WHAT IS ELLIPTIC COHOMOLOGY?

Definition 1. For a ring R, an R-valued genus on a class of closed manifolds is a function φ that assigns to each manifold M an element $\varphi(M) \in R$ such that

(i) $\varphi(M_1 \coprod M_2) = \varphi(M_1) + \varphi(M_2)$

(ii) $\varphi(M_1 \times M_2) = \varphi(M_1)\varphi(M_2)$

(iii) $\varphi(M) = 0$ if M is a boundary.

Equivalently, φ is a homomorphism from the appropriate cobordism ring Ω to R.

Examples of genera:

 $\mathbf{2}$

- The Hirzebruch signature is a **Z**-valued genus for smooth oriented manifolds.
- The A-genus is a **Z**-valued genus for Spin manifolds.
- The Euler characteristic and Todd genus are **Z**-valued genera for complex manifolds.

A theorem of Quillen [Qui69] says that in the complex case (where $\Omega = MU_*$, the complex cobordism ring), φ is a equivalent to a 1-dimensional formal group law over R, to be defined below. It is also known that the functor

$$X \mapsto MU^*(X) \otimes_{\varphi} R$$

is a cohomology theory if φ satisfies certain conditions spelled out in Landweber's Exact Functor Theorem [Lan76]. **Definition 2.** A 1-dimensional formal group law over R is a power series $F(x, y) \in R[[x, y]]$ satisfying

- (i) F(x,0) = F(0,x) = x.
- (ii) F(y, x) = F(x, y)
- (iii) F(x, F(y, z)) = F(F(x, y), z).

Remarks:

- A commututative 1-dimensional analytic Lie group also leads to such a power series, but here there is no convergence requirement.
- An *n*-dimensional formal group law (consisting of n power series in 2n variables) can be defined in a similar way.

Examples for formal group laws:

- (i) F(x, y) = x + y, the additive formal group law.
- (ii) F(x,y) = x + y + xy, the multiplicative formal group law. Here 1 + F(x,y) = (1 + x)(1 + y), which makes the associativity condition transparent. This example is related to the Todd genus and to complex K-theory.
- (iii) $F(x, y) = \frac{x+y}{1+xy}$, the formal group law associated with the hyperbolic tangent function via the addition formula.

 $\tanh(x+y) = F(\tanh(x), \tanh(y)).$

This example corresponds to the Hirzebruch signature of a complex manifold.

Now suppose E is an elliptic curve defined over a ring R. It is a 1-dimensional algebraic group, and choosing a local paramater at the identity leads to a formal group law \hat{E} , the formal completion of E. Thus we can apply the machinery above and get an R-valued genus.

For example, the *Jacobi quartic*, defined by the equation

$$v^2 = 1 - 2\delta u^2 + \epsilon u^4,$$

is an elliptic curve over the ring

4

$$R = \mathbf{Z}[1/2, \delta, \epsilon].$$

The resulting formal group law is the power series expansion of

$$F(x,y) = \frac{x\sqrt{1-2\delta y^2+\epsilon y^4}+y\sqrt{1-2\delta x^2+\epsilon x^4}}{1-\epsilon x^2y^2};$$

this calculation is originally due to Euler. The resulting genus is known to satisfy Landweber's conditions, and this leads to one definition of elliptic cohomology [LRS95]. A more general elliptic curve is defined by the Weierstrass equation

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}x^{3}$$

Under the affine coordinate change

$$y \mapsto y + r$$
 and $x \mapsto x + sy + t$

we get

$$a_{6} \mapsto a_{6} + a_{4}r + a_{3}t + a_{2}r^{2} + a_{1}rt + t^{2} - r^{3}$$

$$a_{4} \mapsto a_{4} + a_{3}s + 2a_{2}r + a_{1}(rs + t) + 2st - 3r^{2}$$

$$a_{3} \mapsto a_{3} + a_{1}r + 2t$$

$$a_{2} \mapsto a_{2} + a_{1}s - 3r + s^{2}$$

$$a_{1} \mapsto a_{1} + 2s.$$

This can be used to define a Hopf algrebroid (A, Γ) with

$$A = \mathbf{Z}[a_1, a_2, a_3, a_4, a_6]$$

$$\Gamma = A[r, s, t]$$

and right unit $\eta_R : A \to \Gamma$ given by the formulas above. It was first described by Hopkins and Mahowald in *From elliptic* curves to homotopy theory [HM]. Its Ext group is the E_2 -term of a spectral sequence converging to $\pi_*(\text{tmf})$. Tilman Bauer has written a nice account of this calculation.

2. What does "chromatic" mean?

6

The stable homotopy category localized a prime p can be studied via a series of increasingly complicated Bousfield localization functors L_n for $n \ge 0$, which detect " v_n -periodic" phenomena. The following diagram of functors and natural transformations is known as the *chromatic tower*.

$$L_0 \longleftarrow L_1 \longleftarrow L_2 \longleftarrow L_3 \longleftarrow \cdots$$

- L_0 is rationalization. Rational stable homotopy theory is very well understood. It detects only the 0-stem in the stable homotopy groups of spheres.
- L_1 is localization with respect to K-theory. It detects the image of J and the α family in the stable homotopy groups of spheres.
- For an odd prime p, L_2 is equivalent to localization with respect to elliptic cohomology as defined above. It detects the β family in the stable homotopy groups of spheres. Davis' nonimmersion theorem for real projective spaces was proved using related methods at the prime 2. The theory of topological modular forms of Hopkins *et al* is a refinement of elliptic cohomology.
- In general, L_n can be constructed by algebraic methods related to *BP*-theory. For n > 2, there is no known comparable geometric definition of L_n . It detects higher Greek letter families in the stable homotopy groups of spheres. The *n*th Morava *K*-theory is closely related to it.

A key to understanding the algebraic underpinnings of the chromatic point of view is the following.

Definition 3. Let F be 1-dimensional formal group law over a field k of characteristic p. For a positive integer m, the m-series is defined inductively by

$$[m]_F(x) = F(x, [m-1]_F(x)),$$

where $[1]_F(x) = x$. The p-series is either 0 or has the form $[p]_F(x) = ax^{p^n} + \cdots$

for some nonzero $a \in k$. The **height** of F is the integer n. It is defined to be ∞ when $[p]_F(x) = 0$, which happens when F(x, y) = x + y.

Examples of heights:

- The multiplicative formal group law (which is associated with *K*-theory) has height 1 at every prime.
- The formal group law associated with the Hirzebruch signature has height 1 at every odd prime, and infinite height at the prime 2.
- The formal group law associated with an elliptic curve is known to have height at most 2. If the height is 1, the curve is said to be *ordinary*; otherwise it is said to be *supersingular*.
- v_n -periodic phenomena (the *n*th layer in the chromatic tower) are related to formal group laws of height n.

3. What is a higher chromatic analog of elliptic cohomology?

Question: How can we attach 1-dimensional formal group laws of height > 2 to geometric objects (such as algebraic curves) and use them get insight into cohomology theories that go deeper into the chromatic tower?

Program:

8

- Let C be a curve of genus g over some ring R.
- Its Jacobian J(C) is an abelian variety of dimension g.
- J(C) has a formal completion $\widehat{J}(C)$ which is a *g*-dimensional formal group law.
- If $\widehat{J}(C)$ has a 1-dimensional summand of height n, then by Quillen's theorem it gives us a genus associated with the curve C.

Caveat: Note that a 1-dimensional summand of the formal completion $\widehat{J}(C)$ is *not* the same thing as 1-dimensional factor of the Jacobian J(C). The latter would be an elliptic curve, whose formal completion can have height at most 2. There is a theorem that says if an abelian variety A has a 1-dimensional formal summand of height n for n > 2, then the dimension of A (and the genus of the curve, if A is a Jacobian) is at least n.

Theorem 4. For prime p and positive integer f, let C(p, f)be the Artin-Schreier curve over \mathbf{F}_p defined by the affine equation

$$y^e = x^p - x,$$
 where $e = p^f - 1.$

(Assume that f > 1 when p = 2.) Then its Jacobian has a 1-dimensional formal summand of height h = (p-1)f.

Theorem 5. Let C'(p, f) be the curve over over the ring $E_* = \mathbf{Z}_p[[u_1, \dots, u_{h-1}]][u, u^{-1}]$ defined by $y = x^p - u^m x + \sum_{i=0}^{h-2} u_{i+1} x^{p-1-[i/f]} y^{p^{f-1}-p^{i-[i/f]f}}$ where m = (p-1)e.

Then its Jacobian has a formal 1-dimensional subgroup isomorphic to the Lubin-Tate [LT65] lifting of the formal group law above. The resulting genus satisfies Landweber's exactness criteria, so we get a cohomology theory.

Conjecture 6. Let C''(p, f) be the curve over over the ring

 $R = \mathbf{Z}_p[u, u^{-1}][[a_{(p-s)e-qt} : s, t \ge 0, \ es + pt < pe]]$ defined by

$$y^{e} = x^{p} - u^{m}x + \sum_{s,t} a_{(p-s)e-pt}x^{s}y^{t}$$
where $|u| = 2$ and $|a_{i}| = 2i$

Then its Jacobian has a formal 1-dimensional subgroup, subject to certain divisibility conditions among the a_i for f > 2. The resulting genus also satisfies Landweber's exactness criteria.

This last curve is amenable to change of coordinates and possibly a calculation generalizing that of Hopkins-Mahowald for tmf. Recall that C(p, f) is the Artin-Schreier curve over \mathbf{F}_p defined by the affine equation

$$y^e = x^p - x$$
, where $e = p^f - 1$,

and its Jacobain has a 1-dimensional formal summand of height h = (p - 1)f.

Properties of C(p, f):

- Its genus is (p-1)(e-1)/2. (Thus it is zero in the excluded case (p, f) = (2, 1).)
- It has an action by the group

$$G = \mathbf{F}_p \rtimes \mu_m$$
 where $m = (p-1)e$

given by

$$(x,y)\mapsto (\zeta^e x+a,\zeta y)$$

for $a \in \mathbf{F}_p$ and $\zeta \in \mu_m$. This group is a maximal finite subgroup of the *h*th Morava stabilizer group, and it acts appropriately on the 1-dimensional formal summand.

• For f = 1 (and p > 2) Theorem 5 was proved by Gorbunov-Mahowald [GM00].

Examples of these curves:

- C(2,2) and C(3,1) are elliptic curves whose formal group laws have height 2.
- C(2,3) has genus 3 and a 1-dimensional formal summand of height 3.
- C(2,4) and C(3,2) each has genus 7 and a 1-dimensional formal summand of height 4.

Remarks:

- Theorem 4 was known to and cited by Manin in 1963 [Man63]. Most of what is needed for the proof can be found in Katz's 1979 Bombay Colloquium paper [Kat81] and in Koblitz' Hanoi notes [Kob80].
- The original proof rests on the determination of the zeta function of the curve by Davenport-Hasse in 1934 [HD34], and on some properties of Gauss sums proved by Stick-elberger in 1890 [Sti90]. The method leads to complete determination of $\widehat{J}(C(p, f))$.
- We have reproved Theorem 4 using Honda's theory of commutative formal group laws developed in the early '70s. This proof does not rely on knowledge of the zeta function and can be modified to prove Theorem 5 and presumably Conjecture 6.

4. Sketch of the Honda Theoretic proof of Theorem 4.

Notation:

12

- Given a power series $f(x_1, x_2, ...)$ in several variables over \mathbf{Z}_p or \mathbf{Q}_p , let $T^n(f)$ be the power series obtained from f by replacing each variable by its p^n th power. This leads to an action of the ring $\mathbf{Z}_p[T]$ on the power series ring $R = \mathbf{Q}_p[[x_1, x_2, ...]]$. Similarly a vector of d such power series admits an action by the matrix ring $M_d(\mathbf{Z}_p[T])$.
- Suppose we have a *d*-dimensional formal group law *F* over \mathbf{Z}_p . *F* is characterized by its logarithm *f*, which is a vector of *d* power series in *d* variables over the field \mathbf{Q}_p . Given a matrix $H = \sum_i C_i T^i$ in $M_d(\mathbf{Z}_p[T])$, define

$$(H * f)(x_1, \dots, x_d) = \sum_i C_i f(x_1^{p^i}, \dots, x_d^{p^i}).$$

Definition 7. We say that H is a **Honda matrix** for F (or for the vector f) and that F is of type H, if $H \equiv pI_d$ modulo T (I_d is the $d \times d$ identity matrix) and $(H * f)(x) \equiv 0$ modulo (p). Two such matrices are said to be **equivalent** if they differ by unit multiplication on the left.

Theorem 8 (Honda, 1970 [Hon70]). The strict isomorphism classes of d-dimensional formal group laws over \mathbf{Z}_p correspond bijectively to the equivalence classes of matrices

$$H \in M_d(\mathbf{Z}_p)_\sigma \langle \langle T \rangle \rangle$$

congruent to pI_d modulo degree 1. H and f are related by the formula

$$f(x) = (H^{-1} * p)(x).$$

Examples of Honda matrices:

• For d = 1, let H be the 1×1 matrix with entry $h = p - T^n$ for a positive integer n. Then

$$f(x) = \sum_{i \ge 0} \frac{x^{p^{ni}}}{p^i}$$

and F is the formal group law for the Morava K-theory $K(n)_*$.

• Let $A = \mathbf{Z}_p[[u_1, u_2, \dots, u_{n-1}]]$ for a positive integer m, and let $u_i^{\sigma} = u_i^p$. Let H be the 1×1 matrix with entry

$$h = p - T^n - \sum_{0 < i < n} u_i T^i.$$

Then f(x) is the logarithm for the Lubin-Tate lifting of the formal group law above.

Question: How can we find the Honda matrix for the formal completion of the Jacobian of an algebraic curve?

Theorem 9 (Honda, 1973 [Hon73]). Let C be a curve of genus g over \mathbb{Z}_p with smooth reduction modulo p, and let

$$\{\omega_1,\ldots,\omega_g\}$$

be a basis for the space of holomorphic 1-forms of C written as power series in a local parameter y, and let

$$\psi_i = \int_0^y \omega_i.$$

Then if H is a Honda matrix for the vector (ψ_1, \ldots, ψ_g) , it is also one for $\widehat{J}(C)$, the formal completion of the Jacobian J(C).

Note that ψ above is a vector of power series in one variable over \mathbf{Q}_p , while the logarithm of $\widehat{J}(C)$ is a vector of power series in g variables. The theorem asserts that they have the same Honda matrix. Recall that our curve C(p, f) is defined by the affine equation

$$y^e = x^p - x$$
 where $e = p^f - 1$.

Its genus is g = (e - 1)(p - 1)/2. A basis for the holomorphic 1-forms for C(p, f) is

$$\{\omega_{j,k}: j, k \ge 0, ej + pk < 2g - 1\},\$$

where

$$\omega_{j,k} = \frac{x^j y^k \mathrm{d}y}{1 - p x^{p-1}}.$$

We denote the integral of its expansion in terms of y by ψ_{ej+k+1} , and we have

$$\psi_{ej+k+1} = \sum_{i \ge 0} (-1)^i \binom{pi+j}{i} \frac{y^{mi+ej+k+1}}{mi+ej+k+1},$$

and this enable us to prove Theorem 4.

Examples of Honda matrices of the curves C(p, f):

• For C(2,3) (where g = 3 and m = 7), the integrals have the form

$$\psi_1 \in y \mathbf{Q}_2[[y^{\prime}]]$$

$$\psi_2 \in y^2 \mathbf{Q}_2[[y^{7}]]$$

$$\psi_3 \in y^3 \mathbf{Q}_2[[y^{7}]]$$

More explicitly

$$\psi_k = \sum_{i \ge 0} (-1)^i {\binom{2i}{i}} \frac{y^{7i+k}}{7i+k}.$$

This means that $T\psi_1 \in y^2 \mathbf{Q}_2[[y^7]]$ $T\psi_2 \in y^4 \mathbf{Q}_2[[y^7]]$ $T\psi_3 \in y^6 \mathbf{Q}_2[[y^7]]$ $T^2\psi_1 \in y^4 \mathbf{Q}_2[[y^7]]$ $T^2\psi_2 \in y^8 \mathbf{Q}_2[[y^7]] \subset y \mathbf{Q}_2[[y^7]]$ $T^2\psi_3 \in y^{12} \mathbf{Q}_2[[y^7]] \subset y^5 \mathbf{Q}_2[[y^7]]$

This implies that the Honda matrix has the form

$$H = \begin{bmatrix} h_{1,1}(T^3) & T^2 h_{1,2}(T^3) & 0\\ T h_{2,1}(T^3) & h_{2,2}(T^3) & 0\\ 0 & 0 & h_{3,3}(T^3) \end{bmatrix}$$

where

$$h_{i,j}(T^3) = \sum_{k \ge 0} h_{i,j,k} T^{3k} \quad \text{where } h_{i,j,k} \in \mathbf{Z}_{(2)}$$

with $h_{i,i,0} = 2$. This means that the 3-dimensional formal group law has a 1-dimensional summand. Since

$$\psi_3 = \frac{y^3}{3} - \frac{y^{10}}{5} + \frac{6y^{17}}{17} - \frac{5y^{24}}{6} + \cdots$$
$$\equiv y^3 + y^{10} + \frac{y^{24}}{2} + \cdots \mod 2,$$

 $h_{3,3}$ is roughly $2 - T^3$, and the 1-dimensional summand has height 3.

• For C(3,2) (where g = 7 and m = 16), we get integrals ψ_k for

$$k \in S = \{1, 2, 3, 4, 5, 9, 10\}.$$

Explicitly,

$$\psi_k = \sum_{i \ge 0} (-1)^i \binom{3i + [k/8]}{i} \frac{y^{16i+k}}{16i+k}.$$

A similar computation shows that ψ_5 corresponds to a 1-dimensional formal summand. The argument boils down to seeing how the orbits O of $\mathbf{Z}/(16)$ under multiplication by 3 intersect the set S above. Each such intersection corresponds to a formal summand whose dimension is the cardinality of $O \cap S$ and whose height is the cardinality of O. One such orbit is $\{5, 15, 13, 7\}$, whose intersection with S is the singleton $\{5\}$.

We find that

$$\psi_5 \equiv -y^5 - y^{21} + y^{117} + y^{261} + \frac{2y^{405}}{3} + \dots \mod 3,$$

which leads to a Honda eigenvalue of roughly $3 - T^4$, so the height of the 1-dimensional formal summand is 4 as claimed.

REFERENCES

- [GM00] V. Gorbounov and M. Mahowald. Formal completion of the Jacobians of plane curves and higher real Ktheories. J. Pure Appl. Algebra, 145(3):293–308, 2000.
- [HD34] H. Hasse and H. Davenport. Die Nullstellensatz der Kongruenz zeta-funktionen in gewissn zyklischen Fällen. J. Reine Angew. Math., 172:151–182, 1934.
- [HM] M. J. Hopkins and M. A. Mahowald. From elliptic curves to homotopy theory. Preprint in Hopf archive at http://hopf.math.purdue.edu/Hopkins-Mahowald/eo2homotopy.
- [Hon70] Taira Honda. On the theory of commutative formal groups. J. Math. Soc. Japan, 22:213–246, 1970.
- [Hon73] Taira Honda. On the formal structure of the Jacobian variety of the Fermat curve over a p-adic integer ring. In Symposia Mathematica, Vol. XI (Convegno di Geometria, INDAM, Rome, 1972), pages 271–284. Academic Press, London, 1973.
- [Kat81] Nicholas M. Katz. Crystalline cohomology, Dieudonné modules, and Jacobi sums. In Automorphic forms, representation theory and arithmetic (Bombay, 1979), volume 10 of Tata Inst. Fund. Res. Studies in Math., pages 165–246. Tata Inst. Fundamental Res., Bombay, 1981.
- [Kob80] Neal Koblitz. p-adic analysis: a short course on recent work, volume 46 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1980.
- [Lan76] P. S. Landweber. Homological properties of comodules over MU_{*}(MU) and BP_{*}(BP). American Journal of Mathematics, 98:591–610, 1976.
- [LRS95] P. S. Landweber, D. C. Ravenel, and R. E. Stong. Periodic cohomology theories defined by elliptic curves. In Mila Cenkl and Haynes Miller, editors, *The Čech Centennial*, volume 181 of *Contemporary Mathematics*, pages 317–338, Providence, Rhode Island, 1995. American Mathematical Society.
- [LT65] J. Lubin and J. Tate. Formal complex multiplication in local fields. Annals of Mathematics, 81:380–387, 1965.
- [Man63] Ju. I. Manin. Theory of commutative formal groups over fields of finite characteristic. Uspehi Mat. Nauk, 18(6 (114)):3–90, 1963.
- [Qui69] D. G. Quillen. On the formal group laws of oriented and unoriented cobordism theory. Bulletin of the American Mathematical Society, 75:1293–1298, 1969.
- [Sti90] L. Stickelberger. Über eine Verallgemeinerung der Kreistheilung. Mathematische Annalen, 37:321–367, 1890.

University of Rochester, Rochester, NY 14627