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1. What is elliptic cohomology?

Definition 1. For a ring R, an R-valued genus on a
class of closed manifolds is a function ϕ that assigns to
each manifold M an element ϕ(M) ∈ R such that

(i) ϕ(M1

∐
M2) = ϕ(M1) + ϕ(M2)

(ii) ϕ(M1 ×M2) = ϕ(M1)ϕ(M2)
(iii) ϕ(M) = 0 if M is a boundary.

Equivalently, ϕ is a homomorphism from the appropriate
cobordism ring Ω to R.

Examples of genera:

• The Hirzebruch signature is a Z-valued genus for smooth
oriented manifolds.

• The Â-genus is a Z-valued genus for Spin manifolds.
• The Euler characteristic and Todd genus are Z-valued gen-

era for complex manifolds.

A theorem of Quillen [Qui69] says that in the complex case
(where Ω = MU∗, the complex cobordism ring), ϕ is a equiva-
lent to a 1-dimensional formal group law over R, to be defined
below. It is also known that the functor

X 7→MU ∗(X)⊗ϕ R

is a cohomology theory if ϕ satisfies certain conditions spelled
out in Landweber’s Exact Functor Theorem [Lan76].
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Definition 2. A 1-dimensional formal group law over R
is a power series F (x, y) ∈ R[[x, y]] satisfying

(i) F (x, 0) = F (0, x) = x.
(ii) F (y, x) = F (x, y)
(iii) F (x, F (y, z)) = F (F (x, y), z).

Remarks:

• A commututative 1-dimensional analytic Lie group also
leads to such a power series, but here there is no conver-
gence requirement.

• An n-dimensional formal group law (consisting of n power
series in 2n variables) can be defined in a similar way.

Examples for formal group laws:

(i) F (x, y) = x + y, the additive formal group law.
(ii) F (x, y) = x + y + xy, the multiplicative formal group

law. Here 1 + F (x, y) = (1 + x)(1 + y), which makes
the associativity condition transparent. This example is
related to the Todd genus and to complex K-theory.

(iii) F (x, y) = x+y
1+xy , the formal group law associated with the

hyperbolic tangent function via the addition formula.

tanh(x + y) = F (tanh(x), tanh(y)).

This example corrsponds to the Hirzebruch signature of a
complex manifiold.
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Now suppose E is an elliptic curve defined over a ring R. It
is a 1-dimensional algebraic group, and choosing a local para-
mater at the identity leads to a formal group law Ê, the formal
completion of E. Thus we can apply the machinery above and
get an R-valued genus.

For example, the Jacobi quartic, defined by the equation

v2 = 1− 2δu2 + εu4,

is an elliptic curve over the ring

R = Z[1/2, δ, ε].

The resulting formal group law is the power series expansion of

F (x, y) =
x
√

1− 2δy2 + εy4 + y
√

1− 2δx2 + εx4

1− εx2y2
;

this calculation is originally due to Euler. The resulting genus
is known to satisfy Landweber’s conditions, and this leads to
one definition of elliptic cohomology [LRS95].
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A more general elliptic curve is defined by the Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Under the affine coordinate change

y 7→ y + r and x 7→ x + sy + t

we get

a6 7→ a6 + a4 r + a3 t + a2 r
2

+a1 r t + t2 − r3

a4 7→ a4 + a3 s + 2 a2 r

+a1(r s + t) + 2 s t− 3 r2

a3 7→ a3 + a1 r + 2 t

a2 7→ a2 + a1 s− 3 r + s2

a1 7→ a1 + 2 s.

This can be used to define a Hopf algrebroid (A, Γ) with

A = Z[a1, a2, a3, a4, a6]

Γ = A[r, s, t]

and right unit ηR : A → Γ given by the formulas above. It
was first described by Hopkins and Mahowald in From elliptic
curves to homotopy theory [HM]. Its Ext group is the E2-term
of a spectral sequence converging to π∗(tmf). Tilman Bauer has
written a nice account of this calculation.
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2. What does “chromatic” mean?

The stable homotopy category localized a prime p can be stud-
ied via a series of increasingly complicated Bousfield localization
functors Ln for n ≥ 0, which detect “vn-periodic” phenomena.
The following diagram of functors and natural transformations
is known as the chromatic tower.

L0 L1
oo L2

oo L3
oo · · ·oo

• L0 is rationalization. Rational stable homotopy theory is
very well understood. It detects only the 0-stem in the
stable homotopy groups of spheres.

• L1 is localization with respect to K-theory. It detects the
image of J and the α family in the stable homotopy groups
of spheres.

• For an odd prime p, L2 is equivalent to localization with
respect to elliptic cohomology as defined above. It detects
the β family in the stable homotopy groups of spheres.
Davis’ nonimmersion theorem for real projective spaces
was proved using related methods at the prime 2. The
theory of topological modular forms of Hopkins et al is a
refinement of elliptic cohomology.

• In general, Ln can be constructed by algebraic methods
related to BP -theory. For n > 2, there is no known com-
parable geometric definition of Ln. It detects higher Greek
letter families in the stable homotopy groups of spheres.
The nth Morava K-theory is closely related to it.
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A key to understanding the algebraic underpinnings of the
chromatic point of view is the following.

Definition 3. Let F be 1-dimensional formal group law
over a field k of characteristic p. For a positive integer
m, the m-series is defined inductively by

[m]F (x) = F (x, [m− 1]F (x)),

where [1]F (x) = x. The p-series is either 0 or has the form

[p]F (x) = axp
n

+ · · ·
for some nonzero a ∈ k. The height of F is the integer n.
It is defined to be ∞ when [p]F (x) = 0, which happens when
F (x, y) = x + y.

Examples of heights:

• The multiplicative formal group law (which is associated
with K-theory) has height 1 at every prime.

• The formal group law associated with the Hirzebruch sig-
nature has height 1 at every odd prime, and infinite height
at the prime 2.

• The formal group law associated with an elliptic curve is
known to have height at most 2. If the height is 1, the
curve is said to be ordinary; otherwise it is said to be
supersingular.

• vn-periodic phenomena (the nth layer in the chromatic
tower) are related to formal group laws of height n.
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3. What is a higher chromatic analog of
elliptic cohomology?

Question: How can we attach 1-dimensional formal group
laws of height > 2 to geometric objects (such as algebraic
curves) and use them get insight into cohomology theories that
go deeper into the chromatic tower?

Program:

• Let C be a curve of genus g over some ring R.
• Its Jacobian J(C) is an abelian variety of dimension g.

• J(C) has a formal completion Ĵ(C) which is a g-dimensional
formal group law.

• If Ĵ(C) has a 1-dimensional summand of height n, then
by Quillen’s theorem it gives us a genus associated with
the curve C.

Caveat: Note that a 1-dimensional summand of the formal
completion Ĵ(C) is not the same thing as 1-dimensional factor
of the Jacobian J(C). The latter would be an elliptic curve,
whose formal completion can have height at most 2. There is a
theorem that says if an abelian variety A has a 1-dimensional
formal summand of height n for n > 2, then the dimension of
A (and the genus of the curve, if A is a Jacobian) is at least n.
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Theorem 4. For prime p and positive integer f , let C(p, f )
be the Artin-Schreier curve over Fp defined by the affine
equation

ye = xp − x, where e = pf − 1.

(Assume that f > 1 when p = 2.) Then its Jacobian has a
1-dimensional formal summand of height h = (p− 1)f .

Theorem 5. Let C ′(p, f ) be the curve over over the ring
E∗ = Zp[[u1, . . . , uh−1]][u, u

−1] defined by

y = xp − umx +

h−2∑
i=0

ui+1x
p−1−[i/f ]yp

f−1−pi−[i/f ]f

where m = (p− 1)e.

Then its Jacobian has a formal 1-dimensional subgroup iso-
morphic to the Lubin-Tate [LT65] lifting of the formal group
law above. The resulting genus satisfies Landweber’s exact-
ness criteria,so we get a cohomology theory.

Conjecture 6. Let C ′′(p, f ) be the curve over over the ring

R = Zp[u, u
−1][[a(p−s)e−qt : s, t ≥ 0, es + pt < pe]]

defined by

ye = xp − umx +
∑
s,t

a(p−s)e−ptxsyt

where |u| = 2 and |ai| = 2i.

Then its Jacobian has a formal 1-dimensional subgroup,
subject to certain divisibility conditions among the ai for
f > 2. The resulting genus also satisfies Landweber’s ex-
actness criteria.

This last curve is amenable to change of coordinates and pos-
sibly a calculation generalizing that of Hopkins-Mahowald for
tmf.
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Recall that C(p, f ) is the Artin-Schreier curve over Fp defined
by the affine equation

ye = xp − x, where e = pf − 1,

and its Jacobain has a 1-dimensional formal summand of height
h = (p− 1)f .

Properties of C(p, f ):

• Its genus is (p−1)(e−1)/2. (Thus it is zero in the excluded
case (p, f ) = (2, 1).)

• It has an action by the group

G = Fp o µm where m = (p− 1)e

given by
(x, y) 7→ (ζex + a, ζy)

for a ∈ Fp and ζ ∈ µm. This group is a maximal finite
subgroup of the hth Morava stabilizer group, and it acts
appropriately on the 1-dimensional formal summand.

• For f = 1 (and p > 2) Theorem 5 was proved by Gorbunov-
Mahowald [GM00].

Examples of these curves:

• C(2, 2) and C(3, 1) are elliptic curves whose formal group
laws have height 2.

• C(2, 3) has genus 3 and a 1-dimensional formal summand
of height 3.

• C(2, 4) and C(3, 2) each has genus 7 and a 1-dimensional
formal summand of height 4.
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Remarks:

• Theorem 4 was known to and cited by Manin in 1963
[Man63]. Most of what is needed for the proof can be
found in Katz’s 1979 Bombay Colloquium paper [Kat81]
and in Koblitz’ Hanoi notes [Kob80].

• The original proof rests on the determination of the zeta
function of the curve by Davenport-Hasse in 1934 [HD34],
and on some properties of Gauss sums proved by Stick-
elberger in 1890 [Sti90]. The method leads to complete

determination of Ĵ(C(p, f )).
• We have reproved Theorem 4 using Honda’s theory of com-

mutative formal group laws developed in the early ’70s.
This proof does not rely on knowledge of the zeta function
and can be modified to prove Theorem 5 and presumably
Conjecture 6.
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4. Sketch of the Honda theoretic proof
of Theorem 4.

Notation:

• Given a power series f (x1, x2, . . . ) in several variables over
Zp or Qp, let T n(f ) be the power series obtained from f
by replacing each variable by its pnth power. This leads
to an action of the ring Zp[T ] on the power series ring
R = Qp[[x1, x2, . . . ]]. Similarly a vector of d such power
series admits an action by the matrix ring Md(Zp[T ]).

• Suppose we have a d-dimensional formal group law F over
Zp. F is characterized by its logarithm f , which is a vector
of d power series in d variables over the field Qp. Given a
matrix H =

∑
iCiT

i in Md(Zp[T ]), define

(H ∗ f )(x1, . . . , xd) =
∑
i

Cif (xp
i

1 , . . . , x
pi

d ).

Definition 7. We say that H is a Honda matrix for F
(or for the vector f) and that F is of type H, if H ≡ pId
modulo T (Id is the d×d identity matrix) and (H∗f )(x) ≡ 0
modulo (p). Two such matrices are said to be equivalent
if they differ by unit multiplication on the left.

Theorem 8 (Honda, 1970 [Hon70]). The strict isomorphism
classes of d-dimensional formal group laws over Zp corre-
spond bijectively to the equivalence classes of matrices

H ∈Md(Zp)σ〈〈T 〉〉
congruent to pId modulo degree 1. H and f are related by
the formula

f (x) = (H−1 ∗ p)(x).
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Examples of Honda matrices:

• For d = 1 , letH be the 1×1 matrix with entry h = p−T n
for a positive integer n. Then

f (x) =
∑
i≥0

xp
ni

pi

and F is the formal group law for the Morava K-theory
K(n)∗.

• Let A = Zp[[u1, u2, . . . un−1]] for a positive integer m, and
let uσi = upi . Let H be the 1× 1 matrix with entry

h = p− T n −
∑

0<i<n

uiT
i.

Then f (x) is the logarithm for the Lubin-Tate lifting of
the formal group law above.

Question: How can we find the Honda matrix for the formal
completion of the Jacobian of an algebraic curve?

Theorem 9 (Honda, 1973 [Hon73]). Let C be a curve of
genus g over Zp with smooth reduction modulo p, and let

{ω1, . . . , ωg}
be a basis for the space of holomorphic 1-forms of C written
as power series in a local parameter y, and let

ψi =

∫ y

0

ωi.

Then if H is a Honda matrix for the vector (ψ1, . . . , ψg), it

is also one for Ĵ(C), the formal completion of the Jacobian
J(C).

Note that ψ above is a vector of power series in one variable
over Qp, while the logarithm of Ĵ(C) is a vector of power series
in g variables. The theorem asserts that they have the same
Honda matrix.
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Recall that our curve C(p, f ) is defined by the affine equation

ye = xp − x where e = pf − 1.

Its genus is g = (e− 1)(p− 1)/2. A basis for the holomorphic
1-forms for C(p, f ) is

{ωj,k : j, k ≥ 0, ej + pk < 2g − 1} ,
where

ωj,k =
xjykdy

1− pxp−1
.

We denote the integral of its expansion in terms of y by ψej+k+1,
and we have

ψej+k+1 =
∑
i≥0

(−1)i
(
pi + j

i

)
ymi+ej+k+1

mi + ej + k + 1
,

and this enable us to prove Theorem 4.



15

Examples of Honda matrices of the curves C(p, f ):

• For C(2, 3) (where g = 3 and m = 7), the integrals have
the form

ψ1 ∈ yQ2[[y
7]]

ψ2 ∈ y2Q2[[y
7]]

ψ3 ∈ y3Q2[[y
7]]

More explicitly

ψk =
∑
i≥0

(−1)i
(

2i

i

)
y7i+k

7i + k
.

This means that
Tψ1 ∈ y2Q2[[y

7]] T 2ψ1 ∈ y4Q2[[y
7]]

Tψ2 ∈ y4Q2[[y
7]] T 2ψ2 ∈ y8Q2[[y

7]] ⊂ yQ2[[y
7]]

Tψ3 ∈ y6Q2[[y
7]] T 2ψ3 ∈ y12Q2[[y

7]] ⊂ y5Q2[[y
7]]

This implies that the Honda matrix has the form

H =




h1,1(T
3) T 2h1,2(T

3) 0
Th2,1(T

3) h2,2(T
3) 0

0 0 h3,3(T
3)




where

hi,j(T
3) =

∑

k≥0

hi,j,kT
3k where hi,j,k ∈ Z(2)

with hi,i,0 = 2. This means that the 3-dimensional formal
group law has a 1-dimensional summand. Since

ψ3 =
y3

3
− y10

5
+

6y17

17
− 5y24

6
+ · · ·

≡ y3 + y10 +
y24

2
+ · · · mod 2,

h3,3 is roughly 2 − T 3, and the 1-dimensional summand
has height 3.
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• For C(3, 2) (where g = 7 and m = 16), we get integrals
ψk for

k ∈ S = {1, 2, 3, 4, 5, 9, 10} .
Explicitly,

ψk =
∑
i≥0

(−1)i
(

3i + [k/8]

i

)
y16i+k

16i + k
.

A similar computation shows that ψ5 corresponds to a
1-dimensional formal summand. The argument boils down
to seeing how the orbits O of Z/(16) under multiplication
by 3 intersect the set S above. Each such intersection
corresponds to a formal summand whose dimension is the
cardinality of O ∩ S and whose height is the cardinality
of O. One such orbit is {5, 15, 13, 7}, whose intersection
with S is the singleton {5}.

We find that

ψ5 ≡ −y5 − y21 + y117 + y261 +
2 y405

3
+ · · · mod 3,

which leads to a Honda eigenvalue of roughly 3 − T 4, so
the height of the 1-dimensional formal summand is 4 as
claimed.



17

References
[GM00] V. Gorbounov and M. Mahowald. Formal completion of the Jacobians of plane curves and higher real K-

theories. J. Pure Appl. Algebra, 145(3):293–308, 2000.
[HD34] H. Hasse and H. Davenport. Die Nullstellensatz der Kongruenz zeta-funktionen in gewissn zyklischen Fällen.

J. Reine Angew. Math., 172:151–182, 1934.
[HM] M. J. Hopkins and M. A. Mahowald. From elliptic curves to homotopy theory. Preprint in Hopf archive at

http://hopf.math.purdue.edu/Hopkins-Mahowald/eo2homotopy.
[Hon70] Taira Honda. On the theory of commutative formal groups. J. Math. Soc. Japan, 22:213–246, 1970.
[Hon73] Taira Honda. On the formal structure of the Jacobian variety of the Fermat curve over a p-adic integer

ring. In Symposia Mathematica, Vol. XI (Convegno di Geometria, INDAM, Rome, 1972), pages 271–284.
Academic Press, London, 1973.

[Kat81] Nicholas M. Katz. Crystalline cohomology, Dieudonné modules, and Jacobi sums. In Automorphic forms,
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