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ABSTRACT. There are p-local spectra T'(m) with BPy(T(m)) = BPx[t1,...,tm].
Its Adams-Novikov Es-term is isomorphic to

Extp (1) (BPx, BPy),
where
T'(m+1) = BP«(BP)/(t1,...,tm) = BPx[tm+1,tm+2,---].
In this paper we determine the groups
Ext}(mH) (BPs,v;'BP./I,,)

for all m,n > 0. Its rank ranges from 2n + 1 to n? depending on the value of
m.

1. INTRODUCTION AND MAIN THEOREM

Let BP be the Brown-Peterson spectrum for a fixed prime p. In [Rav86, §6.5],
the second author has introduced the spectrum 7'(m) which has BP,-homology

BP,(T(m)) = BP,[ty,------ stml],

and is homotopy equivalent to BP below dimension 2p™*! — 3.
Then the Adams-Novikov Fs-term converging to the homotopy groups of T'(m)

Ey"(T(m)) = Extpp, (5p)(BP.; BP(T(m)))
is isomorphic by [Rav86, 7.1.3] to
Extr(m11)(BPs, BP.),
where
I(m+1) = BP.(BP)/(t1,...tm) = BPi[tm+1,tm+t2,-- - |-

In particular I'(1) = BP.(BP) by definition. To get the structure of this, we can
use the chromatic method introduced in [MRW77].
Recall the Morava stabilizer algebra

X(n) = K(n)« @pp, BP.(BP) ®@pp, K(n).
and the isomorphism ([MR77] and [Rav86, 6.1.1])
Extgp, (sp) (BP,,v,'BP,/I,) = Exts () (K(n)«, K(n).).
As an algebra,
S(n) = K(n)ulti, ta, .. ]/ (0at?" = oB't;),
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where t; is the image of the generator of the same name in BP,(BP). As in [Rav86,
§6.5] we let

En,m+1)=3n)/(t1,...,tm);

we call this the generalized Morava stabilizer algebra. The object of this paper is
to determine its first cohomology group,

EthE(n,m+1) (K(n)*v K(n)*)

(which we will abbreivate by Extlz(mm +1)) for all values of m > 0 and n > 0 and
for all primes p. This amounts to identifying the primitive elements in X(n, m+1).
The case m = 0 was described in [Rav86, 6.3.12].

As explained in [Rav86, §6.2], the cohomology of ¥(n) is essentially the continu-
ous cohomology of a certain pro-p-group S,, known as the Morava stabilizer group.
It can be described as a group of automorphisms of a certain formal group law Fj,
in characteristic p and as a group of units in the maximal order E, of a certain
p-adic division algebra D,,. E, is also the endomorphism ring of F,.

In a similar way X(n, m+1) is related to a subgroup of S;,. In terms of the formal
group law it is the subgroup of automorphisms given by power series congruent to
the variable 2 modulo (z2™""). In terms of E, it is the multiplicatuve group of
units congruent to 1 modulo the ideal (S™*1).

The ring E,, has an embedding in the ring of n X n matrices over the Witt ring
W (Fpn) described in [Rav86, 6.2.6]. This means that S,, and each of its subgroups
supports a homomorphism induced by the determinant to the group of units in
W (Fpn), and it is known that its image is contained in the p-adic units Z;. The
structure of this group is

7 o Z/(p—1)@Z, forpodd
P Z/(2) @2y for p = 2.

From this is it possible to construct primitives 7,, € ¥(n) for all primes p and
U, € X(n) for p = 2 [Rav86, 6.3.12] satisfying

T, = Z tf’lj mod (t1,...,tn—1)
0<ji<n

and u,-1, = Z t%; mod (t1,...,tn—1).
0<j<n

The corresponding elements in Extlz(n), and their images in Extlz(mm +1), are de-
noted by (,, and p,, respectively.

The results of [Rav86, §6.3] are stated in terms of S(n) = ¥X(n) @k ), Fp and
S(n,m + 1) = X(n,m + 1) ®k(n), Fp. Passing from ¥(n) to S(n) amounts to
dropping the grading and setting v, equal to 1. Formulas are given for 7,, and (for
p=2) U, in S(n). It is straightforward to lift them to homogeneous elements in
X(n).

We can now state our main result.
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Theorem 1.1. For p odd the rank of Extlz(n}mﬂ) (as a vector space over K(n),)
18

n—2

(m+1)n+1 form < 75
_ n—=2
(m+1)n+n/2 forn even and m = "3

(m+ 1n for 25 <m<n-1

n2 form >n—1.

Let hytij € Ext! be the element corresponding to tf;H when it is primitive. Then
a basis for Ext! is given by

{G} U{hmyij: 1<i<m+1,j€Z/(n)} form < 252

{Cnsi: 7 €Z/(n/2)}

U{lm+ij: 1<i<m+1,j€Z/(n)} forn even and m = 52
{hmtij:1<i<m+1,j€Z/(n)} for 25t <m<n-—1
{hmtij: 1<i<n,je€Z/(n)} form > n.

where (, is as above and
_d _on/2 n/2 1+ n/2 J
Cng =v," (tn +U71z P - tn/g )"
For p =2 the rank is
-2
(m+1)n+2 form < 5=

n—2

(m+1)n+n/2+1 forn even and m = "=

(m+1)n+1 for 25t <m<n-1

n2 form >n.
The basis is as in the odd primary case but with p, added when m < n.

Note that for m = 0 this result gives the same answer as [Rav86, 6.3.12]. Also
[Rav86, 6.5.6] implies that Ext' has rank n? with the basis indicated above when
m > 25% — 1 and m > n — 1; it says that in that case the full Ext group is the
exterior algebra on those generators. [There is a missing hypothesis in [Rav86,
6.5.6] and [Rav86, 6.3.7]; see the online errata for details.]

Corollary 1.2. Forn < 3 the rank of Extlz(mmﬂ) is as indicated in the following
table.

n=1 n=2 n=3
p=2 p odd p=2 p odd p=2 p odd
m | rank || m | rank| m | rank| m | rank| m | rank| m | rank
0 2 >0 1 0 4 0 3 0 5 0 4
>1 1 1 5 >1 4 1 7 1 6
>2 4 2 10 || >2 9
>3 9
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2. THE PROOF

We need to show that the indicated basis elements are primitive and that there
are no other primitives. The primitivity of ¢, and (for p = 2) p,, was established
in [Ravs6, 6.3.12].

For the rest we need to study the coproduct in ¥(n,m + 1). A formula for the
coproduct in BP,(BP) was given in [Rav86, 4.3.13]. In BP.(BP)/I, for i < 2n
we have [Rav86, 4.3.15]

_ P’
i) = E b ®t_; + E Vntjibicn—jntj—1,
0<j<i 0<j<i—n—1

where b; ; satisfies

1 J+1 J+1_
bij=—— Y. (pk )tf@tf o mod (ty,.. ., ti1).
p0<k<pﬂ”rl

It is defined precisely in [Rav86, 4.3.14]. Similar methods yield the following formula
for the coproduct in I'(m + 1)/I,, for i < 2n.

k
A(t7rz+i) = tm—i—i ®1+1® tm+i + Z tr ® t?n«#ifk
m<k<i

+ § Un+kbm,+i—n—k,n+k—1~
0<k<i—n—1

In ¥(n,m + 1) this simplifies to

pk
Altmii) = tmpi®@1+1@tni+ Y @t
(2.1) m<k<i

+'Unbm+i—n,n—17

where the last term vanishes when ¢ < n. This formula implies that ¢, is primitive
for i < min(m + 1,n).

When n is even and m = %’2 we have
Altn) = ta® 14+ 1@ b+t @10,
N A e (t D1+ 1@ty +tnp @t /2> "
— "/2(15 Twlr1en ) @)
_ (t @l+lee"” o *1#’/2 @tn/g)
_ u};p"/ (tg ©141 ®tﬁ"/2) 2 ® taya,
and A(t}ljg’”/z) = (thp®l+1® tn/2)1+pn/2

n/ n/2
o 1 Ot tap 0 ), 1010

SO (p,; is primitive.
This means that each basis element specified in Theorem 1.1 is indeed primitive.
To show that there are no other primitives in X(n,m + 1) we need the methods
of [Rav86, §6.3]. As noted above, results there are stated in terms of S(n) =
2(n) @k ), Fp and S(n,m +1) = X(n,m+ 1) @k (). Fp. An increasing filtration
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on S(n) is described in [Rav86, 6.3.1]. The weight of tfj for each j is the integer
dy,; defined recursively by

Lo ifi<0
™ max(4,pdyi—n) if i > 0.

The bigraded object E°S(n) is described in [Rav86, 6.3.2]. It is considerably simpler
than the coproduct in the unfiltered object. It contains elements t,,+;; (with

j € Z/(n)) which are the projections of tf;_H. The coproduct on these elements is
given by

bnti; @ 1+ 1@ g g

+ Z th i @ timpiek, j+k ifi<e—m
m<k<i
tntig @ L+ 1@ty
(2.2) Altmtij) = + Z tij @ ik, j+k
m<k<i
+ bm—i—i—nm—l—&-j ifi=c—m
tm—i—i,j @ 1+ 1 X t7rl+i,j
+ bm+i—n,n—1+j ifi>c—m.

where ¢ = pn/(p — 1) and Bm+i7n’n71+j is the projection of by, 4i—nn—1+;, which
is 0 for i < n.

Note t,,,44,; is primitive for ¢ < m 4 1 as expected, but it is also primitive for
¢ —m < i <n, which can occur when m > n/(p — 1).

To proceed further we use the fact that the dual of E°S(n, m+1) is a primitively
generated Hopf algebra and therefore isomorphic to the universal enveloping algebra
of its restricted Lie algebra of primitives, by a theorem of Milnor-Moore [MM65].
The cohomology of the unrestricted Lie algebra L(n,m + 1) (this notation differs
from that of [Rav86, §6.3]) is that of the Koszul complex

(2.3) Cn,m+1)=E(hmti;: 1> 0,5 €Z/(n)),

where each h,; ; has cohomological degree 1, with

Z hk,jhm+i—k,j+k ifi<=c—m
d(hm+i,j) = m<k<i
0 ifi>c—m.

Lemma 2.4. Let C(n,m + 1) be the complex of (2.3). Then H*(L(n,m + 1)) =
HY(C(n,m+ 1)) is spanned by

{hm+i,j: 1 < 7 <m-+ 1} U {hm-&-i,j: 1> c— m} U Zhn7j7 ZhQnJ ,
J J

(where ¢ = pn/(p — 1)) unless n = 2m + 2, in which case we must adjoin the set
{hmj + hn,j+n/2: j S Z/(H/Q)} .
Note that h,, ; is either trivial or in the first subset unless n > 2m + 2 and that

hn.; is either trivial or in the second subset unless p = 2. Note also that the first
and second subsets overlap when m > ¢/2.



6 HIROFUMI NAKAI AND DOUGLAS C. RAVENEL

Proof. The primitivity of the elements in the first and second subsets is obvious.
For 3, hy,j we have

Z Z P ik itk

Jj m<k<n—m
= E E Pk, jhn—k j+k
m<k<n/2 j

+ Zj hn/2,jhn/2,j+n/2 if n is even
0 if n is odd

+ Z Z P i Pk 4k

n/2<k<n—m J

= D> D> hwghakgrk + hookgehig

d > hn,
J

m<k<n/2 J
Zo§j<n/2 hny2,ihn /2, 4n/2
+ + Zn/2§j<n hpy2,ihny2,j4ny2  if nis even
0 if n is odd

_ [ Xo<jcnsz nszihngzgns2 + oz ginsahage,y i s even
0 if n is odd
0

Similar calculations show that for p = 2, > j han,; is a cocycle, and that for n =
2m + 2, hy j + hy jyn/2 is one.
It remains to show that there are no other cocycles in the subspace spanned by

{hmtij:m+1<i<c—m},
which is nonempty only when

pn—p+1
20p—1)

It suffices to consider elements which are homogeneous with respect to the filtration
grading, i.e., to restrict our attention to one value of ¢ at a time. Thus we need to
show that the subspace spanned by

(2.5) { > hkhmyiokgik:J € Z/(”)}

m<k<i

has dimension

n/2 ifm+i=nandn=2m+2
n—1 ifm+i=nandn>2m+2
n—1 ifm+1=2n

n otherwise.

(2.6)
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When n = 2m + 2 and m + i = n, the set of (2.5) is

{hnj2,5hns2.51n2: 5 € Z/(n)}
= {hn/Q,jhn/27j+n/2: 0<j<n/2}U{hyaihnjtn2: n/2<j<n}
= {hn/Q,jhn/Z,j+n/2: 0<j5< n/2} U {_hn/Q,j—i-n/Zhn/Q,j: n/2 <ji< n}
= {hn/2’jhn/2’j+n/2: 0<j< n/2} U {—hn/g’jhn/z’jﬂl/g: 0<j< n/2}7
so the subspace it spans has dimension n /2.
Now suppose that m + i = n, n > 2m + 2, and n is odd. It suffices to consider
the middle two terms in the sum. Let £ = (n — 1)/2. Then we have
d(hn,j) = hejher jre + hogr jhe jpeer + - -
We can cancel the second term by adding d(hs, jte+1), i€,

d(Pn,j + Pn,jyet1)
= hejhes e + hepr jhe jresn
Fhejrerrhessjrererr + hoprjrehe oo + -
= hejherr e + hesajhe e
+hejrer1hosr + hest jres1he i + .o
= hejhert e+ hoyrjrerthej1+ ...
Similarly we can cancel the second term here by adding d(hy, j+1). Since (n+1)/2
and n are relatively prime, we will need to sum up the h, ; over all j to get a
cocycle. It follows that this subspace has dimensions n — 1 as claimed.
For m + ¢ =n and n even, let £ = n/2. Then it suffices to consider the middle
three terms of the sum, i.e.,
d(hn5) = he1jhessjre + hejhe e+ hepjhe e+
We can cancel the middle term by adding d(hy, j1¢), so we get

d(hnj + hnj+e)
= hop_1hes1j40-1 + hejhejre + Pevrjhe—1 4o+
Fho-1j4+ehe1 -1 + hejvehe; + hopajrehe— 1+
= he-1jhes1jre—1 + o1 jrehest i1
thevr,jhe—1jrert + et jrehe1 401+
Now we can cancel the third and fourth terms by adding d(hy j4+1 + hn’jHH), and
we have
d(hn,j + P jtre + P jr1 + P jres1)
= he1jhevajre—1 4+ he1jreher i
Fhegr et et + hott jrehe—1,j+1
+he—1,j+1hes1 e + ho1 jrer1hes )
+heptj41he—1 o2 + hogrjrerihe—1 42+ ...
= he1jhevajre—1+ o1 jreheri i
Fhottjr1he—1 4042 + hev1jrerihe—1 42 + ...

Again in order to get complete cancellation we need to sum over all j, so the
subspace has dimension n — 1 as claimed.
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We can make a similar argument for m + i = 2n when p = 2, namely

d(h2n,j) = ho—1hnt1j-1+ hoghng + Aoyt jhn—1 41 + ..
= hn-1jhni1j-1 + g jhnor i+
SO d(hgn’j + hgn)j+1)
= hp_1hng15-1+ hoy1jhn-1,511
Pn—1,j41Pnt1,5 + Pt j+1n—142 + . ..
= hp—1,jPnt1,j—1 F Png1j+1hn—1j42 + -,
and so on.

Finally we need to consider the cases of (2.6) where m + ¢ is not divisible by n.
For this we can show that the expressions

E hi jhmti—k j+k
m<k<i

are linearly independent. Suppose the term

:I:hk,xh7n+i—k,y
appears the sums for some value of j. Then modulo n either j =z and y = k + =,
sox=y—k,orj=yand xt =m+ ¢+ y — k. These conditions on x are mutually
exclusive since m + i is not divisible by n. This means that each monomial of this
form can appear in the sum for at most one value of j, so the sums for various j
are linearly independent. O

Now Ext}s(mmﬂ) is a subspace of H'(L(n,m + 1)). To finish the proof of the
theorem we need to show that the elements hy,4; ; with ¢ > max(c —m,m+ 1) do
not survive passage to Extgos(n7m+1) or from it to Extls(nmﬂ_l). We need to look
at the first and second spectral sequences constructed for this purpose by May in
[May66] and described (for m = 0) in [Rav86, 6.3.4]. It follows from (2.2) that in
the first May spectral sequence

dr(Pm+ij) = bmti—nj—1 #0 fori >mn
for some 7.

This eliminates all of the unwanted primitives except the ones with

max(c—m,m+1) <i <n.

For this we can use (2.1), which implies that in the second May spectral sequence,

dp(hmtig) = D Pejhmyiok gk

m<k<i
where
r = min(dpmti — Aok — dpmtiok: m < k <10)
= pim+i—n)—(m+1i)
since k and m — i — k do not exceed n and m + i < 2n
= (p—1)(m+1i)—pn.
Note that

n<c<m+i<m+n<22n
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so m + ¢ is not divisible by n. Thus we can argue as in the last paragraph of the

proof of Lemma 2.4 that the sums >

me<ke<i Ve jhm+i—k j+k are linearly indepen-

dent. It follows that no linear combination of the unwanted h,,1, ; can survive to

Ext}g(n7m+1), SO Exté(n7m+1) is as claimed.

[May66]
[MM65]
[MR77]
[MRW77]

[Rav86]
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