
WHAT IS AN ∞-CATEGORY?

DOUGLAS C. RAVENEL

This is an expository paper on ∞-categories. It was originally given as a talk at
the Regensburg conference of August, 2023. I thank Sadok Kallel for inviting me
to publish it here and Siddharth Gurumurthy for some useful discussions.

The main references for this topic are two remarkable books by Jacob Lurie:

• Higher Topos Theory published in 2009 (949 pages), which we denote by
[HTT].

• Higher Algebra last edited in 2017 (1553 pages), which we denote by [HA].

We will adhere to the following color convention:

• Ordinary categories will be written in green.
• ∞-categories (that are not ordinary categories) will be written in purple.

1. Introduction

Before defining ∞-categories (see Definition 1 below), we note some of their
general features.

An ∞-category is a generalization of an ordinary category, also known as a 1-
category. Like an ordinary category, it has objects and morphisms (also known as
1-morphisms), but composition of morphisms is not well defined. It also has higher
structures called k-morphisms for k > 1, to be spelled out later. We will describe
these explicitly for the ∞-category of topological spaces in Sections 5 to 8.

∞-categories provide a convenient setting for doing homotopy theory.
There is nothing easy about ∞-categories. Most concepts and results from ordi-

nary category theory have∞-categorical analogs, but the definitions are less obvious
and the proofs are harder. For example, the definition of a symmetric monoidal ∞-
category C requires far more than a functor C×C → C with the expected properties.
See the discussion at the beginning of [HA, Chapter 2].

For objects W , X and Y in an ordinary category C, one has a morphism sets
C(X,Y ), C(W,Y ) and C(W,X), with a composition map

C(X,Y )× C(W,X) // C(W,Y )

(g, f)
� // gf.

In an ∞-category C, these three sets are topological spaces or simplicial sets,
specifically Kan complexes. Given morphisms f : W → X and g : X → Y , instead
of a well defined composite gf ∈ C(W,Y ), we get a contractible subspace of C(W,Y ).
All morphisms in this subspace are homotopic to each other, meaning that they all
lie in the same path component.
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Many definitions involve weak equivalences of morphism spaces rather than iso-
morphisms of morphism sets. For example, an initial object X in C is one for which
C(X,Y ) is contractible (rather than a one point set) for all Y .

In an ∞-category, homotopy limits and colimits are the same as ordinary limits
and colimits when they exist. We will see a simple example of this in Section 9.

In an ∞-category one need not worry about a model structure, but concepts of
model category theory are needed to develop the theory of ∞-categories.

An ∞-category is a certain kind of simplicial set (but not generally a Kan com-
plex), so it is sort of like a topological space. There is a model structure on the cate-
gory of simplicial sets due to Joyal in which the fibrant objects are the∞-categories,
see [HTT, Theorem 2.4.6.1]. Hence one can speak of limits of ∞-categories, and
certain functors between them are Joyal fibrations, also known as inner fibrations
[HTT, Definition 2.0.0.3].

2. Review of simplicial sets

The simplicial category ∆ is that of finite ordered sets and order preserving
maps. For each integer n ≥ 0, let [n] denote the ordered set {0, 1, . . . , n}.

A simplicial set X is a contravariant Set valued functor on ∆. Its value on [k],
its set of k-simplices, is denoted by Xk. X comes equipped with families of maps
Xk → Xk−1 (called face maps) and Xk → Xk+1 (degeneracies), each indexed by i
for 0 ≤ i ≤ k. The ith such maps are induced respectively by

• the order preserving monomorphism [k − 1] → [k] whose image does not
contain i and

• the order preserving epimorphism [k+1] → [k] sending both i and i+1 to
i.

A simplex is degenerate if it is in the image of a degeneracy map. Otherwise it
is nondegenerate.

The simplicial set ∆n, the standard n-simplex, is defined by

(∆n)k = ∆([k], [n]).

In its boundary ∂∆n, the set of k-simplices is the set of such morphisms in ∆
which are not surjective.

In its ith face, the set of k-simplices is the set of such morphisms whose image
does not contain i.

In the ith horn Λn
i ⊆ ∂∆n for 0 ≤ i ≤ n, the set of k-simplices is the set of

nonsurjective morphisms whose image does contain i.
The inner faces and horns are those for which 0 < i < n. The other two are

outer
Here are the three horns of a 2-simplex. Only the middle one is inner.

1 1

��:
::
: 1

��:
::
:

0

BB����
// 2 0

BB����
2 0 // 2

Λ2
0 Λ2

1 Λ2
2

(1)

In the ith horn, the missing face is the one opposite the ith vertex.
A Kan complex is a simplicial set X for which every map from a horn Λn

i → X
extends to ∆n.
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The topological n-simplex ∆n
top is the space{

(x0, x1, . . . , xn) ∈ Rn+1 : xi ≥ 0 and
∑

xi = 1
}
.

The geometric realization |X| of a simplicial setX is the colimit of the Top-valued
functor

[k] 7→ Xk ×∆k
top.

This space turns out to be the union of geometric realizations of the nondegen-
erate topological simplices of X, meaning ones not in the image of any degeneracy
map. The data given by the face maps determine how they are glued together. In
particular, |∆n| = ∆n

top ≈ Dn, |∂∆n| ≈ Sn−1, and |Λn
i | ≈ Dn−1.

Given simplicial sets X and Y , one can define a simplicial set X × Y in which

(X × Y )n =
∐

0≤i≤n

Xi × Yn−i and |X × Y | = |X| × |Y |.

The category of simplicial sets is denoted by Set∆.
A simplicial map X → Y is a natural transformation of contravariant functors

on ∆. The set of such maps is Set∆(X,Y ). This can be thickened up to a simplicial
set Set∆(X,Y ) in which the set of k-simplices is Set∆(X ×∆k, Y ).

Hence Set∆ is enriched over itself.

3. Of all the nerve!

The nerve NC of a small category C is the simplicial set in which the set of
n-simplices NCn is the set of diagrams

X0 → X1 → · · · → Xn

in C. Face and degeneracy maps are defined by composing adjacent morphisms
and inserting identity maps. Equivalently we can regard [n] as the category

0 → 1 → · · · → n

and define NCn to be the set of functors from [n] to C.
This simplicial set has the following property: Any simplicial map Λn

i → NC
for 0 < i < n extends uniquely to ∆n.

The following is an illustration for n = 2. The Xi are objects in C. The three
diagrams with the dotted arrows removed indicate C-valued functors from the three
diagrams of (1), that is maps from the three horns of a 2-simplex to NC. Extending
these maps to all of ∆2 means identifying the dotted arrow. There is a unique way
to do this for the inner horn Λ2

1, but there may or may not be such an arrow for
the two outer horns.

X1
g

��=
===

X1
g

��=
===

X1
?
��

X0

? @@

h
// X2 X0

f @@����

gf
// X2 X0

f @@����

h
// X2

Λ2
0 Λ2

1 Λ2
2

It is known that the category C is determined by its nerve, and that any
simplicial set with the property above is the nerve of some small category.
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A small category is thus defined by a simplicial set (its nerve) in which each
map from an inner horn Λn

i extends uniquely to a map from ∆n. An ∞-category
is defined to be a simplicial set in which this uniqueness condition is dropped.

4. The main definition

Definition 1. An ∞-category (also called a quasicategory) C is a simplicial set
for which each simplicial map Λn

i → C for 0 < i < n extends to a map ∆n → C. A
functor F : C → C′ from one ∞-category to another is a simplicial map.

There are some other equivalent definitions of an ∞-category in the literature,
but this is the one used by Lurie. There are several features of it worth noting.

• We are not requiring extensions of maps from Λn
0 and Λn

n (known as the left
and right outer horns) as in the definition of a Kan complex. Boardman
and Vogt [BV73, Definition 4.8] called this the restricted Kan condition.

• The extension of each map from an inner horn is not required to be unique,
as it is in the nerve of an ordinary category. This means that this notion is
more general than that of an ordinary category as seen through its nerve.
Hence an ordinary category is a special case of an ∞-category.

• Given such a simplicial set C, we can think of elements of the sets C0 and C1

as objects and morphisms. The two face maps C1 ⇒ C0 define the source
and target (aka domain and codomain) of each morphism. Elements in the
sets Ck for k > 1 can be thought of as higher morphisms in C.

• A diagram

X1
f1,2

&&NN
NNN

NN

X0

f0,1
88ppppppp
f0,2

//________ X2

without the dashed arrow is equivalent to a map Λ2
1 → C. Choosing a

dashed arrow (in which the diagram is not required to commute) is equiva-
lent to extending this map to ∂∆2. Choosing a homotopy between f1,2f0,1
and f0,2 is equivalent to extending this map to all of ∆2. Such an extension
is guaranteed to exist, but it is not unique. In the nerve of an ordinary cat-
egory this extension is unique and identifies the composite f1,2f0,1. In an
∞-category this extension is only unique up to homotopy, so composition
of morphisms in an ∞-category is not well defined.

• The simplicial set Set∆(K,D) of simplicial maps from a simplicial set K
to an ∞-category D is itself an ∞-category.

• K above could be an ∞-category C, in particular it could be NC for an
ordinary category C. In other words, the collection of functors C → D is
an ∞-category Fun(C,D).

To a topological space X we can associate an ∞-category X (also known as
SingX, the singular simplicial set of X) in which Xn is the set of continuous maps
|∆n| → X. X is also a Kan complex since a map |Λn

i | → X, for any horn Λn
i ,

extends to |∆n| using a retraction |∆n| → |Λn
i |.

Such an ∞-category is called an ∞-groupoid because all morphisms, i.e., paths
in X, are invertible up to homotopy.
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5. The ∞-category of topological spaces

Let Top denote the category of compactly generated weak Hausdorff spaces with
cardinality less than κ, where κ is a sufficiently large regular cardinal. This version
of the category of topological spaces is small, so we can consider its nerve.

There is another construction called the homotopy coherent nerve whose defi-
nition [HTT, Definition 1.1.5.5] baffled me for several years. Rather than giving
it here, I will describe the ∞-category S (Lurie’s notation of [HTT, Definition
1.2.16.1]) one gets by applying it to Top. This is the ∞-category of topological
spaces. We will see that it comes equipped with a large collection of higher mor-
phisms not present in the ordinary category of topological spaces.

Lurie’s S is actually the homotopy coherent nerve of the category Kan of Kan
complexes, which is equivalent to the category of CW-complexes. The distinction
between CW-complexes and more general spaces does not matter in what follows.

As in Definition 1, S is a simplicial set. Its vertices and edges are objects and
morphisms in Top, meaning spaces and continuous maps.

The set of 2-simplices is more interesting. In the subcategoryNTop (the ordinary
nerve), it is the set of commutative diagrams of the form

X1
f1,2

''NN
NNN

NN

X0

f0,1
88ppppppp
f1,2f0,1

// X2.

The top two edges can be viewed as a map Λ1
2 → NTop, with the full diagram

being its unique extension to ∆2.
The set of 2-simplices S2 consists of similar diagrams in which the bottom arrow

is replaced by any map f0,2 homotopic to f1,2f0,1, with the homotopy h0,2 being
part of the datum. Thus we have a diagram

X1

f1,2

""F
FF

FF
FF

F

h0,2��

X0

f0,1
<<yyyyyyyy

f0,2

// X2.

(2)

The homotopy is a map

I ×X0

h0,2 // X2

with certain properties. It is adjoint to a path

I
ĥ0,2 // Top(X0, X2)

0 � // f1,2f0,1

1 � // f0,2

Here Top(X0, X2), the set of continuous maps from X0 to X2, is given the compact-

open topology and the map ĥ0,2 is required to be continuous.
As in the ordinary case, the top two edges of the diagram (2) can be viewed

as a map Λ2
1 → S. Now there is an extension of it to ∆2 for each path ĥ0,2 in
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Top(X0, X2) starting at the point f1,2f0,1. The space of such paths is contractible,
as is the space of paths starting at a given point in any topological space.

6. The set of 3-simplices in S

The following diagram shows four 2-simplices with their homotopies.

X0

f0,1

����
��
��
��
��

f0,3

��:
::

::
::

::
:

h2
0,3 08iiiii iiiii

X1

f1,2

��:
::

::
::

::
:

f1,3 // X3

h0,2
��

h1,3

KS
h1
0,3 08iiiii iiiii

X0

f0,1

AA����������

f0,2

// X2

f2,3

AA����������
X0

f0,2

oo

f0,3

]]::::::::::

(3)

Our convention for labeling homotopies is as follows. The subscripts correspond to
the first and third vertices of the triangle while the super script corresponds to the
second one. The later is omitted when it is uniquely determined by the subscripts.

These four 2-simplices form the boundary of a 3-simplex in S iff there is a certain

double homotopy adjoint to a map ĥ0,3 : I2 → Top(X0, X3) of the following form.

f2,3f1,2f0,1
•

Top(X0,f2,3)ĥ0,2 //

Top(f0,1,X3)ĥ1,3

��

f2,3f0,2
•

ĥ1
0,3

��
•

f1,3f0,1 ĥ2
0,3

// •
f0,3

(4)

This is a picture rather than a diagram. Each vertex of the square is not an object
but a point in Top(X0, X3), while the upper and left edges are not morphisms but
the indicated paths. The other edges are paths adjoint to the homotopies shown in
(3).

A comment is in order about the maps

Top(X0, f2,3) : Top(X0, X2) → Top(X0, X3)

and

Top(f0,1, X3) : Top(X1, X3) → Top(X0, X3)

appearing in (4).
For a category C with an object X and a morphism f : Y → Y ′, we can compose

any morphism X → Y with f to get a morphism X → Y ′. This means that we can
use X to define a Set-valued functor on C,

C
C(X,−) // Set

Y � // C(X,Y )

(f : Y → Y ′)
� // (f∗ : C(X,Y ) → C(X,Y ′)) .
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Dually we can precompose any morphism W → X with g : W ′ → W to get a
morphism W ′ → X. This leads to a contravariant functor,

C
C(−,X) // Set

W
� // C(W,X)

(g : W ′ → W ) � // (g∗ : C(W,X) → C(W ′, X)) .

If the morphism sets of C come equipped with natural topologies, then these func-
tors are Top-valued. Thus in the case C = Top, they are endofunctors.

7. The set of 4-simplices in S

For each 4-simplex, the additional datum is a map ĥ0,4 : I3 → Top(X0, X4) of
the form

f3,4f2,3f1,2f0,1
•

F0(f3,4f2,3)ĥ0,2 //

F 4(f1,2f0,1)ĥ2,4

��

F0(f3,4)F
3(f0,1)ĥ1,3

))RR
RRR

RRR
RRR

RRR
RRR

f3,4f2,3f0,2
•

F 4(f0,2)ĥ2,4

F0(f3,4)ĥ
1
0,3

$$J
JJ

JJ
JJ

JJ
JJ

F0(f3,4)ĥ0,3

f3,4f1,3f0,1
•

F0(f3,4)ĥ
2
0,3 //

F 4(f0,1)ĥ
2
1,4

��

��

f3,4f0,3
•

ĥ1,2
0,4

��

F 4(f0,1)ĥ1,4 ĥ2
0,4 ĥ1

0,4

•
f2,4f1,2f0,1

F0(f2,4)ĥ0,2

F 4(f0,1)ĥ
3
1,4

))RR
RRR

RRR
RRR

RRR
RRR

R
// •
f2,4f0,2

ĥ1,3
0,4

$$JJ
JJJ

JJJ
JJJ

J

ĥ3
0,4

•
f1,4f0,1 ĥ2,3

0,4

// •
f0,4

where Fi and F i denote the endofunctors Top(Xi,−) and Top(−, Xi).

The restriction of ĥ0,4 to the left and top faces are the composite double homo-
topies indicated in green. The restrictions to the three faces abuting f0,4 (the front
lower right corner) are adjoint to the double homotopies hi

0,4 indicated in blue.

The restriction of ĥ0,4 to the back face (not labeled) is the composite

I × I
ĥ2,4×ĥ0,2 // Top(X2, X4)× Top(X0, X2)

comp��
Top(X0, X4).

The five labeled faces of the cube are associated with the five 3-dimensional
faces of the corresponding 4-simplex in S. These five tetrahedra fit together in a
3-dimensional analog of (3), with the central tetrahedron corresponding to the front

face of the cube, on which the map restricts to ĥ2
0,4.
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8. The set Sn+1 for n > 3

For each (n+ 1)-simplex there is a sequence of spaces and continuous maps

X0

f0,1 // X1

f1,2 // · · ·
fn,n+1 // Xn+1

and a map

In
ĥ0,n // Top(X0, Xn+1)

(0, . . . , 0)
� // fn,n+1 · · · f0,1

(1, . . . , 1)
� // f0,n+1

We refer to these two points as the left and right vertices of the n-cube, and the
n faces meeting each of them as the left and right faces.

The n+2 faces of the associated (n+1)-simplex correspond to the n right faces
of this cube, along with the two left faces

{(t1, . . . , tn−1, 0)} and {(0, t2, . . . , tn)} .
To sum up, the ∞-category S of topological spaces is a simplicial set in which

• there is a vertex for each topological space in Top,
• there is an edge for each continuous map, and
• for n > 0, there is an (n + 1)-simplex for each sequence of spaces and
continuous maps

X0
f0 // X1

f1 // · · ·
fn // Xn+1

and each map ĥ0,n : In → Top(X0, Xn+1) meeting certain boundary con-
ditions described above.

To repeat, there is an (n+1)-simplex for every suitable datum. This construction
does not involve any choices.

9. A colimit in S

A pleasant feature of ∞-categories is the fact that limits and colimits are the
same as homotopy limits and colimits. The “connective tissue” needed to pass from
an ordinary colimit to a homotopy colimit is “built into” an ∞-category.

We will illustrate this with an elementary example taken from the highly rec-
ommended paper of Dwyer and Spalinski [DS95], a very friendly introduction to
model categories. Consider the following pushout diagrams in Top.

Sn−1 //

��

Dn

Dn

and Sn−1 //

��

∗

∗,
(5)

where the maps in the left diagram are each the inclusion of the boundary of the
n-dimensional disk. The two diagrams are homotopy equivalent but have distinct
pushouts, namely Sn and ∗. What to do?

One solution is to define a model structure on the category of pushout diagrams in
Top, in which equivalences and fibrations are levelwise equivalences and fibrations,
and cofibrations are defined in terms of lifting properties. This is described in
[DS95]. It turns out that the left diagram in (5) is cofibrant, but the right one is
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not. The evident map from the left to the right is a cofibrant approximation. The
colimit functor on such diagrams is homotopy invariant on cofibrant objects but not
in general.

Another solution is to develop the theory of homotopy limits and colimits as
Bousfield and Kan did in the “yellow monster” [BK72]. It turns out that the
homotopy colimit of each diagram in (5) is Sn.

In an ordinary category C, the colimit of a diagram p is an initial object in the
category of objects equipped with compatible maps from all the objects in p, which
we denote by Cp/, the category of objects under p. If p is a pushout diagram

A
f //

f ′
��

B

B′,

then an object in Cp/ is a commutative diagram

A
f //

f ′ ��

B

��
B′ // X.

Now suppose we have an ∞-category C and a simplicial map p̃ : K → C for a
simplicial set K. Then we can define Cp̃/, the ∞-category of objects under p̃, and
we can look for an initial object in it.

In the case at hand, K is the nerve of the pushout category

• //

��

•

•

Let p be the diagram on the right of (5), and choose a map p̃ : K → S that does
the right thing on the three vertices and two nondegenerate edges of K. There are
many such maps, and any one of them wi (ll do. (To see that such maps exist, note
that |K| is contractible.) An object in S/p̃ leads a diagram of the form

Sn−1

��

//

f

""E
EE

EE
EE

EE
EE

EE
EE

EE
∗

��

h1

y� {{{{{
{

h2 9A{{{{{{

∗ // Y,

(compare with (2)) for some space Y . This is a pair of 2-simplices in S sharing
a common edge. It amounts to a map f : Sn−1 → Y equipped with a pair of
null homotopies h1 and h2 that are determined by the choice of p̃. These define
extensions of f to the northern and southern hemispheres of Sn, meaning the
diagram has the same information as a map Sn → Y . It follows that Sn, which is
the homotopy colimit of p in Top, is the ordinary colimit of p̃ (for any choice of p̃!)
in S.

More details can be found in [HTT, 4.2.4].
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10. Bousfield localization in ∞-categories

Bousfield localization may be the best construction in model category theory.
One starts with a model category M, and tries to alter the model structure in
the following way. We enlarge the class of weak equivalences in some way without
altering the class of cofibrations. This means there are more trivial cofibrations
(cofibrations which are also weak equivalences) and hence fewer fibrations, since
they must have the right lifting property with respect to all trivial cofibrations.
However there are just as many trivial fibrations as before, since they must have
the right lifting property with respect to all cofibrations. See [HTT, A.3.7].

The hard part of this is verifying that the proposed new model structure (with
more weak equivalences but fewer fibrations) satisfies the factorization axiom say-
ing that each map can be factored as a trivial cofibration followed by a fibration.
There is a theorem saying this can be done under mild hypotheses on M, but no
assumptions are needed about how we enlarge the class of weak equivalences. Thus
we get a new model structure with a much more interesting fibrant replacement
functor L.

For example, when we enlarge the class of weak equivalences in the category
of spaces or spectra to those maps inducing an isomorphism of homotopy groups
in dimensions up to a chosen integer m, but not necessarily in higher dimensions,
the resulting fibrant replacement functor is the mth Postnikov section. This means
attaching cells in dimensions above m + 1 so as to kill of all the higher homotopy
groups. The fibrant objects are those spaces or spectra with trivial homotopy
groups above dimension m.

When we enlarge the class of weak equivalences in the category of spaces or
spectra to all maps inducing an isomorphism in the nth Morava E-theory (or the nth
Morava K-theory) for a fixed prime p and height n, the resulting fibrant replacement
functor is the Ln (or LK(n)) of chromatic homotopy theory. In this case there is no
easy description of the fibrant objects.

[HTT, Proposition 5.5.4.15] is statement about an analog of Bousfield localiza-
tion. The input is a presentable ∞-category C with a set of morphisms S that
are meant to be made into weak equivalences. Presentable means that C has small
colimits and every object is a colimit of small objects. An object is small if the
mapping space from it to each filtered colimit is equivalent to the colimit of the
mapping spaces.

In [HTT, Definition 5.5.4.1] an object Z is said to be S-local if each morphism
s : X → Y in S induces a weak equivalence C(Y,Z) → C(X,Z). A morphism
s : A → B is an S-equivalence if it induces a weak equivalence C(B,Z) → C(A,Z)
for each S-local object Z.

Let S be the set of all S-equivalences. It can be explicitly constructed from S.
Let C′ be the full subcategory of S-local objects. Then

(i) For each object X ∈ C, there exists an S-equivalence s : X → X ′ where X ′

is S-local.
(ii) The ∞-category C′ is presentable.
(iii) The inclusion functor C′ → C has a left adjoint L. This is the analog of

Bousfield’s fibrant replacement functor in model category theory.
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11. The ∞-category of spectra

The passage from S, the ∞-category of spaces, to Sp, the ∞-category of spectra,
is described by Lurie in [HA, 1.4]. We need to do the following.

• Pass to S∗, the ∞-category of pointed spaces. This is straightforward. S∗
is the homotopy coherent nerve of the ordinary category of pointed spaces
(or Kan complexes). An ∞-category C is pointed if it has a zero object 0
which is both initial and final, meaning that the spaces C(X, 0) and C(0, Y )
are contractible in all cases. This object need not be unique.

• S∗ has a loop functor Ω, leading to a tower

· · · Ω // S∗
Ω // S∗

Ω // S∗

of ∞-categories and functors.
• Then Sp is the homotopy limit of this tower, which is the same as the limit
in the ∞-category of ∞-categories.

To unpack this definition, note that a vertex in this homotopy limit (meaning an
object in the ∞-category Sp) consists of a sequence of vertices (i.e., pointed spaces)
X0, X1, X2, . . . , along with weak equivalences Xi → ΩXi+1 in S∗. This coincides
with the original definition of an Ω-spectrum.

The ∞-category Sp satisfies the following, which is [HA, Definition 1.1.1.9].

Definition 2. An ∞-category C is stable if

(1) It is pointed.
(2) For each morphism f : X → Y there are pullback and pushout diagrams

W //

��

X
f��

0 // Y

and X
f //

��

Y

��
0′ // Z,

the fiber and cofiber sequences of f .
(3) A diagram of the above form is a pushout if and only if it is a pullback, i.e.,

fiber sequences and cofiber sequences are the same.
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