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THE ARF-KERVAIRE INVARIANT PROBLEM
IN ALGEBRAIC TOPOLOGY

MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL

ABSTRACT. This paper gives the history and background of one of the oldest problems in
algebraic topology, along with an outline of our solution to it. A rigorous account can be
found in our preprint [HHR]. The third author has a website with numerous links to related
papers and talks we have given on the subject since announcing our result in April, 2009.
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Main Theorem. The Arf-Kervaire elements θj ∈ πS2j+1−2 do not exist for j ≥ 7.

Here πSk denotes the kth stable homotopy group of spheres, which will be defined
shortly.

The kth (for a positive integer k) homotopy group of the topological space X , denoted
by πk(X), is the set of continuous maps to X from the k-sphere Sk, up to continuous
deformation. For technical reasons we require that each map send a specified point in Sk

(called a base point) to a specified point x0 ∈ X . When X is path connected the choice
of these two points is irrelevant, so it is usually omitted from the notation. When X is
not path connected, we get different collections of maps depending on the path connected
component of the base point.

This set has a natural group structure, which is abelian for k > 1. The word natural here
means that a continuous base point preserving map f : X → Y induces a homomorphism
f∗ : πk(X)→ πk(Y ), sometimes denoted by πk(f).

It is known that the group πn+k(Sn) is independent of n for n > k. There is a homo-
morphism E : πn+k(Sn) → πn+k+1(Sn+1) defined as follows. Sn+1 [Sn+k+1] can be
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obtained from Sn [Sn+k] by a double cone construction known as suspension. The cone
over Sn is an (n+1)-dimensional ball, and gluing two such balls together along there com-
mon boundary gives and (n+1)-dimensional sphere. A map f : Sn+k → Sn can be canon-
ically extended (by suspending both its source and target) to a mapEf : Sn+k+1 → Sn+1,
and this leads to the suspension homomorphism E. The Freudenthal Suspension Theorem
[Fre38], proved in 1938, says that it is onto for k = n and an isomorphism for n > k. For
this reason the group πn+k(Sn) is said to be stable when n > k, and it is denoted by πSk
and called the stable k-stem.

The Main Theorem above concerns the case k = 2j+1 − 2. The θj in the theorem is a
hypothetical element related a geometric invariant of certain manifolds studied originally
by Pontryagin starting in the 1930s, [Pon38], [Pon50] and [Pon55]. The problem came
into its present form with a theorem of Browder [Bro69] published in 1969. There were
several unsuccessful attempts to solve it in the 1970s. They were all aimed at proving the
opposite of what we have proved, namely that ll of the θj exist.

The θj in the theorem is the name given to a hypothetical map between spheres for
which the Arf-Kervaire invariant is nontrivial. Browder’s theorem says that such things
can exist only in dimensions that are 2 less than a power of 2.

Some homotopy theorists, most notably Mahowald, speculated about what would hap-
pen if θj existed for all j. They derived numerous consequences about homotopy groups
of spheres. The possible nonexistence of the θj for large j was known as the DOOMSDAY
HYPOTHESIS.

After 1980, the problem faded into the background because it was thought to be too
hard. In 2009, just a few weeks before we announced our theorm, Snaith published a book
[Sna09] on the problem “to stem the tide of oblivion.” On the difficulty of the problem, he
wrote

In the light of . . . the failure over fifty years to construct framed manifolds
of Arf-Kervaire invariant one this might turn out to be a book about things
which do not exist. This [is] why the quotations which preface each chap-
ter contain a preponderance of utterances from the pen of Lewis Carroll.

Our proof is two giant steps away from anything that was attempted in the 70s. We now
know that the world of homotopy theory is very different from what they had envisioned
then.

1. BACKGROUND AND HISTORY

1.1. Pontryagin’s early work on homotopy groups of spheres. The Arf-Kervaire in-
variant problem has its origins in Pontryagin’s early work on a geometric approach to the
homotopy groups of spheres, [Pon38], [Pon50] and [Pon55].

Pontryagin’s approach to maps f : Sn+k → Sn is to assume that f is smooth and that
the base point y0 of the target is a regular value. (Any continuous f can be continuously
deformed to a map with this property.) This means that f−1(y0) is a closed smooth k-
manifold M in Sn+k. Let Dn be the closure of an open ball around y0. If it is sufficiently
small, then V n+k = f−1(Dn) ⊂ Sn+k is an (n+k)-manifold homeomorphic toM ×Dn

with boundary homeomorphic to M × Sn−1. It is also a tubular neighborhood of Mk and
comes equipped with a map p : V n+k →Mk sending each point to the nearest point inM .
For each x ∈ M , p−1(x) is homeomorphic to a closed n-ball Bn. The pair (p, f |V n+k)
defines an explicit homeomorphism

V n+k
(p,f |V n+k)

≈
// Mk ×Dn.
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This structure on Mk is called a framing, and M is said to be framed in Rn+k. A choice
of basis of the tangent space at y0 ∈ Sn pulls back to a set of linearly independent normal
vector fields on M ⊂ Rn+k. These will be indicated in Figures ??–?? and ?? below.

Conversely, suppose we have a closed sub-k-manifoldM ⊂ Rn+k with a closed tubular
neighborhood V and a homeomorphism h to M × Dn as above. This is called a framed
sub-k-manifold of Rn+k. Some remarks are in order here.

• The existence of a framing puts some restrictions on the topology of M . All of its
charactersitic classes must vanish. In particular it must be orientable.

• A framing can be twisted by a map g : M → SO(n), where SO(n) denotes the
group of orthogonal n× n matrices with determinant 1. Such matrices act on Dn

in an obvious way. The twisted framing is the composite

V
h // Mk ×Dn // Mk ×Dn

(m,x)
� // (m, g(m)(x)).

We will say more about this later.
• If we drop the assumption that M is framed, then the tubular neighborhood V

is a (possibly nontrivial) disk bundle over M . The map M → y0 needs to be
replaced by a map to the classifying space for such bundles, BO(n). This leads
to unoriented bordism theory, which was analyzed by Thom in [Tho54]. Two
helpful references for this material are the books by Milnor-Stasheff[MS74] and
Stong[Sto68].

Pontryagin constructs a map P (M,h) : Sn+k → Sn as follows. We regard Sn+k as
the one point compactification of Rn+k and Sn as the quotient Dn/∂Dn. This leads to a
diagram

(V, ∂V )� _

��

h // M × (Dn, ∂Dn)
p2 // (Dn, ∂Dn)

��
(Rn+k,Rn+k − intV ) // (Sn+k, Sn+k − intV )

P (M,h) // (Sn, {∞})

Sn+k − intV
� P (M,h) // {∞}

The map P (M,h) is the extension of p2h obtained by sending the compliment of V in
Sn+k to the point at infinity in Sn. For n > k, the choice of the embedding (but not the
choice of framing) of M into the Euclidean space is irrelevant. Any two embeddings (with
suitably chosen framings) lead to the same map P (M,h) up to continuous deformation.

To proceed further, we need to be more precise about what we mean by continuous
deformation. Two maps f1, f2 : X → Y are homotopic if there is a continuous map
h : X × [0, 1]→ Y (called a homotopy between f1 and f2) such that

h(x, 0) = f1(x) and h(x, 1) = f2(x).

Now suppose X = Sn+k, Y = Sn, and the map h (and hence f1 and f2) is smooth with
y0 as a regular value. Then h−1(y0) is a framed (k+1)-manifoldN whose boundary is the
disjoint union of M1 = f−1(y0) and M2 = g−1(y0). This N is called a framed cobordism
between M1 and M2, and when it exists the two closed manifolds are said to be framed
cobordant.
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Sidebar 1 The Hopf-Whitehead J-homomorphism

Suppose our framed manifold is Sk with a framing that extends to a Dk+1. This will
lead to the trivial element in πn+k(Sn), but twisting the framing can lead to nontriv-
ial elements. The twist is determined up to homotopy by an element in πk(SO(n)).
Pontryagin’s construction thus leads to the homomorphism

πk(SO(n))
J // πn+k(Sn)

introduced by Hopf [Hop35] and Whitehead [Whi42]. Both source and target known
to be independent of n for n > k + 1. In this case the source group for each k (de-
noted simply by πk(SO) since n is irrelevant) was determined by Bott [Bot59] in his
remarkable periodicity theorem. He showed

πk(SO) =

 Z for k ≡ 3 or 7 mod 8
Z/2 for k ≡ 0 or 1 mod 8
0 otherwise.

Here is a table showing these groups for k ≤ 10.
k 1 2 3 4 5 6 7 8 9 10

πk(SO) Z/2 0 Z 0 0 0 Z Z/2 Z/2 0
In each case where the group is nontrivial, its the image under J of its generator is
known to generate a direct summand. In the jth case we denote this image by βj and
its dimension by φ(j), which is roughly 2j. The first three of these are the Hopf maps
η ∈ πS1 , ν ∈ πS3 and σ ∈ πS7 . After that we have β4 ∈ πS8 , β5 ∈ πS9 , β6 ∈ πS11 and so
on.
For the case π4m−1(SO) = Z, the image under J is known to be a cyclic group whose
order am is the denominator of Bm/4m, where Bm is the mth Bernoulli number. De-
tails can be found in [Ada66] and [MS74]. Here is a table showing these values for
m ≤ 10.

m 1 2 3 4 5 6 7 8 9 10
am 24 240 504 480 264 65,520 24 16,320 28,728 13,200

Let Ωfr
k,n denote the cobordism group of framed k-manifolds in Rn+k. The above

construction leads to Pontryagin’s isomorphism

Ωfr
k,n

≈ // πn+k(Sn).

First consider the case k = 0. Here the 0-dimensional manifold M is a finite set of
points in Rn. Each comes with a framing which can be obtained from a standard one by an
element in the orthogonal group O(n). We attach a sign to each point corresponding to the
sign of the associated determinant. With these signs we can count the points algebraically
and get an integer called the degree of f . Two framed 0-manifolds are cobordant iff they
have the same degree.

Now consider the case k = 1. M is a closed 1-manifold, i.e., a disjoint union of circles.
Two framings on a single circle differ by a map from S1 to the group SO(n), and it is
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known that

π1(SO(n)) =

 0 for n = 1
Z for n = 2
Z/2 for n > 2.

Figure ?? illustrates the two different framings on S1 for n = 2. It turns about that any
disjoint union of framed circles is cobordant to a single framed circle. This can be used to
show that

πn+1(Sn) =

 0 for n = 1
Z for n = 2
Z/2 for n > 2.

The case k = 2 is more subtle. As in the 1-dimensional case we have a complete
classification of closed 2-manifolds, and it is only necessary to consider path connected
ones. The existence of a framing implies that the surface is orientable, so it is characterized
by its genus.

If the genus is zero, namely if M = S2, then there is a framing which extends to a
3-dimensional ball. This makes M cobordant to the empty set, which means that the map
is null homotopic (or, more briefly, null), meaning that it is homotopic to a constant map.
Any two framings on S2 differ by an element in π2(SO(n)). This group is known to
vanish, so any two framings on S2 are equivalent, and the map f : Sn+2 → Sn is null.

Now suppose the genus is one Suppose we can find an embedded arc on which the
framing extends to a disk. Then there is a cobordism which effectively cuts along the arc
and attaches two disks as shown. This process is called framed surgery. If we can do this,
then we have converted the torus to a 2-sphere and shown that the map f : Sn+2 → Sn is
null.

When can we find such a closed curve in M? It must represent a generator of H1(M)
and carry a trivial framing. This leads to a map

(1) ϕ : H1(M ;Z/2)→ Z/2

defined as follows. Each class in H1 can be represented by a closed curve which is framed
either trivially or nontrivially. It can be shown that homologous curves have the same
framing invariant, so ϕ is well defined. At this point Pontryagin made a famous mistake
which went undedected for over a decade: he assumed that ϕ was a homomorphism. We
now know this is not the case, and we will say more about it below in §1.3.

On that basis he argued that ϕ must have a nontrivial kernel, since the source group is
(Z/2)2. Therefore there is a closed curve along which we can do the surgery. It follows that
M can be surgered into a 2-sphere, leading to the erroneous conclusion that πn+2(Sn) = 0
for all n. Freudenthal [Fre38] and later George Whitehead [Whi50] both proved that it is
Z/2 for n ≥ 2. Pontryagin corrected his mistake in [Pon50], and in [Pon55] he gave
a complete account of the relation between framed cobordism and homotopy groups of
spheres.

1.2. Our main result. Our main theorem can be stated in three different but equivalent
ways:

• Manifold formulation: It says that a certain geometrically defined invariant Φ(M)
(the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always
zero.

• Stable homotopy theoretic formulation: It says that certain long sought hypotheti-
cal maps between high dimensional spheres do not exist.
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• Unstable homotopy theoretic formulation: It says something about the EHP se-
quence (to be defined below), which has to do with unstable homotopy groups of
spheres.

The problem solved by our theorem is nearly 50 years old. There were several unsuc-
cessful attempts to solve it in the 1970s. They were all aimed at proving the opposite of
what we have proved.

Here again is the stable homotopy theoretic formulation.

Main Theorem. The Arf-Kervaire elements θj ∈ πS2j+1−2 do not exist for j ≥ 7.

1.3. The manifold formulation. Let λ be a nonsingular anti-symmetric bilinear form on
a free abelian group H of rank 2n with mod 2 reduction H . It is known that H has a basis
of the form {ai, bi : 1 ≤ i ≤ n} with

λ(ai, ai′) = 0 λ(bj , bj′) = 0 and λ(ai, bj) = δi,j .

In other words, H has a basis for which the bilinear form’s matrix has the symplectic
form 

0 1
1 0

0 1
1 0

. . .
0 1
1 0


.

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x+ y) = q(x) + q(y) + λ(x, y)

Its Arf invariant is

Arf(q) =

n∑
i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf [Arf41] proved that this invariant (along with the number n) determines the
isomorphism type of q.

An equivalent definition is the “democratic invariant” of Browder [Bro69]. The ele-
ments of H “vote” for either 0 or 1 by the function q. The winner of the election (which
is never a tie) is Arf(q). Here is a table illustrating this for three possible refinements q, q′

and q′′ when H has rank 2.
x 0 a b a+ b Arf invariant
q(x) 0 0 0 1 0
q′(x) 0 1 1 1 1
q′′(x) 0 1 0 0 0

The value each refinement on a+b is determined by those on a and b, and q′′ is isomorphic
to q . Thus the vote is three to one in each case. When H has rank 4, it is 10 to 6.

Let M be a 2m-connected smooth closed manifold of dimension 4m+ 2 with a framed
embedding in R4m+2+n. We saw above that this leads to a map f : Sn+4m+2 → Sn and
hence an element in πn+4m+2(Sn).
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Let H = H2m+1(M ;Z), the homology group in the middle dimension. Each x ∈ H is
represented by an immersion ix : S2m+1 #M with a stably trivialized normal bundle. H
has an antisymmetric bilinear form λ defined in terms of intersection numbers.

In 1960 Kervaire [Ker60] defined a quadratic refinement q on its mod 2 reduction in
terms of the trivialization of each sphere’s normal bundle. The Kervaire invariant Φ(M) is
defined to be the Arf invariant of q. In the casem = 0, when the dimension of the manifold
is 2, Kervaire’s q is Pontryagin’s map ϕ of (1).

What can we say about Φ(M)?

• Kervaire [Ker60] showed it must vanish when k = 2. This enabled him to con-
struct the first example of a topological manifold (of dimension 10) without a
smooth structure. Let N be a smooth 10-manifold with boundary given as the
union of two copies of the tangent disk bundle of S5, glued together along a com-
mon copy of D5 ×D5 where the fibers in one copy are parallel to the base in the
other. The boundary is homeomorphic to S9. Thus we can get a closed topological
manifold X by gluing on a 10-ball along its common boundary with n, or equiva-
lently collapsing ∂N to a point. X then has nontrivial Kervaire invariant. On the
other hand, Kervaire proved that any smooth framed manifold must have trivial
Kervaire invariant. Therefore the topological framed manifold X cannot have a
smooth structure. Equivalently, the boundary ∂N cannot be diffeomorphic to S9.
It must be an exotic 9-sphere.

• For k = 0 there is a framing on the torus S1 × S1 ⊂ R4 with nontrivial Kervaire
invariant. Pontryagin used it in [Pon50] (after some false starts in the 30s) to show
πn+2(Sn) = Z/2 for all n ≥ 2.

• There are similar constructions for k = 1 and k = 3, where the framed manifolds
are S3×S3 and S7×S7 respectively. Like S1, S3 and S7 are both parallelizable,
meaning that their trivial tangent bundles are trivial. The framings can be twisted
in such a way as to yield a nontrivial Kervaire invariant.

• Brown-Peterson [BP66b] showed that it vanishes for all positive even k. This
means that apart from the 2-dimensioanl case, any smooth framed manifold with
nontrivail Kervaire invariant must a dimension congruent to 6 modulo 8.

• Browder [Bro69] showed that it can be nontrivial only if k = 2j−1 − 1 for some
positive integer j. This happens iff the element h2

j is a permanent cycle in the
Adams spectral sequence, which was originally introduced in [Ada58]. (More
information about it can be found below in §??) in [Rav86] and[Rav04].) The
corresponding element in πSn+2j+1−2 is θj , the subject of our theorem. This is the
stable homotopy theoretic formulation of the problem.

• θj is known to exist for 1 ≤ j ≤ 3, i.e., in dimensions 2, 6, and 14. In these
cases the relevant framed manifold is S2j−1 × S2j−1 with a twisted framing as
discussed above. The framings on S2j−1 represent the elements hj in the Adams
spectral sequence. The Hopf invariant one theorem of Adams [Ada60] says that
for j > 3, hj is not a permanent cycle in the Adams spectral sequence because
it supports a nontrivial differential. (His original proof was not written in this
language, but had to do with secondary cohomlogy operations.) This means that
for j > 3, a smooth framed manifold representing θj (i.e., having a nontrivial
Kervaire invariant) cannot have the form S2j−1 × S2j−1.

• θj is also known to exist for j = 4 and j = 5, i.e., in dimensions 30 and 62.
In both cases the existence was first established by purely homotopy theoretic
means, without constructing a suitable framed manifold. For j = 4 this was
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done by Barratt, Mahowald and Tangora in [MT67] and [BMT70]. A framed 30-
manifold with nontrivial Kervaire invariant was later constructed by Jones [Jon78].
For j = 5 the homotopy theory was done in 1985 by Barratt-Jones-Mahowald in
[BJM84].

• Our theorem says θj does not exist for j ≥ 7. The case j = 6 is still open.
Kervaire’s 10-manifold with boundary described above can be generalized to a (4k+2)-

manifold with boundary constructed in a similar way. In all cases except k = 0, 1 or 3,
any framing of this manifold will do because the tangent bundle of S2k+1 is nontrivial and
leads to a nontrivial invariant. The boundary is homeomorphic to S4k+1, but may or amy
not be diffeomorphic to the standard sphere. If it is, then attaching a (4k + 2)-disk to it
will produce a smooth framed manifold with nontrivial Kervaire invariant. If it is not, then
we have an exotic (4k+ 1)-sphere bounding a framed manifold and hence not detected by
framed cobordism.

1.4. The unstable formulation. Assume all spaces in sight are localized and the prime 2.
For each n > 0 there is a fiber sequence due to James, [Jam55], [Jam56a], [Jam56b] and
[Jam57]

Sn
E // ΩSn+1 H // ΩS2n+1.

Here ΩX = Ω1X where ΩkX denotes the space of continuous base point preserving maps
to X from the k-sphere Sk, known as the kth loop space of X . This leads to a long exact
sequence of homotopy groups

. . . // πm+n(Sn)
E // πm+n+1(Sn+1)

H // πm+n+1(S2n+1)
P // πm+n−1(Sn) // . . .

Here
• E stands for Einhängung, the German word for suspension.
• H stands for Hopf invariant.
• P stands forWhitehead product.

Assembling these for fixed m and various n leads to a diagram

πm+n+1(S2n−1)

P

��

πm+n+2(S2n+1)

P

��

πm+n+3(S2n+3)

P

��
. . . E // πm+n−1(Sn−1)

E //

H

��

πm+n(Sn)
E //

H

��

πm+n+1(Sn+1)
E //

H

��

. . .

πm+n−1(S2n−3) πm+n(S2n−1) πm+n+1(S2n+1)

where
• Sequences of arrows labeled H , P , E, H , P (or any subset thereof) in that order

are exact.
• The groups in the top and bottom rows are inductively known, and we can compute

those in the middle row by induction on n.
• The groups in the top and bottom rows vanish for large n, making E an isomor-

phism.
• An element in the middle row has trivial suspension (is killed by E) iff it is in the

image of P .
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• It desusupends (is in the image of E) iff its Hopf invariant (image under H) is
trivial.

When m = n− 1 this diagram is

π2n+1(Sn+1)

H
��

π2n(S2n−1)

P��

Z

P��

0

P��
. . . E // π2n−2(Sn−1)

E //

H��

π2n−1(Sn)
E //

H
��

π2n(Sn+1)
E //

H
��

. . .

π2n−2(S2n−3) Z 0

The image under P of the generator of the upper Z is denoted by wn ∈ π2n−1(Sn) and
is called the Whitehead square.

• When n is even, H(wn) = 2 and wn has infinite order.
• wn is trivial for n = 1, 3 and 7. In those cases the generator of the upper Z is the

Hopf invariant (image under H) of one of the three Hopf maps in π2n+1(Sn+1),

S3
η // S2, S7 ν // S4 and S15 σ // S8.

• For other odd values of n, twice the generator of the upper Z is H(wn+1), so wn
has order 2.

• It turns out that wn is divisible by 2 iff n = 2j+1 − 1 and θj exists, in which case
wn = 2θj .

• Each Whitehead square w2n+1 ∈ π4n+1(S2n+1) (except the cases n = 0, 1 and
3) desuspends to a lower sphere until we get an element with a nontrivial Hopf
invariant, which is always some βj (see Sidebar 1). More precisely we have

H(w(2s+1)2j−1) = βj

for each j > 0 and s ≥ 0. This result is essentially Adams’ 1962 solution to the
vector field problem [Ada62].

Recall the EHP sequence

. . . // πm+n(Sn)
E // πm+n+1(Sn+1)

H // πm+n+1(S2n+1)
P // πm+n−1(Sn) // . . .

Given some βj ∈ πφ(j)+2n+1(S2n+1) for φ(j) < 2n, one can ask about the Hopf invariant
of its image under P , which vanishes when βj is in the image of H . In most cases the
answer is known and is due to Mahowald, [Mah67] and [Mah82]. The remaining cases
have to do with θj . The answer that he had hoped for is the following, which can be found
in [Mah67]. (To our knowledge, Mahowald never referred to this as the World Without End
Hypothesis. We chose that term to emphasize its contrast with the Doomsday Hypothesis.)

World Without End Hypothesis (Mahowald 1967).
• The Arf-Kervaire element θj ∈ πS2j+1−2 exists for all j > 0.

• It desuspends to S2j+1−1−φ(j) and its Hopf invariant is βj .
• Let j, s > 0 and suppose that m = 2j+2(s+ 1)− 4− φ(j) and
n = 2j+1(s+ 1)− 2− φ(j). Then P (βj) has Hopf invariant θj .
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This describes the systematic behavior in the EHP sequence of elements related to the
image of J , and the θj are an essential part of the picture. Because of our theorem, we now
know that this hypothesis is incorrect.

1.5. Questions raised by our theorem.

EHP sequence formulation. The World Without End Hypothesis was the nicest possible
statement of its kind given all that was known prior to our theorem. Now we know it cannot
be true since θj does not exist for j ≥ 7. This means the behavior of the indicated elements
P (βj) for j ≥ 7 is a mystery.

Adams spectral sequence formulation. We now know that the h2
j for j ≥ 7 are not

permanent cycles, so they have to support nontrivial differentials. We have no idea what
their targets are.

Manifold formulation. Here our result does not lead to any obvious new questions. It
appears rather to be the final page in the story.

Our method of proof offers a new tool for studying the stable homotopy groups of
spheres. We look forward to learning more with it in the future.

2. OUR STRATEGY

2.1. Ingredients of the proof. Our proof has several ingredients.
• It uses methods of stable homotopy theory, which means it uses spectra instead

of topological spaces. Recall that a space X has a homotopy group πk(X) for
each positive integer k. A spectrum X has an abelian homotopy group πk(X)
defined for every integer k. For the sphere spectrum S0, πk(S0) is the stable k-
stem homotopy group πSk . The hypothetical θj is an element of this group for
k = 2j+1 − 2.

• It uses complex cobordism theory, the subject of Sidebar 2. This is a branch of
algebraic topology having deep connections with algebraic geometry and num-
ber theory. It includes some highly developed computational techniques that be-
gan with work by Milnor [Mil60], Novikov ([Nov60], [Nov62] and [Nov67]) and
Quillen [Qui69] in the 60s. A pivotal tool in the subject is the theory of formal
group laws, the subject of Sidebar 3.

• It also makes use of newer less familiar methods from equivariant stable homo-
topy theory. A helpful introduction to this subject is the paper of Greenlees-May
[GM95]. This means there is a finite group G (a cyclic 2-group) acting on all
spaces in sight, and all maps are required to commute with these actions. When
we pass to spectra, we get homotopy groups indexed not just by the integers Z,
but by RO(G), the orthogonal representation ring of G. Our calculations make
use of this richer structure.

2.2. The spectrum Ω. We will produce a map S0 → Ω, where Ω is a nonconnective
spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative di-
mensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a de-
vice for calculating homotopy groups) in which the image of each θj is nontrivial.
This means that if θj exists, we will see its image in π∗(Ω).
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(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω) depends only on the
reduction of k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is our zinger. Its proof
involves a new tool we call the slice spectral sequence.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in π254(Ω). On the other
hand, (ii) and (iii) imply that π254(Ω) = 0, so θ7 cannot exist. The argument for θj for
larger j is similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.

2.3. How we construct Ω. The construction of Ω requires the use of equivariant stable
homotopy theory. It is discussed extensively in [HHR, §2 and Appendices A and B]. Our
spectrum Ω will be the fixed point spectrum for the action of C8 (the cyclic group of order
8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum MU . It can be thought
of as the set of complex points of an algebraic variety defined over the real numbers. This
means that it has an action of C2 defined by complex conjugation. The resulting C2-
equivariant spectrum is denoted by MUR and is called real cobordism theory. This termi-
nology follows Atiyah’s definition of real K-theory [Ati66], by which he meant complex
K-theory equipped with complex conjugation.

2.4. The norm. Next we use a formal tool we call the norm NG
H for inducing up from an

H-spectrum to a G-spectrum when H is a subgroup of G. It is treated in [HHR, §2.3].
Since the only groups we consider here are cyclic, we will denote NG

H by Ng
h where h =

|H| and g = |G|.
The analogous construction on the space level is easy to desribe. Let X be a space that

is acted on by a subgroup H of G. Let

Y = MapH(G,X),

the space of H-equivariant maps from G to X . Here the action of H on G is by right
multiplication, and the resulting object has an action of G by left multiplication. As a set,
Y = X |G/H|, the |G/H|-fold Cartesian power of X . A general element of G permutes
these factors, each of which is left invariant by the subgroup H . For an H-spectrum X ,
the analogous G-spectrum is denoted by NG

HX .
In particular for a finite cyclic 2-group G = C2n+1 we get a G-spectrum

MU (G) = Ng
2MUR

underlain by MU (2n). We are most interested in the case n = 2. This spectrum is not
periodic, but it has a close relative Ω̃ (to defined below in §5) which is.

2.5. Fixed points and homotopy fixed points. For a G-space X , XG is the subspace
fixed by all of G, which is the same as the space of equivariant maps from a point to X ,
MapG(∗, X). To get XhG, we replace the point here by an free contractible G-space EG.
The homotopy type of XhG = MapG(EG,X) is known to be independent of the choice
of EG. The unique map EG→ ∗ leads to a map ϕ : XG → XhG.

We construct a C8-spectrum ΩO and show that

• ΩhC8

O satisfies the detection and Periodicity Theorems.
• ΩC8

O satisfies the Gap Theorem.
Hence our proof depends on a fourth property:
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Sidebar 2 Complex cobordism

The complex cobordism spectumMU is a critical tool in modern stable homotpy theory.
Its use in computing the stable homotopy groups of spheres is the subject of [Rav86].
Much of the needed background material on vector bundles and Thom spaces can be
found in [MS74].

Let U(n) denote the n-dimensional unitary group and BU(n) its classifying space. The
latter is the space of complex n-planes in an infinite dimensional complex vector space.
It is the base space of an n-dimensional complex vector bundle where the fiber at each
point is the set of vectors in the given n-plane. We denote the one point compactification
of its total space (also known as the Thom space of the vector bundle) by MU(n). The
inclusion map U(n) → U(n + 1) leads to a map Σ2MU(n) → MU(n + 1), which is
adjoint to MU(n)→ Ω2MU(n+ 1).

Such maps can be looped and iterated, allowing us to define

MUk = lim
→

Ω2n−kMU(n)

with MUk homeomorphic to ΩMUk+1. The collection {MUk} is the spectrum MU .
Its homotopy groups are defined by

πiMU = lim
→
π2n+iMU(n).

Its homology and cohomology can be similarly defined. The inclusionsU(m)×U(n)→
U(m + n) lead to maps MU(m) ∧ MU(n) → MU(m + n) and MU ∧ MU →
MU . This makes MU into an E∞-ring spectrum. There are generalized homology and
cohomology theories MU∗ and MU∗ defined by

MUi(X) = πiX ∧MU and MU i(X) = [X,MUi],

with the latter being endowed with cup products.

We know that

π∗MU = Z[xi : i > 0] and H∗MU = Z[mi : i > 0]

where |xi| = |mi| = 2i. After localization at a prime p, MU splits into a wedge of
copies of a spectrum BP (for Brown-Peterson [BP66a]) with

π∗BP = Z(p)[vi : i > 0] and H∗BP = Z(p)[`i : i > 0]

where |vi| = |`i| = 2(pi − 1). This is related to a corresponding fact about formal
groups laws described in Sidebar 3.

(iv) Fixed Point Theorem. The map ΩC8

O → ΩhC8

O is an equivalence. It proof is given
in [HHR, §10]. This fixed point set is our spectrum Ω.

We will come back to the definition of ΩO below.

2.6. RO(G)-graded homotopy. LetRO(G) denote the orthogonal representation ring of
G and let SV denote the one point compactification of orthogonal representation V . For a
G-space or spectrum X define

πGVX = [SV , X]G.
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Note that when the action of G on V is trivial, an equivariant map SV = SdimV → X
must land in XG, so

πGnX = πnX
G.

In the stable category we can make sense of this for virtual as well as actual represen-
tations, so we get homotopy groups indexed by RO(G), which we denote collectively by
πG? X . We denote the ordinary homotopy of the underlying spectrum of X by πu∗X .

We use the norm in two ways:
• Externally as a functor from H-spectra to G-spectra. In particular, for a represen-

tation V of H , Ng
hS

V = SindV , the one point compactification of the induced
representation of V .

• Internally as a homomorphism

Ng
h : πH? X → πG? X

for a G-ring spectrum X . Here we are using the forgetful functor to regard X
as an H-spectrum with RO(H)-graded homotopy. The external norm takes us to
πG? N

g
hX . Then Ng

hX is X(g/h) as a G-spectrum, and we use the multiplication
on X to get a map Ng

hX → X .
We will use the same notation for both.
Recall that

π∗(MU) = Z[x1, x2, . . . ] with |xi| = 2i.

It turns out that any choice of generator xi : S2i → MU is the image of the forgetful
functor of a map

Siρ
xi // MUR.

Here ρ denotes the regular real representation ofC2, which is the same thing as the complex
numbers C acted on by conjugation.

For G = C2n+1 , πu∗MU (G) is a graded polynomial algebra over Z where
• there are 2n generators in each positive even dimension 2i.
• they are acted on transitively by G.

For a group generator γ ∈ G and polynomial generator ri ∈ π2i, the set{
γjri : 0 ≤ j < 2n

}
is algebraically independent, and γ2nri = (−1)iri.

3. THE SLICE FILTRATION

Now we introduce our main technical tool, which is treated in [HHR, §6]. It is an
equivariant analog of the Postnikov tower.

3.1. Postnikov towers. First we need to recall some things about the classical Postnikov
tower. The mth Postnikov section PmX of a space or spectrum X is obtained by killing
all homotopy groups of X above dimension m by attaching cells. The fiber of the map
X → PmX is Pm+1X , the m-connected cover of X .

These two functors have some universal properties. Let S and S>m denote the cate-
gories of spectra and m-connected spectra.

The functor Pm is Farjoun nullification [Far96] with respect to the subcategory S>m.
This means the map X → PmX is universal among maps from X to spectra which are
S>m-null in the sense that all maps to them from m-connected spectra are null. In other
words,
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• The spectrum PmX is S>m-null.
• For any S>m-null spectrum Z, the map S(PmX,Z) → S(X,Z) is an equiva-

lence.
Since S>m ⊂ S>m−1, there is a natural transformation Pm → Pm−1, whose fiber is

denoted by PmmX . It is an Eilenberg-Mac Lane spectrum with homotopy concentrated in
dimension m.

In what follows G will be a finite cyclic 2-group, and g = |G|. Let SG denote the
category of G-equivariant spectra. We need an equivariant analog of S>m. Our choice for
this is somewhat novel.

3.2. Slice cells. Recall that S>m is the category of spectra built up out of spheres of di-
mension > m using arbitrary wedges and mapping cones.

For a subgroup H of G with |H| = h and an integer k, let

Ŝ(kρH) = G+ ∧H SkρH

where ρH denotes the regular real representation of H . Its underlying spectrum is a wedge
of g/h spheres of dimension kh which are permuted by elements of G and are invariant
under H .

We will replace the set of sphere spectra by

A =
{
Ŝ(kρH), Σ−1Ŝ(kρH) : H ⊂ G, k ∈ Z

}
.

We will refer to the elements in this set as slice cells or simply as cells. Note that
Σ−2Ŝ(kρH) (and larger desuspensions) are not cells. A free cell is one of the form
Ŝ(kρ{e}), a wedge of g k-spheres permuted by G. Note that

Σ−1Ŝ(kρ{e}) = Ŝ((k − 1)ρ{e}).

Nonfree cells are said to be isotropic.
In order to define SG>m, we need to assign a dimension to each element in A. We do

this in terms of the underlying wedge summands, namely

dim Ŝ(kρH) = kh and dim Σ−1Ŝ(kρH) = kh− 1.

Then SG>m is the category built up out of elements in A of dimension > m using
arbitrary wedges, mapping cones and smash products with equivariant suspension spectra.

3.3. The slice tower. With this definition it is possible to construct functors PGm+1 and
PmG with the same formal properties as in the classical case. Thus we get a tower

. . . // Pm+1
G X // PmG X // Pm−1

G X // . . .

GPm+1
m+1X

OO

GPmmX

OO

GPm−1
m−1X

OO

in which the homotopy limit is X and the homotopy colimit is contractible.
We call this the slice tower. GPmmX is the nth slice and the decreasing sequence of

subgroups of π∗(X) is the slice filtration. We also get slice filtrations of the RO(G)-
graded homotopy πG? (X) and the homotopy groups of fixed point sets π∗(XH).

There is an important difference between this tower and the classical one. In the classi-
cal case the map X → PmX does not change homotopy groups in dimensions ≤ m. This
is not true in this equivariant case.

In the classical case, PmmX is an Eilenberg-Mac Lane spectrum whose nth homotopy
group is that of X . In our case, π∗(GPmmX) need not be concentrated in dimension m.
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This means the slice filtration leads to a (possibly noncollapsing) slice spectral sequence
converging to π∗(X) and its variants.

One variant has the form

Es,t2 = πGt−s(
GP ttX) =⇒ πGt−s(X).

Recall that πG∗ (X) is by definition π∗(XG), the homotopy of the fixed point set.
This is the spectral sequence we will use to study MU(G) and its relatives.

3.4. The Slice Theorem. A large portion of our paper is devoted to proving that the slice
spectral sequence has the desired properties. From now on we will drop the symbol G
from the functors Pm, Pm+1 and Pmm .

Slice Theorem. In the slice tower for MU (G), every odd slice is contractible and P 2m
2m =

Ŵ
(G)
m ∧HZ, where Ŵ (G)

m is a certain wedge of 2m-dimensional slice cells (to be named
later) and HZ is the integer Eilenberg-Mac Lane spectrumwith trivial G action. Ŵ (G)

m

never has any free summands.

In order to specify Ŵ (G)
m , we need the following definition.

Definition. Suppose X is a G-spectrum such that its underlying homotopy group πuk (X)
is free abelian. A refinement of πuk (X) is an equivariant map

c : Ŵ → X

in which Ŵ is a wedge of slice cells of dimension k whose underlying spheres represent a
basis of πuk (X).

Recall that in πu∗ (MUR), any monomial in the polynomial generators in dimension 2m
is represented by an equivariant map from Smρ2 .
πu∗ (MU (C8)) is a polynomial algebra with 4 generators in every positive even dimen-

sion. We will denote the generators in dimension 2i by ri(j) for 1 ≤ j ≤ 4. The action of
a generator γ ∈ G = C8 is given by

γ(ri(j)) =

{
ri(j + 1) for 1 ≤ j ≤ 3
(−1)iri(1) for j = 4.

We will explain how πu∗ (MU (C8)) can be refined.
πu2 (MU (C8)) has 4 generators r1(j) that are permuted up to sign by G. It is refined by

an equivariant map
Ŵ

(C8)
1 = Ŝ(ρ2)→MU (C8).

Recall that the underlying spectrum of Ŝ(ρ2) is a wedge of 4 copies of S2.
In πu4 (MU (C8)) there are 14 monomials that fall into 4 orbits under the action of G,

each corresponding to a map from a slice cell.

Ŝ(2ρ2) ←→
{
r1(1)2, r1(2)2, r1(3)2, r1(4)2

}
Ŝ(2ρ2) ←→ {r1(1)r1(2), r1(2)r1(3), r1(3)r1(4), r1(4)r1(1)}
Ŝ(2ρ2) ←→ {r2(1), r2(2), r2(3), r2(4)}
Ŝ(ρ4) ←→ {r1(1)r1(3), r1(2)r1(4)}

(Recall that Ŝ(ρ4) is underlain by S4 ∨ S4.) It follows that πu4 (MU (C8)) is refined by
an equivariant map from

Ŵ
(C8)
2 = Ŝ(2ρ2) ∨ Ŝ(2ρ2) ∨ Ŝ(ρ4) ∨ Ŝ(2ρ2).
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3.5. Refining πu∗MU (G). More generally, we can proceed as follows. The πu∗MUR is
refined by a map from a wedge of Skρ2s. More specifically, for each i > 0 we have a map

Ai =
∨
m≥0

Smiρ2 →MUR

representing the powers of the generator ri ∈ πu2iMUR. Using the multiplication on
MUR, we get a map

A(C2) =
∧
i>0

Ai →MUR.

The spectrum A(C2) is a wedge of Smρ2s representing each monomial in the ris.
Now we apply the norm functor Ng

2 to this map and get a map

(2) A(G) = Ng
2A

(C2) →MU (G)

which refines the underlying homotopy of the target. A(G) is a wedge of even dimensional
slice cells, and the Ŵ (G)

m in the Slice Theorem is the wedge of slice cells in dimension 2m.

3.6. The definition of ΩO. Our G-spectrum ΩO (where G = C8) is obtained from the
E∞-ring spectrum MU (G) by inverting a certain element D ∈ πG19ρG . The choices of
G and D are the simplest ones leading to a homotospy fixed point set with the detection
property, as show in [HHR, §11]. The slice tower for ΩO has similar properties to that of
MU (G).

4. THE GAP THEOREM

4.1. Derivation from the Slice Theorem. Assuming the Slice Theorem, the Gap Theo-
rem follows from the fact that πG−2 vanishes for each isotropic slice, i.e., for each one of
the form

Ŝ(kρH) ∧HZ

for nontrivial H . Proving this amounts to computing the homology of a certain chain
complex. Details can be found in [HHR, §3.2].

In order to give a feel for these calculations, a picture of πG∗ S
kρG ∧ HZ for G = C8

and various integers k isd shown in Figure 1.
In order to derive the Gap Theorem from the Slice Theorem we need to find the groups

πG∗ (W (mρh) ∧HZ) = πH∗ (Smρh ∧HZ).

We need this for all integers m because eventually we will obtain the spectrum ΩO by
inverting a certain element in πG19ρ8(MU (C8)). Here is what we will learn.

Vanishing Theorem.
• For m ≥ 0, πHk (Smρh ∧HZ) = 0 unless m ≤ k ≤ mh.
• For m < 0 and h > 1, πHk (Smρh ∧ HZ) = 0 unless mh ≤ k ≤ m − 2. The

upper bound can be improved to m− 3 except in the case (h,m) = (2,−2) when
πH−4(S−2ρ2 ∧HZ) = Z.

Gap Corollary. For h > 1 and all integers m, πHk (Smρh ∧HZ) = 0 for −4 < k < 0.

This means a similar statement must hold for πC8
∗ (ΩO) = π∗(Ω), which gives the Gap

Theorem.
Assuming the Slice Theorem, the Gap Theorem (the statement that π−2(Ω) = 0) fol-

lows immediately from the Gap Corollary above, as does the follwoing.
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FIGURE 1. The homotopy of the slices Skρ8 ∧ HZ for small k. The
horizontal and vertical axes are t−s and s in the slice spectral sequence.
The numbers along the (t − s)-axis are even values of k. The groups
πG∗ S

kρ8∧HZ lie along diagonals where t = 8k. Squares, bullets, circles
and diamaonds stand for Z, Z/2, Z/4 and Z/8 respectively. Lines of
slopes 1, 3 and 7 separate regions with various types of torsion for even
k. The gap can be seen in this chart. The vanishing regions seens here
also occur in the slice spectral sequence for πG∗ MU (G).

Vanishing Line Corollary. The slice spectral sequence for πG∗ MU (G) is confined to the
first quadrant and

Es,t2 = 0 for s > (g − 1)(t− s),
where g = |G|. If we invert any element in πGkπGMU (G), the spectral sequence is confined
to the first and third quadrants, and in the latter

Es,t2 = 0 for s < min(0, (g − 1)(t− s+ 4) + 4− g).

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

4.2. An easy calculation. We begin by constructing an equivariant cellular chain complex
C(mρg)∗ for Smρg , where m ≥ 0. In it the cells are permuted by the action of G. It is a
complex of Z[G]-modules and is uniquely determined by fixed point data of Smρg .

For H ⊂ G we have
(Smρg )H = Smg/h

This means there is a G-CW-complex with one cell in dimension m, two cells in each
dimension from m+ 1 to 2m, four cells in each dimension from 2m+ 1 to 4m, and so on.
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In other words,

C(mρg)k =

 0 unless m ≤ k ≤ gm
Z for k = m
Z[G/H] for mg/2h < k ≤ mg/h and h < g.

Each of these is a cyclic Z[G]-module. The boundary operator is uniquely determined
by the fact that H∗(C(mρg)) = H∗(S

gm).

Then we have

πG∗ (Smρg ∧HZ) = H∗(HomZ[G](Z, C(mρg))).

These groups are nontrivial only for m ≤ k ≤ gm, which gives the Vanishing Theorem
for m ≥ 0.

We will look at the bottom three groups in the complex HomZ[G](Z, C(mρg)∗). Since
C(mρg)k is a cyclic Z[G]-module, the Hom group is always Z.

For m > 1 our chain complex C(mρg) has the form

C(mρg)m C(mρg)m+1 C(mρg)m+2

0 Zoo Z[C2]
εoo Z[C2]

1−γoo . . .1+γoo

Applying HomZ[G](Z, ·) to this gives (in dimensions ≤ 2m for m > 4)

Z Z
2oo Z

0oo Z
2oo Z

0oo . . .oo

m m+ 1 m+ 2 m+ 3 m+ 4

It follows that for m ≤ k < 2m,

πGk (Smρg ∧HZ) =

{
Z/2 k ≡ m mod 2
0 otherwise.

For negative multiples of ρg , S−mρg (withm > 0) is the equivariant Spanier-Whitehead
dual of Smρg . This means that

πG∗ (S−mρg ∧HZ) = H∗(HomZ[G](C(mρg),Z)).

Applying the functor HomZ[G](·,Z) to our chain complex C(mρg)

Z Z[C2]
εoo Z[C2]

1−γoo Z[C2 or C4]
1+γoo . . .1−γoo

m m+ 1 m+ 2 m+ 3

gives a cochain complex beginning with

Z
1 // Z

0 // Z
2 // Z

0 // Z // . . .

−m −m− 1 −m− 2 −m− 3 −m− 4
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Here is a diagram showing both functors in the case m ≥ 4.

m m+ 1 m+ 2 m+ 3 m+ 4

Z Z
2

oo Z
0

oo Z
2

oo Z
0

oo . . .oo

Z Z[C2]
εoo Z[C2]

1−γoo

HomZ[G](Z, ·)

KS

HomZ[G](·,Z)

��

Z[C2]
1+γoo Z[C2]

1−γoo . . .1−γoo

Z
1 // Z

0 // Z
2 // Z

0 // Z // . . .

−m −m− 1 −m− 2 −m− 3 −m− 4

Note the difference in behavior of the map ε : Z[C2]→ Z under the functors HomZ[G](Z, ·)
and HomZ[G](·,Z). They convert it to maps of degrees 2 and 1 respectively. This difference
is responsible for the Gap.

5. THE PERIODICITY THEOREM

We now outline the proof of the Periodicity Theorem (assuming the Slice Theorem),
which is treated in [HHR, §9].

We establish some differentials in the slice spectral sequence and show that certain
elements become permanent cycles after inverting a certain D ∈ πG19ρGMU (G), where
G = C8. This lead to an equivariant self map

Σ256ΩO → ΩO.

It is an ordinary homotopy equivalence, and we will see that this implies formally that it
induces an equivalence on homotopy fixed point sets.

5.1. Geometric fixed points. The key tool for studying differentials in the slice spectral
sequence is the geometric fixed point spectrum, denoted by ΦGX for a G-spectrum X . A
detailed account and references can be found in [HHR, §2.5]. It has much nicer properties
than the usual fixed point spectrum XG, which is awkward for two reasons:

• it fails to commute with smash products and
• it fails to commute with infinite suspensions.

The geometric fixed set ΦGX is a convenient substitute that avoids these difficulties. In
order to define it we need the isotropy separation sequence, which in the case of a finite
cyclic 2-group G is the cofiber sequence

EC2+ → S0 → ẼC2.

Here EC2 is a G-space via the projection G → C2 and S0 has the trivial action, so
ẼC2 is also a G-space. Under this action ECG2 is empty while for any proper subgroup H
of G, ECH2 = EC2, which is contractible. For an arbitrary finite group G it is possible to
construct a G-space with the similar properties.

This functor has the following properties:
• For G-spectra X and Y , ΦG(X ∧ Y ) = ΦGX ∧ ΦGY .
• For a G-space X , ΦGΣ∞X = Σ∞(XG).
• A map f : X → Y is aG-equivalence iff ΦHf is an ordinary equivalence for each

subgroup H ⊂ G.
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From the suspension property we can deduce that for any finite cyclic 2-group G,

ΦGMU (G) = MO,

the unoriented cobordism spectrum. Its homotopy type has been well understood since
Thom’s work in the 50s.

Geometric Fixed Point Theorem. Let σ denote the sign representation. Then for any G-
spectrum X , π?(ẼC2 ∧X) = a−1

σ π?(X), where aσ ∈ π−σX is induced by the inclusion
of the fixed point set S0 → Sσ .

In [HHR, §5.4] we define specific polynomial generators

rGi ∈ π
C2
iρ2
MU (G)

that are convenient for our purposes. We denote the underlying homotopy classes by ri ∈
πu2iMU (G).

Recall that π∗(MO) = Z/2[yi : i > 0, i 6= 2k − 1] where |yi| = i. It is not hard to
show that

π∗(MU (C8)) = Z[ri, γ(ri), γ
2(ri), γ

3(ri) : i > 0]

where |ri| = 2i, γ is a generator of G and γ4(ri) = (−1)iri. In πiρ8(MU (4)) we have the
element

Nri = riγ(ri)γ
2(ri)γ

3(ri).

Applying the functor ΦG to the map N8
2 ri : Siρ8 →MU (C8) gives a map Si →MO.

Lemma 1. The generators ri and yi satisfy

ΦGNg
2 ri =

{
0 for i = 2k − 1
yi otherwise.

5.2. Some slice differentials. We know that the slice spectral sequence for MU (G) has a
vanishing line of slope g − 1. We will describe the subring of elements lying on it.

Let fi ∈ πi(MU (G)) be the composite

Si
aiρg // Siρg

Nri // MU (G),

where aiρg is the inclusion of the fixed point set. The following facts about fi are easy to
prove.

• It appears in the slice spectral sequence in E(g−1)i,gi
2 , which is on the vanishing

line.
• The subring of elements on the vanishing line is the polynomial algebra on the fi.
• Under the map

π∗(MU (G))→ π∗(Φ
GMU (G)) = π∗(MO)

we have

fi 7→
{

0 for i = 2k − 1
yi otherwise

• Any differential landing on the vanishing line must have a target in the ideal
(f1, f3, f7, . . . ). A similar statement can be made after smashing with S2kσ .

For an oriented representation V there is a map uV : S|V | → ΣVHZ, which lies in
πV−|V |(HZ). It satisfies uV+W = uV uW , so u2kσ = u2k−1

2σ .
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Slice Differentials Theorem. In the slice spectral sequence for Σ2kσMU (G) for k > 0,
we have dr(u2kσ) = 0 for r < 1 + g(2k − 1), and

d1+g(2k−1)(u2kσ) = a2k

σ f2k−1.

Sketch of proof: Inverting aσ in the slice spectral sequence will make it converge to
π∗(MO). This means each power of u2σ has to support a nontrivial differential. The only
way this can happen is as indicated in the theorem.

Typically one proves theorems about differentials in such spectral sequences by means
of some sort of extended power construction. In our case, all of the necessary geometry is
encoded in the relation between πu∗MU (G) and π∗MO!

5.3. Some RO(G)-graded calculations. For a cyclic 2-group G let

d
G
k = Ng

2 r2k−1 = r2k−1γ(r2k−1) . . . γg/2−1(r2k−1)

∈ π(2k−1)ρg (MU (G))

We want to invert this element and study the resulting slice spectral sequence. As ex-
plained previously, forG = C8 it is confined to the first and third quadrants with vanishing
lines of slopes 0 and 7.

The differential dr on u2k

2σ described in the theorem is the last one possible since its
target, a2k+1

σ f2k+1−1, lies on the vanishing line. If we can show that this target is killed by
an earlier differential after inverting d

G
k , then u2k

2σ will be a permanent cycle.
We have

f2k+1−1d
G
k = (a2k+1−1

ρg Ng
2 r2k+1−1)(Ng

2 r2k−1)

= a2k

ρgN
g
2 r2k+1−1(a2k−1

ρg Ng
2 r2k−1)

= a2k

ρgd
G
k+1f2k−1

= a2k

V d
G
k+1a

2k

σ f2k−1 where V = ρg − σ

= a2k

V pd
G
k+1d1+8(2k−1)(u2kσ).

Corollary. In the RO(G)-graded slice spectral sequence for
(
d
G
k

)−1

MU (G), the class

u2k+1σ = u2k

2σ is a permanent cycle.

5.4. An even trickier RO(G)-graded calculation. The corollary shows that inverting a
certain element makes a power of u2σ a permanent cycle. We need to invert something to
make a power of u2ρ8 a permanent cycle.

We will get this by using the norm property of u. It says that if V is an oriented rep-
resentation of a subgroup H ⊂ G with V H = 0 and V ′ is the induced representation of
V , then the norm functor Ng

h from H-spectra to G-spectra satisfies Ng
h(uV )uV ′′ = uV ′ ,

where V ′′ is the induced representation of the trivial representation of degree |V |.
From this we can deduce that u2ρ8 = u8σ8N

8
4 (u4σ4)N8

2 (u2σ2), where σg denotes the
sign representation on Cg .

We have u2ρ8 = u8σ8
N8

4 (u4σ4
)N8

2 (u2σ2
).

By the Corollary we can make a power of each factor a permanent cycle by inverting
some d

(2m)
km for 1 ≤ m ≤ 3. If we make km too small we will lose the detection property,

that is we will get a spectrum that does not detect the θj . It turns out that km must be
chosen so that 8|2mkm.
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• Inverting d
C2

4 makes u32σ2
a permanent cycle.

• Inverting d
C4

2 makes u8σ4
a permanent cycle.

• Inverting d
C8

1 makes u4σ8
a permanent cycle.

• Inverting the productD of the norms of all three makes u32ρ8 = u16
2ρ8 a permanent

cycle.
Let

D = d
C8

1 N8
4 (d

C4

2 )N8
2 (d

C2

4 ) = N8
2 (rC8

1 rC4
3 rC2

15 ) ∈ π19ρ8(MU (C8)).

The we define ΩO = D−1MU (C8) and Ω = ΩhC8

O .
Since the inverted element is represented by a map from Smρ8 , the slice spectral se-

quence for π∗(Ω) = πC8
∗ (ΩO) has the usual properties:

• It is concentrated in the first and third quadrants and confined by vanishing lines
of slopes 0 and 7.

• It has the gap property, i.e., no homotopy between dimensions −4 and 0.

5.5. The proof of the Periodicity Theorem.

Preperiodicity Theorem. Let ∆
(8)
1 = u2ρ8

(
d

(8)
1

)2

∈ E16,0
2 (D−1MU (C8)) = E16,0

2 (ΩO).

Then
(

∆
(8)
1

)16

is a permanent cycle.

To prove this, note that
(

∆
(8)
1

)16

= u32ρ8

(
∆

(8)

1

)32

. Both u32ρ8 and ∆
(8)

1 are perma-

nent cycles, so
(

∆
(8)
1

)16

is also one.

Hence we have an equivariant map Π : Σ256ΩO → ΩO where
• u32ρ8 : S256−32ρ8 → ΩO induces to the unit map from S0 on the underlying ring

spectrum and
• ∆

(8)
1 is invertible because it is a factor of D.

The above imply that the underlying map i0Π of ordinary spectra is a homotopy equiva-
lence. It is known that any such map induces an equivalence of homotopy fixed point sets,
so

Σ256ΩhC8

O '
ΠhC8 // Ω̃hC8

Unfortunately the slice spectral sequence tells us nothing about this homotopy fixed
point set. We know it detects all of the θj , but there is no direct way of showing that it has
the gap property.

Fortunately we have a theorem (the subject the next section) stating that in this case the
homotopy fixed set is equivalent to the actual fixed point set Ω. The slice spectral sequence
tells us that the latter has the gap property. Thus we have proved

Periodicity Theorem. Let Ω = (D−1MU (C8))hC8 . Then Σ256Ω is equivalent to Ω.

6. THE HOMOTOPY FIXED POINT THEOREM

In order to finish the proof of the main theorem, we need to show that the actual fixed
point set of ΩO = D−1MU (C8) is equivalent to its homotopy fixed point set. A detailed
account can be found in [HHR, §10]. The slice spectral sequence computes the homotopy
of the former while the Hopkins-Miller spectral sequence, also known as the homotopy
fixed point spectral sequence (which is known to detect θj), computes that of the latter.
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Here is a general approach to showing that actual and homotopy fixed points are equiv-
alent for a G-spectrum X .

We have an equivariant map EG+ → S0. Mapping both into X gives a map of G-
spectra ϕ : X+ → F (EG+, X+). Passing to fixed points would give a map XG → XhG,
which we would like to be an equivalence. We will prove the stronger statement that ϕ is
a G-equivalence.

The case of interest is X = ΩO and G = C8. We will argue by induction on the order
of the subgroups H of G, the statement being obvious for the trivial group. We will smash
ϕ with the isotropy separation sequence

EG+ → S0 → ẼG.

This gives us the following diagram in which both rows are cofiber sequences.

EG+ ∧ ΩO //

ϕ′

��

Ω̃ //

ϕ

��

ẼG ∧ ΩO

ϕ′′

��
EG+ ∧ F (EG+,ΩO) //F (EG+,ΩO) //ẼG ∧ F (EG+,ΩO)

The mapϕ′ is an equivalence because ΩO is nonequivariantly equivalent toF (EG+,ΩO),
and EG+ is built up entirely of free G-cells.

Thus it suffices to show that ϕ′′ is an equivalence, which we will do by showing that
both its source and target are contractible. Both have the form ẼG ∧ X where X is a
module spectrum over ΩO, so it suffices to show that ẼG ∧ ΩO is contractible.

We will show that it is H-equivariantly contractible by induction on the order of the
subgroups H of G. Over the trivial group ẼG itself is contractible. Let H be a subgroup,
H ′ ⊂ H the subgroup of index 2 and H2 = H/H ′.

We will smash our spectrum with the cofiber sequence

EH2+ → S0 → ẼH2.

Then ẼH2 ∧ ẼG ∧ ΩO is contractible over H ′, so it suffices to show that its H-fixed
point set is contractible. It is

ΦH(ẼG ∧ ΩO) = ΦH(ẼG) ∧ ΦH(ΩO),

and ΦH(ΩO) is contractible because ΦH(D) = 0. Thus it remains to show that EH2+ ∧
ẼG ∧ ΩO is H-contractible. But this is equivalent to the H ′-contractibility of ẼG ∧ ΩO,
which we have by induction.

7. THE DETECTION THEOREM

The Detection Theorem is the subject of [HHR, §11].

7.1. θj in the Adams-Novikov spectral sequence. Browder’s Theorem says that θj is
detected in the classical Adams spectral sequence by

h2
j ∈ Ext2,2

j+1

A (Z/2,Z/2),

where A denotes the mod 2 Steenrod algebra. This element is known to be the only one in
its bidegree.
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It is more convenient for us to work with the Adams-Novikov spectral sequence, which
maps to the Adams spectral sequence. It has a family of elements in filtration 2, namely

βi/j ∈ Ext2,6i−2j
MU∗(MU) (MU∗,MU∗)

for certain values of of i and j. When j = 1, it is customary to omit it from the notation.
The definition of these elements can be found in [Rav86, Chapter 5].

Here are the first few of these in the relevant bidegrees.

θ4 : β8/8 and β6/2

θ5 : β16/16, β12/4 and β11

θ6 : β32/32, β24/8 and β22/2

θ7 : β64/64, β48/16, β44/4 and β43

and so on. In the bidegree of θj , only β2j−1/2j−1 has a nontrivial image (namely h2
j ) in

the Adams spectral sequence. There is an additional element in this bidegree, namely
α1α2j−1.

We need to show that any element mapping to h2
j in the classical Adams spectral se-

quence has nontrivial image the Adams-Novikov spectral sequence for Ω.

Detection Theorem. Let x ∈ Ext2,2
j+1

MU∗(MU) (MU∗,MU∗) be any element whose image in

Ext2,2
j+1

A (Z/2,Z/2) is h2
j with j ≥ 6. Then the image of x in H2,2j+1

(C8;π∗(ΩO)) is
nonzero.

We will prove this by showing the same is true after we map the latter to a simpler object
involving another algebraic tool, the theory of formal A-modules, where A is the ring of
integers in a suitable field.

7.2. Formal A-modules. Recall the a formal group law (see Sidebar 3) over a ring R is a
power series

F (x, y) = x+ y +
∑
i,j>0

ai,jx
iyj ∈ R[[x, y]]

with certain properties.
For positive integers m one has power series [m](x) ∈ R[[x]] defined recursively by

[1](x) = x and
[m](x) = F (x, [m− 1](x)).

These satisfy

[m+ n](x) = F ([m](x), [n](x)) and [m]([n](x)) = [mn](x).

With these properties we can define [m](x) uniquely for all integers m, and we get a
homomorphism τ from Z to End(F ), the endomorphism ring of F .

If the ground ring R is an algebra over the p-local integers Z(p) or the p-adic integers
Zp, then we can make sense of [m](x) for m in Z(p) or Zp.

Now suppose R is an algebra over a larger ring A, such as the ring of integers in a
number field or a finite extension of the p-adic numbers. We say that the formal group law
F is a formal A-module if the homomorphism τ extends to A in such a way that

[a](x) ≡ ax mod (x2) for a ∈ A.

The theory of formal A-modules is well developed. Lubin-Tate [LT65] used them to do
local class field theory.



26 MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL

The example of interest to us is A = Z2[ζ8], where ζ8 is a primitive 8th root of unity.
The maximal ideal of A is generated by π = ζ8 − 1, and π4 is a unit multiple of 2. There
is a formal A-module F over R∗ = A[w±1] (with |w| = 2) satisfying

logF (F (x, y)) = logF (x) + logF (y)

where

logF (x) =
∑
n≥0

w2n−1x2n

πn
.

The classifying map λ : MU∗ → R∗ for F factors through BP∗, where the logarithm
is

log(x) =
∑
n≥0

`nx
2n .

Recall that BP∗ = Z(2)[v1, v2, . . . ] with |vn| = 2(2n − 1). The vn and the `n are
related by Hazewinkel’s formula,

(3) 2`n = vn +
∑

0<i<n

`iv
2i

n−i.

This can be shown to imply that

λ(vn) = π4−nw2n−1 · unit for 1 ≤ n ≤ 4,

where each unit is in A. It follows that there are valuations on BP∗ and R∗ compatible
under λ with

||π|| = 1/4 and ||w|| = 1

||vn|| = max(0, (4− n)/4).

7.3. The relation between MU (C8) and formal A-modules. What does this have to do
with our spectrum ΩO = D−1MU

(4)
R ? Recall thatD = ∆

(8)

1 N8
4 (∆

(4)

2 )N8
2 (∆

(2)

4 ). We saw
earlier that inverting a product of this sort is needed to get the Periodicity Theorem, but we
did not explain the choice of subscripts of ∆. They are the smallest ones that satisfy the
second part of the following.

Lemma 2. The classifying homomorphism λ : π∗(MU) → R∗ for F factors through
π∗(MU

(4)
R ) in such a way that

• the homomorphism λ(4) : π∗(MU
(4)
R ) → R∗ is equivariant, where C8 acts on

π∗(MU
(4)
R ) as before, it acts trivially on A and γw = ζ8w for a generator γ of

C8.
• The element D ∈ π∗(MU

(4)
R ) that we invert to get ΩO goes to a unit in R∗.

We will sketch the proof of this later.

7.4. The proof of the Detection Theorem. It follows that we have a map

H∗(C8;π∗(D
−1MU

(4)
R )) = H∗(C8;π∗(ΩO))→ H∗(C8;R∗).

The source here is the E2-term of the homotopy fixed point spectral sequence for Ω, and
the target is easy to calculate. We will use it to prove the Detection Theorem, namely

Detection Theorem. Let x ∈ Ext2,2
j+1

MU∗(MU) (MU∗,MU∗) be any element whose image

in Ext2,2
j+1

A (Z/2,Z/2) is h2
j with j ≥ 6. (Here A denotes the mod 2 Steenrod algebra.)

Then the image of x in H2,2j+1

(C8;π∗(ΩO)) is nonzero.
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We will prove this by showing that the image of x in H2,2j+1

(C8;R∗) is nonzero.
We will calculate with BP -theory. Recall that

BP∗(BP ) = BP∗[t1, t2, . . . ] where |tn| = 2(2n − 1).

We will abbreviate Exts,tBP∗(BP ) (BP∗, BP∗) by Exts,t.
There is a map from this Hopf algebroid to one associated with H∗(C8;R∗) in which

tn maps to an R∗-valued function on C8 (regarded as the group of 8th roots of unity)
determined by

[ζ](x) =

F∑
n≥0

〈tn, ζ〉x2n .

An easy calculation shows that the function t1 sends a primitive root in C8 to a unit in R∗.
Let

b1,j−1 =
1

2

∑
0<i<2j

(
2j

i

)[
ti1|t2

j−i
1

]
∈ Ext2,2

j+1

It is is known to be cohomologous to β2j−1/2j−1 and to have order 2. We will show that its
image in H2,2j+1

(C8;R∗) is nontrivial for j ≥ 2.
H∗(C8;R∗) is the cohomology of the cochain complex

R∗[C8]
γ−1 // R∗[C8]

Trace // R∗[C8]
γ−1 // . . .

where Trace is multiplication by 1 + γ + · · ·+ γ7.
The cohomology groupsHs(C8;R∗) for s > 0 are periodic in s with period 2. The part

of it that matters to us is

H2(C8;R2m) = wmA/(8) for m ≡ 0 mod 8

An easy calculation shows that b1,j−1 maps to 4w2j , which is the element of order 2 in
H2(C8;R2j+1).

To finish the proof we need to show that the other βs in the same bidegree map to zero.
We will do this for j ≥ 6. The set of these is{

βc(j,k)/2j−1−2k : 0 ≤ k < j/2
}

where c(j, k) = 2j−1−2k(1 + 22k+1)/3. Note that βc(j,0)/2j−1 = β2j−1/2j−1 , so we need
to show that the elements with k > 0 map to zero.

Using the valuation on BP∗ defined above, we find that for k ≥ 1 and j ≥ 6

||βc(j,k)/2j−1−2k || =

∣∣∣∣∣
∣∣∣∣∣ v

c(j,k)
2

2v2j−1−2k

1

∣∣∣∣∣
∣∣∣∣∣ ≥ 5.

This means βc(j,k))/2j−1−2k maps to an element that is divisible by 8 and therefore zero.
A similar computation with the element α1α2j−1 shows

||α2j−1|| ≥ 4 for j ≥ 3.

This completes the proof of the Detection Theorem modulo the lemma.
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7.5. The proof of Lemma 2. To prove the first part, consider the following diagram for
an arbitrary ring K.

MU∗(MU)

π∗(MU)

ηL
66lllllll

λ1

%%KKKKKKKKKKKKK π∗(MU
(2)
R )

λ(2)

��

π∗(MU)

ηR
iiRRRRRRR

λ2

yysssssssssssss

K

The maps λ1 and λ2 classify two formal group laws F1 and F2 over K. The Hopf alge-
broid MU∗(MU) represents strict isomorphisms between formal group laws. Hence the
existence of λ(2) is equivalent to that of a compatible strict isomorphism between F1 and
F2.

Similarly consider the diagram

π∗(MU
(4)
R )

λ(4)

��

π∗(MU)

λ1 ++WWWWWWWWWWWWWWWWWWW

33hhhhhhhhhhhhhhh
π∗(MU)

λ2

((PPPPPPPPP

77ooooooo
π∗(MU)

λ3

vvnnnnnnnnn

ggOOOOOOO
π∗(MU)

λ4ssggggggggggggggggggg

kkVVVVVVVVVVVVVVV

K

The existence of λ(4) is equivalent to that of compatible strict isomorphisms between the
formal group laws Fj classified by the λj .

Now suppose that K has a C8-action and that λ(4) is equivariant with respect to the
previously defined C8-action on MU

(4)
R . Then the isomorphism induced by the fourth

power of a generator γ ∈ C8 is the isomorphism sending x to its formal inverse on each of
the Fj .

This means that the existence of an equivariant λ(4) is equivalent to that of a formal
Z[ζ8]-module structure on each of the Fj , which are all isomorphic. This proves the first
part of the Lemma.

For the second part of the Lemma, recall that

D = N8
2 (rC2

15 r
C4
3 rC8

1 ).

The norm sends products to products, and N(x) is a product of conjugates of x under the
action of C8. Hence its image in R∗ is a unit multiple of that of a power of x, so it suffices
to show that each of the three elements rC2

15 , rC4
3 and rC8

1 maps to a unit in R∗. We refer
the reader to [HHR, §11] for the details.

8. THE SLICE AND REDUCTION THEOREMS

Recall that a pivotal step in our proof is the Slice Theorem, which identifies the layers
in the slice tower for MUR and its relatives. On Friday Dugger will explain how it follows
from the Reduction Theorem, which will be stated below.

For each cyclic 2-group G = C2n+1 there is a certain equivariant (noncommutative)
ring spectrum A which is a certain wedge of slice cells. It maps to Ng

2MUR in such a
way that the underlying wedge of spheres hits all of the underlying homotopy of MU (2n).
Thus both Ng

2MUR and S0 are A-modules.
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Reduction Theorem. The A-smash product Ng
2MUR ∧A S0 is equivariantly equivalent

to the integer Eilenberg-Mac Lane spectrum HZ.

The proof of this is the hardest calculation in our paper and is treated in [HHR, §7].
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[Fre38] H. Freudenthal. Über die Klassen der Sphärenabbildungen I. Grosse Dimnesionionen . Compositio

Math., 5:299–314, 1938.
[GM95] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory. In Handbook of algebraic topol-

ogy, pages 277–323. North-Holland, Amsterdam, 1995.
[Haz78] Michiel Hazewinkel. Formal groups and applications, volume 78 of Pure and Applied Mathematics.

Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.
[HHR] Micheal A. Hill, Michael J. Hopkins, and Douglas C. Ravenel. The non-existence of elements of

kervaire invariant one. Online at arXiv:0908.3724v2 and on third author’s homoe page.
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Sidebar 3 Formal group laws

Formal groups laws are are key tool in complex cobordism theory, which is part of the
infrastructure of our proof. The definitive reference is Hazewinkel’s book [Haz78]. A
much briefer account can be found in [Rav86, Appendix 2]. A formal group law F over
a ring R is a power series F (x, y) ∈ R[[x, y]] satisfying three conditions, namely

(i) COMMUTATIVITY F (y, x) = F (x, y)
(ii) IDENTITY F (x, 0) = F (0, x) = x

(iii) ASSOCIATIVITY F (F (x, y), z) = F (x, F (y, z))

Elementary examples include the additive and multiplicative formal group laws, x + y
and 1 + x + y + xy respectively. When R is torsion free, F is determined by a power
series over R⊗Q in one variable called the logarithm of F satisfying

logF (F (x, y)) = logF (x) + logF (y).

For our two elementary examples it is x and
∑
n≥0(−1)nxn+1/(n+ 1).

There is a universal example due to Lazard [Laz55] of a formal group law G over a ring
L with the property that for any formal group law F over any ring R, there is a unique
ring homomorphism θ : L→ R sending G to F . It is given by

G(x, y) =
∑
i,j

ai,jx
iyj and L = Z[ai,j ]/I

where I is the ideal generated by the relations among the coefficients ai,j forced by
conditions (i)-(iii) above. To describe L explicitly, it is useful to give it a grading such
that G(x, y) is homogeneous of degree 2 if |x| = |y| = 2. This means that ai,j | =
2(1− i− j). Lazard then shows that

L = Z[xi : i > 0] where |xi| = −2i.

There is a formal group law F defined over the complex cobordism ring MU∗ defined
as follows. We know that

MU∗(CP∞) = MU∗[[x]]

where x ∈ MU2CP∞ is the first Chern class of the canonical complex line bundle.
Similarly,

MU∗(CP∞ ×CP∞) = MU∗[[x⊗ 1, 1⊗ x]]

There is a map CP∞ × CP∞ → CP∞ related to the tensor product of line bundles.
It sends x to a power series F (x⊗ 1, 1⊗ x), which can easily be shown to be a formal
group law. Quillen [Qui69] showed that the Lazard classifing map L → MU∗ is an
isomorphism.

Cartier [Car67] showed that when R is a torsion free Z(p)-algebra, F is canonically
isomorphic to a formal group law F ′ which is p-typical, meaning that is logarithm has
the form

logF ′(x) = x+
∑
n>0

`nx
pn ∈ R⊗Q[[x]].

The analog of the Lazard ring for such groups is much smaller than L, having polyno-
mial generators vn only in each dimension of the form 2(1− pn). The `n and the vn are
related by Hazewinkel’s formula (3).
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