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1. Introduction

Let BP be the Brown-Peterson spectrum for a fixed prime p, whose

homotopy is BP, = Z,)[v1,v2, -+ , U, --]. In [6]86.5, the second au-
thor has introduced the spectrum 7'(m), whose BP-homology is
BP.(T(m)) = BP,[ty, - st

This is homotopy equivalent to BP below dimension 2p™*! — 3.
The Adams-Novikov Fs-term converging to the homotopy groups of
T(m)
E;’*(T(m)) = EXth*(Bp)(BP*, BP*<T(TTL)))
is isomorphic by [6] Corollary 7.1.3 to
EXtF(m—l—l) (BP*> BP*))
where

F(m + 1) = BP*(BP)/ (t17 PN ,tm) = BP*[tm+1,tm+2, .. ]

In particular I'(1) = BP,(BP) by definition. To get the structure of
Extrni1)(BPs, BP,), we will use the chromatic method introduced in
[3].
Denote an ideal (p, vy, - v,_1) of BP; by I,,, and a comodule
U;—&l-sBP*/(]% V1, ,Un—1,V

o
n

* o Ups—t)-
by M. Then we can consider the chromatic spectral sequence con-
verging to
Extrimi1) (BPs, BP,/1,)
with
E}" = Bxtf, 1) (BP., M)

Shimomura calls this Ext group the general chromatic F;-term.
1
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The limiting case as m approaches infinity is discussed by the second
author in [7]. In this paper we will determine the module structure
(over an appropriate generalization of k(1),) of

EXtP (4 1) (BPs, M)
in Theorem 6.1, which is closely related to the group
EXt%‘(m—i—l)(BP*? BP*/(p))

The structure of these two groups are described below in Theorems 6.1
and 7.1. Notice that our target Ext%(m+1)(BP*,BP*/(p)) is different
from the localized object, which is determined in Kamiya-Shimomura
[2].  Hereafter we will often abbreviate Extrg,i1)(BP, M) by
Extrmi1)(M) for a I'(m + 1)-comodule M.

We begin by recalling the analogous result for m = 0, which was
obtained long ago by Miller-Wilson in [4] (and reformulated in [6] as
Theorems 5.2.13, Corollary 5.2.14, and Theorem 5.2.17). Recall that
we have the 4-term exact sequence

(1.1) 0 — BP,/(p) — M} — M} — N{ — 0

obtained by splicing the two short exact sequences

0 BP./(p) —— M N 0,

and

0 N} M; N} 0.
JFrom (1.1) we see that Ext%(l)(BP*/(p)) is a certain subquotient of

For the first summand, we have (for p odd)
Extr() (M) = Extray (v ' BP/(p)) = K (1), @ E(hy0).
In particular we have
Extf)(M?) = K(1),{h1,0}.

It turns out that the image of Ext%(l)(BP* /(p)) into this group is
k(1).{h10}, which is the v;-torsion free component of Extll-(l) (BP./(p)).
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To describe Ext%(l)(Mll), we recall the elements z), € vy 'BP,/(p)
defined by

Lo = Uz,
— p P, —1
_ P p*—1 p?—p+1 p*+p—1, p*—2p

2
Th—1 (p=2)
and 1xp = k—1_ - for k > 3,

and integers a(k) defined by

a(0) = 1,
a(l) = p,

a(k) — {3-2%1 (p=2

>
pk+pk_1_1 (p>2 fOI'k_Q.

~— —

Then we have

Theorem 1.3. ([4]) As a k(1).-module, Exth(l) (M) is the direct sum
of
(a) the cyclic submodules generated by xi/vf(k) for k>0 and pts €
Z; and ‘
(b) K(1)./k(1)., generated by 1/v] for j > 1.

The odd prime case follows from the next proposition ([3] Proposition
5.4). We refer the reader to the original sources for the case p = 2.

Proposition 1.4. Let p be odd. Modulo (p, U%Jra(k)), the differential
d=nr—nL: v, BP,/(p) — vy, ' BP,/(p) ®pp, BP.(BP)
on Ty 18
vith for k=0,
d(xy) = Pl fork =1,
QUT(k)vép_l)piiltl for k> 2.

Before Theorem 1.3 was proved, the naive conjecture about
Ext%(l)(BP*/(p)) would have had the exponents a(k) being p* for all
k > 0. It was clear that

s k

vy” 0 1
5 Extpq) (M),
U1
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but the existence of “deeper” elements such as

2 2 2
P p*—1 p?—p+1 _  p*> —p p

a(2) p2+p—1

Uy Uy
3 3 2 3 2 2 3 2 _ 1 3_ 2 1

T3 0P — P pvp PP P, 9P Pt Pl pRept

_ 2 1 2 1 Y2 3 1 2
and ol 1
Uy vy

(and that of B2 /q(2) and Bepsjq(3) in Extr(l)(BP*/(p)) for s > 1) came
as a surprise, as did the fact that the limiting value (as k — o) of
a(k)/p* is (p + 1)/p (this limit is attained for p = 2 but not for odd
primes) instead of 1.

Using these results one can deduce

Theorem 1.5. For odd prime p, the group ExtF \(BP./(p)) is iso-
morphic to

1)*{ﬁspk/j:520,p+s,k20and0<j§as }@k hio},
where By, ; is the image of xz/v{ under the connecting homomorphism

d: Extr (Nl)—>ExtF (NO)

_{ (s=1)
andas(k)—{ ak) (s>1)

Our results (Theorems 6.1 and 7.1 below) have the same form as
Theorems 1.3 and 1.5, but with z;, and a(k) replaced by ) and a(k)
defined in (4.1) and (4.3), and with k(1), replaced by a bigger ring
v;%(l)* defined in (2.1). The a(k) are the same for all m > 0 (except
when m = 1 and p = 2) although the T show a slight difference
between the cases m = 1 and m > 1. The case m = 1 and p = 2
is different and has to be treated separately. For m > 1 there are no
special conditions for the prime 2. The asymptotic behavior of the
exponents is given by

Ak 3 2
i R _ P4
k—»oop p3—1

a slightly larger value than for the case m = 0. However for m > 0
there are no deeper elements in Ext%(m +1)(BP./(p)), i.e., no elements

of the form B\spk /; with pts and j > P
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We found a new form of periodicity in our statement with no prece-
dent in Theorem 1.3. For example, (except for p = 2 and m = 1) we
have

Bo-dhy = —of OO R T (B - )
for k > 5,
and ak) = pF+ptt+alk-3) for k > 4.

A similar result for the chromatic module Mj is obtained in a joint
work with Itsupei Ichigi [1]. There we get a similar periodicity with
period 4 instead of 3 when m > 5.

We obtained our result in the summer of 1999. On the other hand,
Kamiya-Shimomura [2] told us that they have determined all the struc-
ture of Extr,, 1) (M) in the fall of 1999 independently.

We are grateful to the referee for suggesting some corrections to an
earlier draft of this paper.

2. Prelimaries

For a I'(m + 1)-comodule M, consider the cobar complex

Clg(m+1) (M)v dn, )
{ }

n>0

which is determined by

Clmin(M) =T(m+1) ®@pp, -+ ®pp, T(m +1) @pp, M,

/

n—faztors
and dn 0 Cpyny (M) — ol (M),

T'(m+1)
Then Extr,4+1)(M) is the cohomology of this cobar complex. By
the change-of-rings isomorphism (cf. [6] Theorem 6.1.1), we have

Extrims1) (MJ) = Extra) (M ®pp, BP.(T(m)))

Extsn) (K (n)«, K(n).(T(m))),

111

where X(n) = K(n),®pp, BP.(BP)®pp, K(n).. This object is already
known by [6] Corollary 6.5.6.

In order to avoid the excessive appearance of the index m, we will
hereafter use the following notations.
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( w = p",
Vi = Ui,
ti = lmis
2.1 >
(1) iy = e
l/(\(n)* = K(n)«|[Uni1,- -\ Unaml,
L and k(n), = k(n)«[vnst,- -, Uniml,

where hy,; ; is the cocycle represented by tfnj i

Theorem 2.2. ([6] Corollary 6.5.6) If n < 2(p — 1)(m + 1)/p and
n <m+ 2, then

Extrom41) (M) %[A((n)*®E</fz” :1<i<n0<j Sn—1>.

In this paper we will need this result only for n = 2, for which it
covers the cases m > 0 for odd p and m > 1 for p = 2. For the case
p=2and m = 1, we need

Theorem 2.3. ([5]) If p=2 and m =1, then
EXtF(Q) (Mg)

= I?(Q)* ® P (E,oﬁm) /(ﬁfl + Ugﬁio) QF <E2,07/fl2,17 P) )

where p = hsg1 + vg’h&o.

This information allow us to determine the structure of Extp (1) (M7)
using the Bockstein spectral sequence. In fact, we use the following
convenient lemma.

Lemma 2.4. (cf. [3] Remark 3.11) Assume that there exists a E(l)*—

submodule B of Extr,, 1y (M{) for eacht < N, such that the following
sequence is exact:

1/ 5
O _— EXt?—w(m+1) (Mzo) e BO “u BO

5 1/v1 5
2 Extpigy) (M) B! “ Bt

where  is a restriction of the coboundary map

0: EXti“(mH) (M;) — EXtij(;H) (M) .
Then tAhe inclusion iy : B — Ext%(mﬂ) (M) is an isomorphism be-
tween k(1).-modules for each t < N.
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Proof. Because Ext%(mﬂ) (M}) is a v;-torsion module, we can
filter Bt by
B'(i) = {z € B": vjz = 0}
and Exth, (M1) by
E'i) = {& € Extp, ) (M]) : viz =0} .

Assume that the inclusion i is an isomorphism for k£ < t — 1 (the
t = 0 case is obvious), and consider the following commutative ladder
diagram where we abbreviate Ext,, 1) (M]) by H*(M).

-t — 2 Y M o B (i) = BYi-1) —— H' MY
| |
et ol 2 gt oM Y gty — Eli—1) —— H' MY
Using the Five Lemma, we obtain the desired isomorphism B(i) &
E'() (i > 1) by induction on 1. q.e.d.

In §3 and §4, we will define elements 7} € v, 'BP, for k > 0 (see
(4.1)) satisfying

552 = @\;Pk mod (pa Ul)?

and integers a(k) such that each 73/vf is a cocycle of for all
1 <t¢<a(k).

Using these notations, we can describe the structure of B° fitting
into the long exact sequence of Lemma 2.4. We have

Lemma 2.5. For m > 0,

$a®

B® = v 'k(1), {& k>0, s>0 and pts } @ vy K(1),/k(1),

is isomorphic as a %(1)*—m0dule to Ext%(mH) (M), if the set

37\8
{(5 (Ua_(kk)> : E>0,s5>0 and pts } - Ext%(m+1) (M3)

1
s linearly independent over

R = Z/(p)[?}g,’l}gl,v& s 7vm7vm+1}7

where 0 is the coboundary map in Lemma 2.4.
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Proof. All exactness of the sequence

1/v1 v 5
0 ——— Extiiniy M3 B° - B° EXti (1) Ms

is obvious, except Ker § C Im wv;. So we need to show only this
inclusion. Separate the R-basis of B? into two parts,

A:{%:kEOandpfs>O} and
U1

B—{%: kzO,ms>O,and1§€<6(k)} U {%:i>0}.
1 1

Then it is obvious that §(Zx) # 0 € Extyy,. 1y (Mg) for Ty € A, but
that 0(y,) = 0 € Extr,,,) (M) for y, € B. Thus for any element
z2 =3 a\Ba+, buy, of B (ay,b, € R), we have 6(2) = 37, axd(Zy).
The condition implies that all a) are zero when 6(z) = 0, and so
v Zu b,yu/v1 = z. This completes the proof. q.e.d.

3. Definition of the elements w; and w,

In this section we will introduce elements w3 and wy in (3.2) to
change the bases h; ; (i = 1, 2 and j = 0, 1) of Extp(m41)(M3) given in
Theorems 2.2 and 2.3. First we recall the right unit nz on ;.

Lemma 3.1. For any prime p and m > 1, the right unit
ng: BP, = T(m+1)/(p)

on the Hazewinkel generators are

(e (Ta) = Do+ U1;f71)2— vy, )
Nr (@\3) = @\3 + 122?17 — Ugwtl + Ulg — ?J:f wt2

+vywy (s, u ], —o}t)
(add v 12 for p = 2)
N 2 ~ o
U3 + 02%71’3 — vt + 01%2— v%vﬁ T mod (v3),
Dy + vt — o8t + ooty — bty mod (vy).

\ Ik (Us)
where wy(—) is the first Witt polynomial satisfying

O w) — (O, yt)p‘

p

wl(y17... 7yt,...):
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Now let

—~ RPN
w3 = Uy U3,

3.2 Py “1 N o~

(3:2) { Wy = vy (Vg — v3Wh) .

Using Lemma 3.1, it is easily shown that
Lemma 3.3. The differentials
d=ng—1nz vy BP./(p) — vy BP./(p) ®@pp, T(m +1)

on the above Wy '’s are

~ 2 e~ _ 1 a—
d(@s) = & — b ' + vyt — iy o) mod (v3),
R 2 _ —~ 2 2 1~
and d(@y) = 1 — vy Wb + 08P gt — o mod (vy)

Then we can change the K (n),-module basis of Theorems 2.2 and
2.3 using Lemma 3.3. In particular, we have

Corollary 3.4.

EXt%(m-i—l) (MQO)

12

3171,};172,5272,/};273} forp>2,orp=2andm > 1,
ﬁl,la h1,2,/ﬁ2,2, h2,3,p} Jforp=2andm=1.

When we compute the connecting homomorphism § of Lemma 2.5,
this base-changing method actually works well to determine the struc-
ture of Extg(mﬂ)(Mi) for a general n. In fact, Kamiya-Shimomura [2]
and Shimomura [9] recently determined the structure of Ext%(m (M)
under some conditions on m and n in a similar way.

4. The elements 7}

In this section, we will define elements 7}, € v, 'BP, (k > 0) to be
used in Lemma 2.5 except for p = 2 and m = 1. The case p = 2 and
m = 1 will be treated in the next section.
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Define elements Z), € v, ' BP, (k > 0) inductively on k by

( Ty = s,
/33\1 - 53’\;8,
Ty = f’l’—vl Lot E, — vafﬁg,
(4.1) Too= &
3 — {fg+y\1+y2/\ (m > 1) |
74 —i—ylkj Qyi;z( =1and p> 2)
Ty = Tp—v v ﬁfiié(/m\k—?) — Th_y)
L for £ > 5,

where « =p+1and f=p’w —p—1,and §; ( = 1,2,3) are given by

( G = U14+p —p°—p gzﬁﬂow + o A 4p? Py, P fpzvg%ij\l
U119+p— 2}éerl)B pi+1 p/\ _|_U1 pt+p3 —p @i
WP 4 4p3 (ﬂ p)p°, p* ~p
(4'2) ~ 4+p 1;0 (ﬁ p)p? pviw37
Yo = —vf Uy Uz T2,
s = o+t UP A 4p3— Uép +1)8—p +1:/L‘\23,‘\0
\ +Up +p? éﬁ p)ﬁ@@g'

Define integers a(k) by
" for 0 < k<1,

(4.3) ak) =< pla for 2 <k <3,
pFla+a(k —3) for k> 4.

Notice that the integers a(k) are equivalently defined inductively on
k by

(k—1) for 2 < k=0 mod (3),
k

(4.4) Wf):{p% —1)+p for2<k#0 mod (3).

Lemma 4.5. Unless p =2 and m = 1, the differentials

d=nr—n:vy BP./(p) — vy ' BP./(p) ®pp, T'(m+ 1)
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on the above T} ’s are

d@o) = nt mod (v),

A7) = LV mod (v} W)
d(zy) = —v?@)v;p?j mod (v} ")
d(73) = —vl( ) 7p2?’3 mod vH“(?’) ,
@) = —of T (@)

mod <vi+a(k)> for k> 4.

Proof. By Lemma 3.1 we have

@) = nt mod (v}*),
(46) ~ 2 2w
d(zy) = o] mod (v]¥).

Moreover, we find that

d(z%) = p?’g mod (v} Pl “),
d(—v}f@g) = —vlz(?fa —vzﬁﬂtq’ vPuy vép 1)pt7’2
+vivy tQ ) mod (vy +3p>7
and d(—v¥ 1 V) = =P v?“tﬁj mod (v ot h.

Summing the above three congruences we obtain

d@) = —of Tu"@ e E) mod (of )
= —vl() _p?ﬂ mod (v +2p),
and d(@3) = —o"@yy? %72)3 mod (v} +2p)

(4.4) suggests that we should calculate d(Z}) modulo (vf+a(k)) rather

than modulo (vﬁa(k)) when we apply induction on k > 4. For k = 4,

we find that modulo (U%+6(4))



12 HIROFUMI NAKAI AND DOUGLAS C. RAVENEL
(d a(4)—p, —p3 ~p?
(v) U2 wy ) . ,
= U1(4) -p —p (%79 Uzp pw%?’)
2 2
—l—U Up %71) §B+P)P ?2) )
I~ _ 32
d(vf(4) 2pv2p P vg x1>
— U1(4)*p02—p —p? zow;@2
2 /\
(4.7) d(—vtW 8@ 7Pyp 52 :172)2 o
= o — ol )
a(4) P, (B p)p?

d( Ul

U3 w3) ,
a(4) Py, (ﬁ p)p? p (%7) ﬁHt%—i—vf?}Q_p%’)

a4 1 (p2+1 ﬁ 341 ~
d(—vf( )—p— (p )B—p g 900)

2
_Ul( )—p gp +1)B—p +1U§ %11)

\

Summing these congruences we obtain

. G(4)—p —p3opt ~
d(yl)_ (4)-p ) ()pﬁ(zp pth_i_pp%?J)

= vl /02 2 Ul 1)2
mod ( 2+a(4)>.
On the other hand, we find that modulo (v; ")

i(G) = UI( )Ugﬁ p—p ngQ (m >2),
v _'Ul Uéﬂ o p (tl _'017)2 %72)2) (m=1).

In the m > 2 case, we see that

v

d(zy) = _Ua(4) pQﬁA(p—l)p?)Z
= Uf “ob ’HAP 1)pd( 1) mod ( 2+a(4)).

In the m = 1 case, we must modify the element 7, into 73 as defined

n (4.2). We find that

( 4
d(vl() p ( U 2 2 3 2
() Py, (6 p)p of (le) B+1¥77+U;1902—pfg)

mod (vf(4)+p ) :

EUl

d(v1(4) p— 1Uép +1)8-p>+1 g

o~ _ 2 _
= v?(4) pvgp +1)8—p

To)
ggzl) mod( Q(4)+p? p1>'

Summing the above congruences we obtain
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d(ys) = 211?(4)113%_”3_%?%’2 mod <vf+a(4)) .

Consequently, we obtain the desired congruence of d(z4) in m = 1
case, too.
For k > 5, assume that

pF%a p’“*g’ﬁ/\p—ld(/x\k_zl)

d@1) =~ b ) pratehy,

mod (v]

and denote Tj, — @}_, by Zx. By definition (4.1), we note that zj, = 0
for k = 0 mod 3. In case that k£ # 0 modulo 3, we have

~ k—1 k=273 _ 1~
Zr = —vb “vb Bxifgzk_g for k > 5.

Notice that Zj_3 is divided by Ufz_l for k = 5, by vf(p+1)(p2_1) for
k = 7, and by vsz%a for £ > 8. On the other hand, by inductive
hypothesis we see that d(z7_3) is divisible by vf2+p for k =5 and by

k—4
v] “for k > 7. So we have

d(F 3%s) = d@_3)nr(Zi-s) + T_yd(Zi—s)
= @7M(G_s)  mod (ST,

Therefore the differential on Zj, is

k—1 k—2
ol N— P o, ptTEB g ap—1 2
dzp) = —v] “v§ “d(T}_3%k-3)
k—1 k=273 _ 1 ~ 24a(k
= o ) PR A s) mod <vl+a( )> .

On the other hand, by inductive hypothesis we have

~ k—1 k=23 _(p—1 ~
d@_) = —of b PP At )

k—1 k—2 ~
~p—1 ~ 2+a(k

= —of b B:rif?)d(xﬁle) mod (vl o )> :

Summing the above two congruences we obtain

d@) =~} H (@) mod (ofY)

as desired. q.e.d.
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5. The case p=2and m=1

In this section we recover some results of Shimomura [8] using the
basis obtained in Corollary 3.4.

Define the elements 7 € v, 'BP, in the same fashion as those in
(4.1) for 0 < k < 3, and

o~ /\2 o~ ~
Ty = 23+ +Ys
5 1 o~ o /\g 5,2k:2 3,2/@72/\ o~ ~92
(5.1) T = Ti_+vi? 05t Tp_o(Tp—2+Th_g)
for k>5
— )

where 7 is

~ 14, 14 23, 25 25,8 8~ 25,25 ~ 26,10, ~2
Ys = U] Uy T3 + 077057 T1 + 0] VUL + U705 W3 4 V] Uy Wy

Note that the construction of Zy (k > 4) in this case is 2-periodic,
although it is 3-periodic for the other cases. We are surprised at this
difference.

Define integers a(k) by

2k for0 <k<1,
(5.2) a(k) =< 3281 for 2 <k <3,
5-282 4Gk —2) for k> 4.

This gives a(0) = 1, a(1) = 2, a(2) = 6, a(3) = 12, a(4) = 26, and so
on. Notice that the integers a(k) are equivalently defined inductively
on k by

Then we have

Lemma 5.4. For p =2 and m = 1, the differentials
d=nr—nL:vy ' BP,/(2) — vy, BP,/(2) ®pp, [(m + 1)

on the above T} ’s are
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() = b mod (v7),

d(zy) = vf@)ﬁl mod (v M)

d(zy) = U1( ) vy 2t mod vi+a(2) ,

d(zs) = ( ) vy 418 mod Ui+a(3) ,

dzy) = v5 PG 0T ) mod (o) T for k> 4.

Proof. The k = 0 and k = 1 cases follow directly from Lemma
3.1 (cf.(4.6)). For k = 2 case, we find that

d(7}) = Ui"% mod (%),
dvio?) = B +v Pl —i— vlv2 2 + 0203t mod (v19),
d3vdzy) = vlSt? 4 vTv8 mod (v}).

Then we have

d(@o) = vyt + oloSt 4+ vduy2dtt mod (v))
= b0, %) mod (v]).
d(T5) = vl mod (vi).
For k = 4 case, we obtain the same consequences as in (4.7), but

with the third one replaced by

18, 22 24, 2072 25, 287 26, 20, 271 27
d(v;°03° ) = v vy ty + v7v5 t + v vy Vit mod (v]"),
and so
(G 8716 287 26,10, 474 26, 20 2%21 d (v
(1) = U1 U2 ly +Ul Uyt U7 Uy Ugly + 1T U; U mod (vi").

On the other hand, we find that

APPT) = PR+ BT+ R
d(v3edT,) = U%E)U%E’?l N .
(v’ @) = v (v5oRt: + vyt + v st + v3'E3),
d(vilizs) = vlog,
dwPvsusz) = vPuSuSt
modulo (vi7), so we have
~ N\ 25 287 26 20 274 27
d(ys) = 0705ty + v1ov3 Vit mod (vi").

Using the above congruences, we have
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d(zy) = vf%;%g*%

= v %v5d () mod <v}+a(4)).

(5.3) suggests that we should calculate d(7)) modulo (vara(k)) rather

than modulo (vi+a(k)) for k > 5 when we apply induction on k.
Denote Ty + 72, by Z;. By definition (5.1) we note that z, = 0 for

odd k. In case that k is even, we have

~ k=2 3.ok—2
Zp = U?2 1)3’2 Th_22k—_2 for k£ > 5.

Notice that Zj,_ is divisible by v!* for k = 6 and by v52" for
k > 8. On the other hand, by inductive hypothesis d(T)_») is divisible
by v7*? . So we have

d(@p-22k—2) = d(@p—2)Nr(Zk—2) + Th—2d(Zk—2)
= Tpo2d(Zk_o) mod (Ufﬂ(k_m).

Therefore the differential on z, is

~ 9h—2 gok—2 .
d(z,) = v? 21}5’ 2 Qd(xk,gzk,g)
= P20 R ad(Bis) mod (v%JFa(k)).

On the other hand, by inductive hypothesis we have

~2 — 5.2k =2 3.90k=29k=2 5 ~9 24-a(k)
d(T;_,) = v U5 vy d(Ty_s) mod (v

because 2(14+a(4)) = 2+a(5) and 2(24+a(k—1)) > 2+a(k) for k > 6.
Summing the above two congruences, we obtain

d(@) = 02 Y TR ad(Tho) mod (va’a(k)) :

as desired. q.e.d.
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6. The structure of Extp,,, ) (M])

Theorem 6.1. As a v;l/l%(l)*—module, Ext%(mﬂ) (M) form > 1 is
the direct sum of

(a) the cyclic submodules generated by i’\i/vf(k) fork >0, s >0
and pts ; and '
(b) vy 'K (1)./k(1)., generated by 1/v] for j > 1,
where Ty ’s are the elements defined in (4.1) and (5.1).

Proof. First we prove the theorem except for thep = 2and m = 1
case.
By Lemma 2.5 it suffices to show that the set

D= {5 (@ Uf<k>> : k>0, 5> 0and pis } C Exthinr) (MY)
is linearly independent over
R = Z/(p)[UQ,U;1, U3y -+ ,Um,Uerl}-

It follows from Corollary 3.4 that Ext%(m+1)(M§) is the free K(2),-
module on the four classes represented by

2 2 3
.27},
so its basis over R is

~ ~ 2 2 3
{odh, o4, 058, oy s = 0}

Now define integers /b\(k) and ¢(k) for k > 0 by

R 0 for0<k<1,
b(k) =< -t for 2 < k <3,
P28+ b(k —3) for k >4,
where 3 = p*w — p — 1 as before, and
) = 0 for 0 < k <3,
W= (p=1)pF3+28k —3) for k> 4.

Then Lemma 4.5 implies that

? for k=0,
~ p? _
N a A& t fork>0and k=1 d 3,
d(zy) = :I:vl(k)vg(k)%(k) ,?1)2 o o o

ty for k>0 and £ =2 mod 3,
2?2’3 for £ > 0 and £k = 3 mod 3
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1+a(k) N s : :
modulo (v , where a(k) is defined in (4.3). Since

d(T}) = sty ld(@) = 5087 d(@) mod (v ),

it follows that

(® for k=0,
@ for k>0
e and k£ =1 mod 3,
X Dk ~(s—1)pF+3 2
(6.2) & ( a(’;)> e A S G S S )
Uy [ and k£ = 2 mod 3,
2 for k>0
and k£ = 3 mod 3.

In order to show that these elements & (:/EZ /U?(k)> (with £ > 0 and

s > 0 not divisible by p) are linearly independent over R, it suffices to
observe the exponents of vy in the right hand side of (6.2).

So we consider the sets Dy = {05 ' : s> 0 and pts} for k = 0,
and Dy, = {@éS—l)pk+c(k) : k= ko + 3ky, s >0 and pts} for a fixed ko
(1 < ko < 3). Since the integer ¢(k) is

k)= (p—1DpA+p*+ -4 p?)

for k = ko + 3k1 > 4 with 1 < kg < 3, we see

pr

C14p4p?
If (s — 1)pF +2(k) = (t — 1)p* +¢(¢) with k = ¢ = ko modulo 3, then it
follows that £ = ¢ and hence s = ¢. Thus all the entries in the sets Dy
and Dy, (1 < ko < 3) are disparate, respectively.

k:-i-l)‘

(s — 1)p" +2(k) = sp* mod (p

In the p = 2 and m = 1 case our argument is the same subject to
the following changes. The integers b(k) and ¢(k) are defined by

R 0 for0<k<1,
(k)= -2 for 2 <k <3,
3:-282 4 p(k—2) for k>4,

and

R 0 for 0 < k <3,
k) =\ 2k=2 L 3k —2) for k > 4,
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which is
for 0 < k < 3,
Ck) =4 3(2"2—1) foreven k>4,
8(2"*—1) forodd k> 5.
Then (6.2) gets replaced by

w O

2 for k =0,
S ﬁ _ U/b\(k)@\(s—l)pk—l-?:\(k) ?{ for k=1,
2 ® 22 13 for k> 0and k= 0mod 2,
8 for k>1and k=1mod 2,
and we can argue for linear independence as before. q.e.d.

7. The group Ext%(m+1)(BP*/(p))

In this section we will use the structure of Ext%(m H)(Mll) given in
Theorem 6.1 to determine the group Ext}(m+1)(BP*/(p)). As in the
case m = 0, this group is the direct sum of subquotients of Ext%(m 1) (M)
and Ext%(mﬂ)(Mll).

In Lemma 7.2 we will show that the former subquotient has the same
form as in the case m = 0, i.e., it is %(1)* {E,o}- We will also see that

unlike in the classical case, the element vy 13170 supports a nontrivial
ds in the chromatic spectral sequence.
The summand vy K (1), /k(1), of Ext%(mﬂ)(Mll) is the image of
0,0 1,0
dy: By = EXt(ll(m—l—l)(M{)) — B = Ethq(m+1)(M11)7

so it maps trivially to Ext%(m +1)(BP./(p)). The kernel of the map

dy: B} = Extg(mﬂ)(l\/[ll) — B = Exth(m+1)(M12),

consists of all elements, each of which does not have any monomial
with negative vq-exponent. We will see in Corollary 7.7 that these are
the elements

— e Ext%(m+1)(Mf) with £ >0, s > 0, pts, and 0 < j < p*.

Combining these results we get
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Theorem 7.1.  For any prime p and m > 1, the group

EXt%(mH)(BP*/(p))
s 1somorphic to

7{;\(1)* {Bspk/j :5>0,pts, k>0 and 0 < j < pk} @E(l)*{ﬁm},
where Bspk/j 18 the image of /m\i/v{ under the connecting homomorphism
0+ EXtp 1) (V1) — Extp1) (V).

First we consider the subquotient of Ext%(m Ly (MD).

Lemma 7.2. For any prime p and m > 1, the group E%' in the chro-

matic spectral sequence is %(1)*{&70}. Moreover there is a nontrivial
differential in the chromatic spectral sequence,

~ z
-1 .
d2 (Ul hl,O) —  p+l pw—17
v Uy
B S P
where z = vy, — vjv, Us.

Proof. We use the chromatic cobar complex

{CCF(m+1)(BP*/(p>>7 dc}nzo
given by

CO]?(m—}-l) (BP*/(p)) = ®s+t:n CS(M{/)7
de = de + (—1)'d; : C*(M}) — C*(M{) & CH (M),
where d, : C*(M!) — C*(M|™) is induced by the composite map
M} — N{ttP — Mt and d; : C5(M}) — C*T1(M}) is the differential
in the cobar complex (see [6] Definition 5.1.10).
By Theorem 2.2, we have

Y = Bxth ) (MF) 2 K (1), {hio }

The element /1’2170 is represented by 1, in the cobar complex and is clearly
a permanent cycle in the chromatic spectral sequence. We need to
show that v] "o does not survive to E%L. If it does, then the element
ELO € Ext%(m +1)(BP./(p)) is divisible by v; and therefore has trivial
image under the composite

Bxt i) (BP./ (1) = Bxth ) (BP./ ) = Bixth i) (03 BP./T).

The target group was computed in [5], and the element in question is
one of its generators.
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For the chromatic differential dy, we have

~

d(z) = vfvb* 't mod (™).

It follows that in the chromatic cobar complex CCr(,11)(BP./(p)) the
differential

d.: C'(M7) ® C(My) — C*(MY) & C(My) & C°(My)

satisfies
17 %\1 121
dc (’Ul tl) = U_ c C (M1>,
1
p vy 2 B 4 N 2
c 1)210+1 - o U}17+1,U§w71
e CH(M}) @ CO(M}),
VTP z
—17 2 o
S0 de (Ul 1+ W) = U‘;&lvgwfl'

In terms of the double complex associated with the chromatic resolu-
tion, we have the following picture:

PN de t
s=1: vt ——— =
U1
d;
1—
0 vy ™z d, z
s=20: —_— +1 pw—1
1 p y4
i CIR
t=20 t= t=2

This means that in the chromatic spectral sequence we have the indi-
cated dy. Its target must be nontrivial in Ejy, i.e., it is not in the image
under

dy 0 By = Ext, (M]) — E7" = Extp i, ) (M),

because otherwise v; 1?11,0 would survive to E%!, contradicting the non-
divisibilty result above. q.e.d.
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Now we turn to the vj-torsion in Ext%(m+1)(BP*/(p)). Let c/l\(k) be
the maximum exponent of vy satisfying

~ d(k
Ty =70, mod (p, v?™).

~ ~

(if Zx, = @} _,, then we set d(k) = 00.) Thus the integers d(k) (k > 5)
are given inductively by

(7.3) d(k) = p" o+ d(k — 3)
with d(2) = p? — 1, d(3) = oo, d(4) = p* + p? — p? — p unless p = 2 and
m =1, but

~

(7.4) d(k) =522+ d(k — 2)
with d(3) = 0o, d(4) = 14 in the case p =2 and m = 1.
Lemma 7.5.  For any prime p and m > 1,

T =75 mod (p, vfk_4d(4)).
Furthermore, T, = 22" modulo (2,1}?7%(6)) in the case p = 2 and

m = 1.

Proof. From (7.3) and (7.4) it follows that d(k) > p*~*d(4) for

o~

k > 5 unless p = 2 and m = 1, and that d(k) > 2¥7%d(6) for k > 7 in
the case p = 2 and m = 1. Therefore it is obvious that

o~ o~ o~

min {d(k), pd(k — 1), pd(4), p*d(3) |
_ pk_4c/i\(4) _ pk +pk—1 _ pk—2 _ pk—3

unless p =2 and m = 1, and

min {E(k), 2d(k —1),---,2"75d(6), 2’“‘%?(5)} = 2F67(6) = 94 . 2+

when p = 2 and m = 1. This completes the proof. q.e.d.

Lemma 7.6. Let 75/v] (j < a(k)) be one of the generators of
Ext%(mﬂ)(Mll). Then the image of this element by the map
Extp (1) (M) — Extp o, ) (N7)

is non-trivial if and only if k > 2 and p* < j < a(k).
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Proof. We may assume that & > 2. From definition of Ty, it
follows that

k—2 k k k—2 k—2 k—2 k—1 k—1
-p Bp T ~p

x5 = v —f vyt Y +vfkv2_p vy mod (p)
Then, using the fact that
2(p" —p*%) > a(k) fork=2or3
2(pF —p*2) > pFd(4) for k >4
and Lemma 7.5 we have
. _ I k= —2_ k— k=1 _k—
,x\z — i}\;pk - S@ég 1)p (Ufk pk zvgpk 2U§k 2 _vkaQ pk 1U§k 1)

modulo (p,v]) for k = 2 and 3, and modulo (p, vfk_4d(4)) for k > 4.
In the right hand side the first and the second terms do not have a
negative vg-exponent, but the third term in 5 /v] is

ko k=1 _(s—1)pk gph—1
sl v, P vé p 0

vy
which may be mapped non-trivially to N2. Unless p = 2 and m = 1,
we notice that p"~4d(4) > p*. Then we observe that 73 /vl is mapped
non-trivially to N7 if and only if j > p* except when p = 2, m = 1 and
k> 4.
On the other hand, in the p = 2 and m = 1 case we find that

o~

7, = 227" modulo (vfk_%(ﬁ)) (k > 6) and

S 22 14, 14~
Ty = X3+ VU5 X3
— =16 12,244 14, 148 16,,—8-8 18
= Uy + 0705 Uy 4 vy 0y Uy + vy vy Uy mod (2, v;°),
so that
/\2k74 _ /\Qk 2k _2k71,\2k71 3.21672 3.2k71,\2k72 7.21673 7.2k73,\2k71
Ty = vy, +v] v, vz F vy [ Vg  + v Vg Vg

modulo (2,092, Notice that 2¢=6d(6) > 9 - 2¢=3 > 2% and that we
may ignore the terms except the second one, because the other terms
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don’t have a negative vo-exponent. Then we can complete the proof in
similar way as the above. q.e.d.

Corollary 7.7. The only elements of Eil’o which survive to EX° are

a:_? for s >0, pts, k>0 and 0 < j < pF.
1

Proof. The summand vy 'K (1),/k(1), of EX° is killed by the
chromatic differential

dy = EXUP g 1) (MT) — Extp, 0y (M)

Joining this result with Lemma 7.6, we have the desired result.
q.e.d.
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