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Abstract. There are p-local spectra T (m) with BP∗(T (m)) = BP∗[t1, . . . , tm].

In this paper we determine the first nontrivial differential in the Adams–
Novikov spectral sequence for each of them for p odd. For m = 0 (the sphere

spectrum) this is the Toda differential, whose source has filtration 2 and whose
target is the first nontrivial element in filtration 2p + 1. The same goes for

m = 1, and for m > 1 the target is v2 times the first such element. The

proof uses the Thomified Eilenberg-Moore spectral sequence. We also estab-
lish a vanishing line and the behavior near it in the Adams–Novikov spectral

sequence for T (m).

This paper concerns the Adams–Novikov spectral sequence for the spectra T (m)
introduced in [Rav86, §6.5]. We begin by recalling their basic properties. For each
prime p and natural number m there is a p-local spectrum T (m) such that

BP∗(T (m)) = BP∗[t1, . . . , tm] ⊂ BP∗(BP )

as a comodule algebra over BP∗(BP ). It is a summand of the p-localization of the
Thom spectrum of the stable bundle induced by

ΩSU(k)→ ΩSU = BU

for any k satisfying pm ≤ k < pm+1. These Thom spectra figure in the proof of
the Nilpotence Theorem of [DHS88]. The T (m) themselves figure in the method of
infinite descent, the technique for calculating the stable homotopy groups of spheres
described in [Rav86, Chapter 7], [Rav04, Chapter 7] and [Rav02].

In particular T (0) is the p-localized sphere spectrum. T (1) is the p-localization
of the Thom spectrum of the bundle induced by the map

ΩS2p−1 → BU

obtained using the loop space structure of BU to extend the map S2p−2 → BU
representing the generator of the homotopy group π2p−2(BU).

Let (A,Γ) denote the Hopf algebroid (BP∗, BP∗(BP )); see [Rav86, A1] for more
information. A change-of-rings isomorphism identifies the Adams-Novikov E2-term
for for T (m) with

(1) ExtΓ(m+1)(A, A)

where
Γ(m+ 1) = Γ/(t1, . . . , tm) = BP∗[tm+1, tm+2, . . .]

This Hopf algebroid is cocommutative below the dimension of t2m+2, so its Ext
group (and the homotopy of T (m)) in this range is relatively easy to deal with. We
will denote this Ext group by ExtΓ(m+1) for short.
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The following was proved in [Rav86, 6.5.9 and 6.5.12].

Theorem A. Description of Ext0
Γ(m+1). For each m ≥ 0 and each prime p,

Ext0
Γ(m+1) = Z(p)[v1, . . . , vm],

and we denote this ring by A(m). Each of these generators is a permanent cycle,
and there are no higher Ext groups below dimension |vm+1|−1. Hence π∗(T (m)) ∼=
A(m) in this range.

Our next result concerns Ext1
Γ(m+1). Before stating it we need some chromatic

notation. Consider the short exact sequences of Γ-comodules (and hence of Γ(m+1)-
comodules)

(2) 0 N0 M0 N1 0- - - -

and

(3) 0 N1 M1 N2 0- - - -

where

N0 = BP∗,

M0 = p−1BP∗ = Q⊗ BP∗,
N1 = BP∗/(p∞) = Q/Z(p) ⊗ BP∗
M1 = v−1

1 BP∗/(p∞),

and N2 = BP∗/(p∞, v∞1 ).

Let

δ0 : ExtsΓ(m+1)(N
1) → Exts+1

Γ(m+1)

and δ1 : ExtsΓ(m+1)(N
2) → Exts+1

Γ(m+1)(N
1)

denote the associated connecting homomorphisms.
We will write elements in N1 and M1 as fractions

x

pc

where c is a p-local integer and x ∈ BP∗ ( x ∈ v−1
1 BP∗ for M1) is not divisible by

p, i.e., the fraction has been reduced to lowest terms. If pc is divisible by pe and
not by pe+1, then it is understdood that pe kills this element.

Similarly elements in N2 are written as fractions
x

pcve1
with c ∈ Z(p), e > 0 and x ∈ BP∗ is nontrivial mod I2. This element is killed by
(pc, ve1).

The long exact sequence of Ext groups associated with (2) has a surjective con-
necting homomorphism

Ext0
Γ(m+1)(N

1)→ Ext1
Γ(m+1).

The algebraic statement in the following was proved in [Rav86, 6.5.11] while the
topological part is proved in [Rav02].

From now on we will denote vm+i by v̂i for i > 0 and pm by ω.
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Theorem B. Description of Ext1
Γ(m+1). In all cases except m = 0 and p = 2,

Ext1
Γ(m+1) is isomorphic (via δ0) to the A(m)-submodule of N1 generated by the set{

v̂i1
ip

: i > 0
}
.

Each of these elements is a permanent cycle, and there are no higher Ext groups
below dimension p|v̂1| − 2. We will denote δ0( v̂1

p ) by α̂1. For m = 0 we will use
similar notation without the hats.

For higher Ext groups in low dimensions, we need the following notation for
elements in Ext2

Γ(m+1). In each case the indicated element of N2 is invariant, i.e.,
it lies in Ext0

Γ(m+1)(N
2). Let

(4)



b̂1,0 = β̂1 = δ0δ1

(
v̂2

pv1

)
β̂i = δ0δ1

(
v̂i2
pv1

)
b̂1,1 = β̂p/p = δ0δ1

(
v̂p2
pvp1

)

θ̂ = δ0δ1

(
v̂3

pv1
− v2v̂

p
2

pv1+p
1

+
vpω2 v̂1

p2v1

)

θ̂′ = δ0δ1

(
v̂1v̂3

pv1
− v2v̂1v̂

p
2

pv1+p
1

+
vpω2 v̂2

1

2p2v1

)
Again for m = 0 we will use similar notation without the hats. The elements θ and
θ′ are not defined.

The element θ̂′ is in the Massey product

〈α̂1, pι, θ̂〉

where ι ∈ π0(T (m)) denotes the fundamental class. Note that even though the
preimage of θ̂ has order p2 in N2, θ̂ itself has order p since the preimage of pθ̂ is
the coboundary (in the chromatic cobar complex [Rav86, 5.1.10]) of

v−1
1 vpω2 v̂1

p
.

Let B denote the A(m)-submodule of N2 generated by b̂1,1 and θ̂, and let C be
the one generated by

(5)

{
v̂j1v̂

i
2

ipv1
: 0 < i ≤ p, 0 ≤ j ≤ p2 − pi

}
.

For the 2-line and above, we have the following, essentially proved as [Rav86,
Theorem 7.1.13], [Rav04, Theorem 7.2.6] and [Rav02, Theorem 4.5]. Each of them
determines Ext2,t

Γ(m+1) for t < p2|v̂1|. This is extended to t < (p2 + p)|v̂1| in [NR,

Theorem 7.12], where θ̂ and θ̂′ are denoted by θ̂0 and v̂1θ̂0 respectively.
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Theorem C. Description of Ext2
Γ(m+1) in low dimensions. For m > 0,

Ext2,t
Γ(m+1) for t ≤ 2p2 − 2p + p2|v̂1| is isomorphic (via δ0δ1) to B ⊕ C as de-

fined above in (5). Moreover Ext2+ε+2k
Γ(m+1) in this range (for ε = 0, 1 and 2k + ε > 0)

is isomorphic to α̂ε1b̂
k
1,0C.

We are now ready to state the main result of this paper.

Theorem 1. The first differential for T (m) for m > 0. The first (lowest
dimensional) nontrivial differential in the Adams–Novikov spectral sequence for the
spectrum T (1) at an odd prime p is

d2p−1(θ̂) = α̂1b̂
p
1,0

where α̂1 is an in Theorem B, and b̂1,0 and θ̂ are as in (4).
For m > 1 the first nontrivial differential in the Adams–Novikov spectral sequence

for the spectrum T (m) at an odd prime p is

d2p−1(θ̂′) = v2α̂1b̂
p
1,0.

Corollary 2. The first nontrivial group extension in T (m) for m > 1. For
each m > 1 the first nontrivial group extension in the passage from the E∞-term
of the Adams–Novikov spectral sequence to π∗(T (m)) is

pθ̂ = v2b̂
p
1,0.

up to unit scalar multiplication.

For m = 0, the corresponding statement is the Toda differential,

d2p−1(βp/p) = α1β
p
1 = α1b

p
1,0

originally proved by Toda in [Tod68] and [Tod67] and stated as [Rav86, Theorem
4.4.22].

Our proof is the opposite of Toda’s in the following sense. For all m the first
differential occurs in the smallest dimension where there is a potential source and
target with compatible bidegrees. Toda shows that his potential target, α1β

p
1 ,

vanishes in homotopy, the first instance of his “important relation.” It follows
that the corresponding element in Ext must be killed by a differential, and there is
only one possible source. We show that for m > 0 our source cannot represent a
homotopy element. It follows that it supports a nontrivial differential, and there is
only one possible target.

Toda’s target is on the vanishing line described below in Theorem 3, i.e., it is the
first element in filtration 2p+ 1. The same is true for our target when m = 1, but
for m > 1 the first such element does not lie above an element on the 2-line with
the right bidegree. Its product with v2 is the first one that does and is therefore
the first potential target.

For m = 1 the dimension of the element θ̂ (the source of the differential) is 154
for p = 3 and 1238 for p = 5. For p = 3 this Ext group and the first differential are
illustrated for m = 1 and m = 2 in Figures 1 and 2 respectively.

The following vanishing line result is needed to prove Theorem 1 and may be of
independent interest.
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Theorem 3. The Adams-Novikov vanishing line for T (m). In the Adams–
Novikov spectral sequence for T (m), Es,t2 = 0 for

t < (pω − 1)
{
ps for s even
(ps− p+ 2) for s odd.

Moreover each element for s ≥ 2 and

t < (pω − 1)
{

(ps+ 2) for s even
(ps− p+ 4) for s odd.

is the product of a monomial in α̂1 and b̂1,0 with an element in A(m)/I2. In
particular the first nontrivial element in Es,∗2 is b̂[s/2]

1,0 α̂
s−2[s/2]
1 .

This will be proved at the end of the paper.
The first element in Ext2

Γ(m+1) not having the form described above is the image
of

v̂1v̂2

pv1
,

which is in the Massey product

〈α̂1, pι, b̂1,0〉.

To prove Theorem 1 we use certain cohomology operations in T (m)-theory for
m > 0, i.e., maps

T (m)
r1−−−−−→ Σ|t1|T (m) and T (m)

rp∆m−−−−−→ Σp|tm|T (m)

derived from the splitting of T (m)∧T (m). They have properties similar to Steenrod
and Quillen operations, but they commute with each other. These operations do
not exist for m = 0, so the method used here cannot be used to establish the Toda
differential.

Lemma 4. Two commuting Quillen operations in T (m)-theory.
Let I = (i1, i2, . . . , im) be a sequence of m nonnegative integers, and let tI =

ti11 . . . timm . There are operations

rI ∈ T (m)|t
I |(T (m))

dual to the elements
tI ∈ T (m)|tI |(T (m))

where

T (m)∗(T (m)) = π∗(T (m))[t1, . . . , tm],

and ti maps to the element of the same name in BP∗(BP ).
In particular let r1 and rp∆m be the duals of t1 and tpm respectively. Then

r1rp∆m
= rp∆m

r1.

Proof. We can compute T (m)∗(T (m)) using the Atiyah–Hirzebruch spectral se-
quence with

E2 = H∗(T (m);π∗(T (m))) = π∗(T (m))[t1, . . . , tm].
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b̂1,0 b̂1,1 θ̂β̂2

b̂21,0 b̂1,0β̂2

b̂31,0

Figure 1. The Adams-Novikov E2-term for T (1) at p = 3 in di-
mensions ≤ 154, showing the first nontrivial differential. Elements
on the 0- and 1-lines divisible by v1 are not shown. Elements on
the 2-line and above divisible by v2 are not shown. Vertical, hor-
izontal and diagonal lines indicate multiplication by p, v1 and α̂1

respectively.

We know from Theorem A that π∗(T (m)) is concentrated in even dimensions below
dimension |v̂1| − 1. It follows that each ti is a permanent cycle and the spectral
sequence collapses, so the Hopf algebroid T (m)∗(T (m)) is as claimed. The map

T (m)∗(T (m))→ BP∗(BP )

is monomorphic through dimension |tm|, so the coproduct on ti ∈ T (m)∗(T (m)) is
determined by the coproduct on ti ∈ BP∗(BP ).

The commuting of the two specified operations follows from the fact that the
only tI having either t1 ⊗ tpm or tpm ⊗ t1 in its coproduct expansion is t1tpm, which



THE FIRST ADAMS-NOVIKOV DIFFERENTIAL FOR THE SPECTRUM T (m) 7

s

6

0 100 200 300 400 500

t− s -

0

1

2

3

4

5

6

7











q q q q q q q q q qq q qqα̂1

q q q



















qqq
















qq qq

q







q��

CCO
q

q







q q
q q



















q q
q







q

b̂1,0 b̂1,1 θ̂ θ̂′β̂2

b̂21,0 β̂2b̂1,0

b̂31,0

Figure 2. The Adams-Novikov E2-term for T (2) at p = 3 in
dimensions ≤ 530. Elements on the 0- and 1-lines divisible by v1

or v2 are not shown. Elements on the 2-line and above divisible
by v2 or v3 are not shown except for v2α̂1b̂

3
1,0, the target of the

first differential. Vertical, horizontal and diagonal lines indicate
multiplication by p, v1 and α̂1 respectively.

has both terms, i.e.,

∆(t1tpm) = t1t
p
m ⊗ 1 + 1⊗ t1tpm + t1 ⊗ tpm + tpm ⊗ t1 + . . . . �

The action of these operations in Ext has the following interpretation. Consider
the Hopf algebroid extension (this term is defined in [Rav86, A1.1.15])

(A(m), G(1,m− 1))→ (BP∗,Γ)→ (BP∗,Γ(m+ 1)),
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where G(1,m − 1) = A(m)[t1, . . . , tm]. Then ExtΓ(m+1), which is the Adams-
Novikov E2-term for T (m) by (1), is a G(1,m − 1)-comodule by [Rav86, A1.3.14
(a)].

Lemma 5. Relation between Quillen operations and comodule structure.
The G(1,m− 1)-comodule structure on Ext(BP∗(T (1))) described above is dual to
the action of the operations of Lemma 4.

Proof. The operation ri of Lemma 4 is induced by the composite map

T (m) T (m) ∧ T (m) Σ|t
I |T (m).-ηR -rI

Applying the functor ExtΓ(BP∗(·)) and the change-of-rings isomorphism of (1) we
get

ExtΓ(m+1) ExtΓ(m+1)(BP∗[t1, . . . , tm]) Σ|t
I |ExtΓ(m+1).

-ηR -rI

The middle term is

G(1,m− 1)⊗A(m) ExtΓ(m+1) = A(m)[t1, . . . , tm]⊗A(m) ExtΓ(m+1),

and the map induced by ηR is the G(1,m− 1)-comodule structure map. �

The following lemmas concern the action of specific operations in the relevant
dimensions.

Lemma 6. Action of Quillen operations in the Adams–Novikov spectral
sequence for T (m). In the E2-term of the Adams–Novikov spectral sequence for
T (m) we have

r1(θ̂′) = −vpmθ̂,
rp∆m

(θ̂′) = v1θ̂ = −v2b̂1,1,

rp∆m(vpmθ̂) = 0,

rp∆m
(v2v

p
mb̂

p
1,0) = 0,

and r1(v2b̂1,1) = 0.

For m = 1 we also have

r1(θ̂) = 0

and rp(θ̂) = b̂1,1.

Lemma 7. Action of Quillen operations in π∗(T (m)). In π∗(T (m)),

rp∆m
(vpmθ̂) = 0 and r1(v2b̂1,1) = v2b̂

p
1,0

up to unit scalar multiplication. For m = 1,

r1(̂b1,1) = ±b̂p1,0.

We will prove these two lemmas below. To prove Theorem 1 we will assume that
θ̂′ represents a homotopy element x and show that

(8) r1rp∆m
(x) 6= rp∆m

r1(x),
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which contradicts that fact that r1 and rp∆m
commute. This means that θ̂′ cannot

survive to represent a homotopy element. The indicated differential

d2p−1(θ̂′) = v2α̂1b̂
p
1,0

is the only one it can support because the indicated target is the only element in an
appropriate bidegree by Theorem 3. When m = 1 we can make a similar calculation
on θ̂ and conclude that

d2p−1(θ̂) = α̂1b̂
p
1,0.

As before let x denote a hypothetical homotopy element represented by θ̂′.
Lemma 6 determines r1(x) modulo elements of higher filtration, so we have

r1(x) = −vpm(θ̂ + cv2b̂
p
1,0)

for some scalar c. Note that b̂p1,0 is the first element in filtration 2p, so below its
dimension, computing in Ext is equivalent to computing in homotopy. It follows
that

rp∆m
r1(x) = −r1(vpmθ̂ + cv2v

p
mb̂

p
1,0) = 0.

On the other hand we have

r1rp∆m(x) = r1(−v2b̂1,1) = v2b̂
p
1,0

up to unit scalar multiplication. This completes the proof of Theorem 1, modulo
Lemmas 6 and 7.

For Corollary 2, note that in ExtΓ(m+1)

θ̂′ ∈ 〈α̂1, pι, θ̂〉.

Since θ̂′ is not a homotopy element, the Toda bracket corresponding to the Massey
product above must not be defined. Since we know that α̂1 represents an element
of order p, it follows that the homotopy element represented by θ̂ does not have
order p. Hence p times it must have filtration 2p, and the only possibility there is
v2b̂

p
1,0.
Remark: Possible higher differentials. We conjecture that d2pm−1(̂b2,m−1) =

α̂1b̂
pm

1,0 for all m > 0 (we prove this here for m = 1), where for m > 1

b̂2,m−1 = δ0δ1

(
v̂
ω/p
3

pv
ω/p
1

− v
ω/p
2 v̂ω2

pv
(p+1)ω/p
1

+
vω

2

2 v̂
ω/p2

2

pv
(p+1)ω/p2

1

)
.

Computations similar to those to be described below show that if y is a homotopy

element representing b̂2,m−1, then r∆mrpm(y) = bω1,0 but rpmr∆m(y) = 0, which

leads to a contradiction as above. The element α̂1b̂
pm

1,0 is in the right dimension to
be a target; one has to show that this differential is not preempted by an earlier one
in the same dimension. If we let m go to ∞ as in [Rav00], this element disappears.
This suggests we should look at a Hopf algebroid graded over Q[ω] rather than just
over Z⊕ Zω.

Proof of Lemma 6. We can compute the action of r1 and rp∆m
on these elements by

computing the actions of the corresponding Quillen operations on the numerators
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of the chromatic fractions modulo the ideals associated with the denominators. For
example we need to know rI(v2v̂1v̂

p
2) modulo (p, vp+1

1 ), and so on. We have

rp∆m(θ̂′) = −rp∆m

(
v2v̂1v̂

p
2

pv1+p
1

)

= −v2v̂
p
2

pvp1

= −v2b̂1,1,

and

r1(θ̂′) = δ0δ1

(
r1

(
v̂1v̂3

pv1
− v2v̂1v̂

p
2

pvp+1
1

+
vpω2 v̂2

1

2p2v1

))

= δ0δ1

(
r1(v̂1)v̂3

pv1
+
v̂1r1(v̂3)
pv1

−r1(v2)v̂1v̂
p
2

pvp+1
1

− v2r1(v̂1)v̂p2
pvp+1

1

− v2v̂1r1(v̂p2)
pvp+1

1

+
r1(vpω2 )v̂2

1

2p2v1
+
vpω2 r1(v̂2

1)
2p2v1

+ vpω2 v̂2
1r1

(
1

2p2v1

))
= δ0δ1

(
−v

p
mv̂3

pv1
− v̂1v̂

p
2

pv1
+
vp1 v̂1v̂

p
2

pvp+1
1

+
v2v

p
mv̂

p
2

pvp+1
1

− vpω2 vpmv̂1

p2v1
− vpω2 v̂2

1

2pv2
1

)
= −vpmθ̂.

We leave the additional computations for m = 1 as an exercise. �

Proof of Lemma 7. We need the Thomified Eilenberg-Moore spectral sequence of
[MRS01]. Given a fibration of spaces

X → E → B

with a stable vector bundle over E, we get a spectral sequence converging to the
homotopy of Y , the Thom spectrum for the induced bundle over X.

If the fibration is
ΩSU(pω − 1)→ ΩSU → B

with the evident vector bundle over ΩSU = BU , we get the usual Adams–Novikov
spectral sequence for X(pω−1), the Thom spectrum associated with ΩSU(pω−1),
which has T (m) as a summand.

If we take the Cartesian product of this fibration with

Ω2S2pω−1 → pt.→ ΩS2pω−1,

the E2-term is a subquotient of the tensor product of the one above withH∗(Ω2S2pω−1)
equipped with the Eilenberg-Moore filtration, and the spectral sequence converges
to

π∗(Ω2S2pω−1 ∧X(pω − 1)).
The map

Ω2S2pω−1 → ΩSU(pω − 1)
sends this homology to

E(α̂1, hm+1,1, . . .)⊗ P (̂b1,0, b̂1,1, . . .)
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in the Adams–Novikov spectral sequence for T (m). Thus we have a map to the
Adams–Novikov spectral sequence for T (m) from a spectral sequence converging to
T (m)∗(Ω2S2pω−1). In E2 this gives us

E′2 → ExtΓ(m+1)

where E′2 is a subquotient of

(9) E(α̂1, hm+1,1, . . .)⊗ P (̂b1,0, b̂1,1, . . .)⊗ ExtΓ(m+1).

We want to deduce the lemma from the fact that in H∗(Ω2S2pω−1),

P 1
∗ (̂b1,1) = b̂p1,0 and P p∆m

∗ (̂b1,1) = 0.

For this note that the following diagrams commute.

T (m) Σ2p−2T (m)

H/(p) Σ2p−2H/(p)

-r1

?

ι

?

ι

-−P
1

and

T (m) Σp|tm|T (m)

H/(p) Σp|tm|H/(p),

-
rp∆m

?

ι

?

ι

-χ(Pp∆m )

where H/(p) denotes the mod p Eilenberg–Mac Lane spectrum, the map ι : T (m)→
H/(p) is the bottom mod p cohomology class, and −P 1 and χ(P p∆m) denote the
conjugates of the Steenrod operations dual to ξ1 and ξpm respectively.

It follows that in E′2 we have

r1(̂b1,1 ⊗ 1) = −b̂p1,0 ⊗ 1 + . . .

where the missing terms involve elements with lower dimensional first factors. How-
ever this operation must respect the Snaith splitting of Ω2S2pω−1, which means
there are no lower dimensional first factors, so

r1(̂b1,1 ⊗ 1) = −b̂p1,0 ⊗ 1 and r1(̂b1,1) = −b̂p1,0 ∈ π∗(T (m))

precisely. For m > 1 it follows that r1(v2b̂1,1) = −v2b̂
p
1,0 as required. A similar

argument shows that rp∆m (̂b1,1 ⊗ 1) = 0, and the result follows. �

Remark: Why this method does not apply to the original Toda differ-
atial. The method described here cannot be used to establish the Toda differential
of [Tod67] and [Tod68], i.e.,

d(b1,1) = α1b
p
1,0,

because we do not have the operation r1 acting in stable homotopy. However as
in the proof of Lemma 7 an essential fact is the action of the Steenrod algebra in
H∗(Ω2S2p−1), in particular the fact that P 1

∗ (b1,1) = bp1,0. As above one can use the

Thomified Eilenberg-Moore spectral sequence to show that the element b1,1 ∈ Ext2
Γ

cannot be a permanent cycle.

Proof of Theorem 3. Let

fm(s) = (pω − 1)
{
ps for s even
(ps− p+ 2) for s odd,
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so the theorem says that Exts,tΓ(m+1) = 0 for t < fm(s). Let gm(s) be the cor-
responding function for the actual vanishing line, i.e., the smallest number such
that

Exts,gm(s)
Γ(m+1) 6= 0.

We will use the small descent spectral sequence of [Rav02, 1.17]. For each h ≥ 0
there is a T (m)-module spectrum T (m)h with

BP∗(T (m)h) = BP∗(T (m)){tjm+1 : 0 ≤ j ≤ h}.

In particular

T (m) = T (m)0 and T (m+ 1) = lim
→
T (m)h.

The small descent spectral sequence computes ExtΓ(BP∗(T (m)pi−1)) in terms of
ExtΓ(BP∗(T (m)pi+1−1)). Its E1-term is

E∗,s1 = E(ĥ1,i)⊗ P (̂b1,i)⊗ ExtsΓ(BP∗(T (m)pi+1−1))

where the elements

ĥ1,i ∈ E1,0
1 with |ĥ1,i| = 2pi(pω − 1)

and b̂1,i ∈ E2,0
1 with |̂b1,i| = 2pi+1(pω − 1)

are permanent cycles.
Letting i go to ∞, we can conclude that

ExtΓ(m+1) = ExtΓ(BP∗(T (m)))

is a subquotient of

E(α̂1, ĥ1,1, . . . )⊗ P (̂b1,0, b̂1,1, . . . )⊗ ExtΓ(m+2).

This means that
gm(s) = min(fm(s), gm+1(s)),

i.e., that ExtΓ(m+1) has the desired vanishing line if ExtΓ(m+2) does.
We will now use downward induction on m, i.e., the method of infinite descent,

as follows. We know that T (m′) is equivalent to BP below dimension |vm′+1|−1. It
follows that for any fixed t, Exts,tΓ(m′+1) vanishes for s > 0 and m′ sufficiently large.
This means that for a fixed value of s there is an m′ > m such that gm′(s) ≥ fm(s).
This implies that

gm′−1(s) = min(fm′−1(s), gm′(s)) ≥ fm(s),
so gm′−2(s) = min(fm′−2(s), gm′−1(s)) ≥ fm(s) if m′ − 2 ≥ m,

and so on, leading to the desired conclusion that gm(s) = fm(s).
The second assertion of the theorem concerns elements for which t < fm(s)+|v̂1|.

We will look at the small descent spectral sequence converging to ExtΓ(m+1) with

E1 = E(α̂1)⊗ P (̂b1,0)⊗ ExtΓ(BP∗(T (m)p−1)).

The following differentials occur in the range in question.

d1(v̂1) = pα̂1,

d2(ĥ1,1) = pb̂1,0

and d2(ĥ2,0) = v1b̂1,0.
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These imply that b̂1,0 and hence b̂[s/2]
1,0 α̂

s−2[s/2]
1 for each s ≥ 2 are annihilated by I2

and by nothing else in this range, and the result follows. �
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