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Introduction

In recent years the Adams-Novikov spectral sequence has proven to be a useful
tool in stable homotopy theory. Its E,-term is an Ext group derived from a certain
universal formal group law. In this paper we show how to derive a similar Ext group
from a universal formal A-module, where A is the ring of integers in a number field
or its p-adic completion. We do not know if this group has any topological
significance, i.e. we do not know if it is the E,-term of any spectral sequence.

In Section 1 we sketch the relevant theory behind the ANSS E),-term. In Section
2 we generalize this theory from formal group laws to formal 4-modules using
results from §21 of Hazewinkel [3]. In Section 3 we make some calculations and
discuss some open questions. In particular we state a conjecture about Ext!
generalizing certain well known connections between the order of the image of the
J-homomorphism and Bernoulli numbers.

1. Formal group laws and the ANSS E,-term

Proofs and references for most results in this section can be found in [3] and [11]
unless otherwise stated.

1.1. Definition. A formal group law (FGL) over a commutative unitary ring R is
a power series F(x, y) € R[[x, y]] satisfying three conditions,
(i) F(0,x)=F(x,0)=x,
(ii) F(x, y)=F(y,x), and
(i) F(F(x, ), 2)=F(x, F(»,2))-
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These correspond to the existence of an identity, commutativity and associativity
in an abelian group. A thorough and lucid treatment of this theory can be found
in [3].

1.2. Definition. A universal FGL U(x, y) over a ring L is one having the property
that for any FGL F over R there is a homomorphism 8 : L= R such that (U(x, »)) =

F(x, y).

The existence of this object is easy to establish. Write
Fioy)= % ayx'y’.
i,j=20

Then 1.1 implies certain relations among the coefficients a;, e.g. (i) says ;=
a;=0 for i>1, and (i) says a;=a;;. We let L =Z[a;]/I, where I is the ideal
generated by these relations, and U(x, y)= ¥ a;x'y’.

The explicit structure of this L is more difficult and was first determined by
Lazard [4]. A crucial step in his argument is

1.3. Comparisor Lemma. Let F and G be two FGL’s over R which agree modulo
(x, »)". Then

G(x, y) =F(x, y)+aCy(~, y) mod(x, y)"*!
where
x40 =x"=y"
v(n)

with v(n)=1 unless n is a power of a prime p in which case v(n)=p.

aeR and C,(x,y)=

To describe L it is convenient to introduce a grading on it by setting
deg a;; =2(i+j—1). Hence if degx=deg y=-2, then F(x, y) is homogeneous of
degree -2.

1.4. Theorem. L =Z{x,, x,,...] where deg x; =2i.

Proofs of 1.3 and 1.4 can be found in [3] and [11].

Quillen’s theorem establishes an isomorphism between L and 7.(MU) as follows.
One has MU*(CP”)=nMU)[[x]] with xe MU*(CP*); since we are in co-
homology the coefficient ring 74(MU) is negatively graded. The H-space map
CP® x CP®—CP™ sends x to a power series in x®1 and 1®x which is easily seen

to be a FGL. Hence we get a homomorphism 6: L—z«(MU) which is Quillen’s
isomorphism.

1.5. Definition. Let I"C Z[[x]] be the group of power series of the form ¥
with by=1 under composition. []

i+1
i=0 bix
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I' acts on L as follows. Let U(x, y) be the universal FGL and yerl. Then
y~WU(»(x), y(»)) is another FGL over L and is therefore induced by some ring en-
domorphism 8, : L—L. Since y is invertible 6, is an automorphism and one easily
checks that this defines a I-action on L.

The ANSS E,-term for the sphere can be shown to be isomorphic to H*(I"; L).
It is usually identified as Extyy,mu)(te(MU), nu(MU)) where no(MU)=L and
MU(MU)=L(b,,b,,...) with a certain coproduct. By a standard argument this
Ext group is isomorphic to Extg(Z, L) where B= Z[b,, b, ...]. This ring B can be
identified with the ring of integer valued functions on I". An element ye " can be
writtenas y= Y ., bix'*! with by=1 and b; € Z. Then a polynomial in B associates
an integer to each y. If y’= ¥ b/x'*! and y”= ¥ b/x'*!, then

yzynyl= Z bkxk+l= Z bl”(E bjxj“)"”.

By equating the coefficients of x* in this equation one obtains the usual coproduct
in MU (MU), leading to our description of the E,-term.

If one localizes at a prime p one can replace MU,(MU) by a smaller, more
manageable object, BP(BP).

1.6. Definition. Let F be a FGL over a torsion free ring R. Then log x is the power
series over Q®R given by

logx=
& 5 F2(,0)

where F,(x, y)=0dF/dy and one has

X

log F(x, y)=log x +log y,

i.e. the logarithm is a isomorphism over R® @ betwew.« F and the additive FGL
x+y. F is p-typical if logx=},,4,x°.

The definition of p-typical can be generalized to an arbit. 'ry R. More importantly
it can be shown (Cartier [12]) that any FGL over a Z,-als -bra R (here Z, is the
ring of integers localized at p) is canonically isomorphic tc a p-typical one.

1.7. Theorem. There is a universal p-typical FGL over a ring V=2 v, v,,...]
with degv,=2(p" —1). The logarithm of this FGL is f(x) given recursively by

U; i i

SO =x+ Z ._'.f(p)(,cp)
iz0 D

where f #) js obtained SJrom f(x)e QR V[I[x]] by substituting v,‘," for v, for each

n. 0O ‘

For example
1+p
v v vy
—+
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and . )
vy Laf +uuf LR
Ay=—+ 3 + T .
p b p
The ring V is isomorphic to n4(BP) in the same way that L is isomorphic to
7«(MU). The canonical isomorphism referred to above leads to a splitting of the
p-localization of MU into a wedge of suspensions of BP.
Unfortunately there is no reasonable subgroup of I" which acts on V' because most
power series do not preserve p-typicality. Instead one has

1.8. Lemmae. Let F be a p-typical FGL over a torsion free ring R, y e I” an invertible
power series and G(x, y)=yF(y~'(x), y (). Then G is p-typical iff

logy~ ') =Y logt, x?.
i20

This is Lemma 1.26 of [11].

Recall MU4(MU)=L[b,,b,,...]1=LB. A homomorphism @ from this ring to
any R corresponds to an FGL F over R (given by the restriction of @ to L)
and a power series f(x)=Y 6(b)x’ in R[[x]]. Equivalently, @ is determined by
F,G=fF(f'(x),f (), and an isomorphism between them. Similarly a homo-
morphism from

BP,(BP)=V[t},t5,...1=VT to R

is determined by an isomorphism between two p-typical FGL’s over R. These obser-
vations are due to Landweber [13]. Hence the sets Hom(V, R) and Hom(¥'7, R) con-
stitute the objects and morphisms in the category of p-typical FGL’s over R and
isomorphisms between them. This category is a groupoid, i.e. a small category in
which every morphism is invertible. It follows that VT is a cogroupoid object in the
category of commutative rings. Such objects have been christened Hopf algebroids
by Haynes Miller, since a commutative Hopf algebra is a cogroup object in the
same category. Accordingly there are various structure maps between V and VT
corresponding to the structure of the groupoid. In paiticular there are maps
ns N V= VT (known as the left and right units) corresponding to the source and
target of a morphism, and 4: VT VT ®y VT (known as the coproduct), cor-

respond:ng to composition of morphisms. Here the tensor product is with respect
to the bimodule structure given by n and ;.

1.9. Lemma. In BI",;(BI‘?)= VT, n :V—=VT is the standard inclusion and ny is
given by ng(A,)= X 4;t?_; in VT ®Q. Moreover we have

LFut? = LFnp(v)”’t; modip)
where ¥ denotes summation using the FGL instead of ordinary addition, e.g. we

write F(x, y)=x+ry. The cop’roduct is given by EA,'A(tj)”'=ZA,-tf"®t,fM or
equivaiently TFA(t) = LF ;@17
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The Ext group we want is defined in the category of VT-comodules, i.e. V-
modules M equipped with suitable structure maps w: M- VT ®, M. LB com-
odules are similarly defined and Ext is the derived functor Hom. For any connective
spectrum X, BPy(X) is a VT-comodule and Exty,(V, BP4«(X)) is the E,-term of the
ASS converging to the p-localization of m«(X). We also have the following local-
global result.

1.10. Theorem. For an LB-comodule M,
Z(p)®ExtLB(L, M) = ExtVT( "’, V®L M).

For a VT-comodule M we will abbreviate Ext,+(V, M) by Ext(M). Of particular
interest is Ext(}'), the ANSS E,-term for the sphere. One approach to it is the
chromatic spectral sequence (CSS) of [7] which we now describe.

Define comodules M’ and N' inductively as follows. N°=V, M"=v;'VRN"
(where vy=p) and N"*!=M"/N". Then the short exact sequences (SES)

0—>N"->M">N"*! =0
splice together to make a long exact sequence (LES)
0-V-M-M'-M2-...

called the chromatic resolution. Standard homological algebra gives

1.11. Lemma. There is a spectral sequence converging to Ext(V) with EI**=
Ext(M") and d,: EMS > El+"s—r+1,

Each element in M” is annnihilated by some power of I, =(p,v,,..., V,_)CV
and multiplication by v; is surjective for i<n and an isomorphism for i=n. We
define comodules Af ‘ inductively by MI=M" and M"~' is the kernel of
multiplication by v;_, in M"'*!. Hence we have SES’s

. . v;_ .
OﬂA/ll(l—l_,Mn_—lHr 1 __'__L__)Min—-lH-l -0

leading to LES of Ext groups which in principle reduce the problem of computing
Ext(M") to that of finding Ext(M?), where M? = v, V/I,. This group is surprisingly
accessible, thanks to some profound insights of Jack Morava; indeed the CSS was
constructed in order to exploit this. It is very closely related to the cohomology of
the automorphism group of a certain FGL over the field with p" elements. This
theory is developed in [6], [8] and [9] and we will give a brief account of it now.

Let K(n)«=F,lv,, 07 11 and make it a ¥-module by defining multiplication by v,
to be trivial if in. ‘Then let

Z(n)=Kn)+®y VT Qy K(n)x.
This is a Hopf algebroid (called the nth Morava stabilizer algebra) corresponding
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to the category of p-typical FGL’s over F,-algebras R for which the map 6: V>R
factors through K(n)«. (Such FGL’s are said to have height n. The height of an FGL
over a field of characteristic p determines it up to isomorphism over the algebraic
closure.) From 1.9 one can deduce that

() =K(W)alt1, by .. 1/ (017 —02'8)

as a ring, and it inherits the coproduct from F'T. The relevance of 2(n) to the pro-
blem at hand is given by

1.12. Change of Rings Theorem [6].
Ext(My) = Ext (K (7). K(n)s).

To relate this to group cohomology, make F,» a K(n)s»-module by sending v, to
1 and let F, be the corresponding FGL over [~ Its endomorphism ring E,, is an
algebra of rank n? over the p-adic integers generated by a primitive (" — 1)th root
of unit w (the endomorphism sending x to &x where @ is the mod(p) reduction of
w) and an clement S (sending x to xP) subject to the relations Sw=w?”S ana
S"=p. (The endomorphism corresponding to a natural number k sends x to a
power series [K](x) defined inductively to be F(x, [k — 1](x)) as in 2.1 below. In F,
one has [ p](x)=x”".) This ring is a maximal order in D,=E,®Q,, a central
division algebra over the p-adic numbers. It is also a complete local ring with maxi-
mal ideal (S) and residue field F,». Let S,CE,* denote the group of units con-
gruent to 1 mod(S). It is a nilpotent pro p-group, the inverse limit of its (finite) im-
ages in E,/(S¥). Hence it is a compact topological group and we have

1.13. Theorem. Z(n)Q@xn), Fp» is a Hopf algebra isomorphic to the continuous
linear dual of the F,-group algebra of S,.

This result and 1.12 imply a close relation between Ext(M") and the continuous
mod(p) cohomology of S,. In particular E, =Z, so §;CZ} is the group of limits
congruent to 1 mod(p). It is known that any degree n extension K of Q) can be
embedded in the division algebra D,. By letting K be the pth cyclotonic extension
we find that S,_, has a subgroup of order p. Its cohomology is useful for detecting
elements in Ext(V'), the ANSS E,-term for the sphere; see [10].

2. Formal 4-modules

The reference for all results in this section unless otherwise stated is §21 of [3].
A formal A-module (FAM) is a certain type of FGL defined over an A-algebra R.
Before defining it we need

2.1. Definition. An endomorphism of an FGL F is a power series f(x) € R[[x]] satis-
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fying f(F(x, )) = F(f(x), f()). For each integer n an endomorphism [r](x) is given
as follows. [Ol(x)=0 and [n+ l](X)zp(x, [n](x)) for n=0. We define [_n](x) by
F([n](x), [-n](x)) =0.

Note that [n](x)=nx mod(x?) and F(x, [-1](x)) =0 so [-1](x) is the formal group
inverse of x. It is easy to verify that

F([m](x), [n](x))=[m+n}(x) and [m]([n](x)) = [mn](x).

Hence we have a homomorphism from Z to the endomorphism ring of F. It is
known that if R is a finite field of characteristic p, then [p](x) determines F.

2.2. Definition. Let A be the ring of integers in a number field or its p-adic com-
pletion and let R be an A-algebra. An FGL over R is a formal A-module (FAM)
if the homomorphism Z —+Endy above extends to A, i.e. if there are power series
[al(x) for each a € A having suitable properties.

If R has characteristic p, then an FGL over R is automatically a formal Z,-
module, where Z, denotes the p-adic integers. This follows from the fact that
[P1(x)=0mod(x?), so [p'l(x)=0 mod(xz'), SO a power series in p (i.e. a p-adic
integer) will lead to a power series with coefficient in R. A similar argument works
if R is a Z,-algebra.

For A the ring of integers in a finite extension K of the p-adic numbers Q,, an
important example of a formal A-module over A was given by Lubin-Tate [5]. They
used to construct explicit abelian extensiors of K.

The FGL defined above over K(n)« is closely related to the mod( p) reduction of
the Lubin-Tate FAM for A the unramified degree n extension of Z,. However, the
relation between the Ext groups 1.12 and the corresponding FAM Ext group (to be
defined below) is more remote. There is a homomorphism from the former to the
latter analogous (via 1.13 and 2.12) to the restriction map from the cohomology of
S, to the subgroup of 4™ (with A as above) consisting of units in A congruent to
1 mod(p).

We wish to generalize the theory of Section 1 to FAM’s. The definition of a
universal FAM is obvious and we denote its ground ring by L 4. Its existence is easy
to show; in addition to the coefficients of F one needs the coefficients of [a]l(x) for
all ae A, and these must satisfy certain relations. Then L , is simply the polynomial
ring over A on all these indeterminants modulo the ideal generated by all the
relations.

There is a FAM comparison lemma, stated and proved in [3] as 21.2.4.

2.3. FAM Comparison Lemma. Let A be a torsion free ring and let F and G be two
FAM’s which agree modulo terms of degree n. Then

F(x, )= G(x, y) +d C,(X, y) mod(x, y)"*'
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where
d@a—a")e(v(n)) forallacA and v(n)=1

unless n is a power of a prime p, in which case v(n)=p.

The condition on d is vacuous if 7 is not a prime power. If A is the ring of integers
in a number field K in which the prime p splits completely, then the condition is
vacuous when n is a power of p. Using the grading on L, introduced above, it
follows that the indecomposable quotient of L%~ ! is the ideal P2 generated by all
such d. If K has class number greater than one, then P2 may not be principal and
L4 will not be a polynomial ring. The argument of 21.3.5 in [3] indicates that L,
is polynomial if all of the ideals P/ are principal.

If X is a Galois extension of the rationals we can describe the P2 more explicitly.
In A we have the ideal decomposition

k
(m=ﬂnf
where each x; is a distinct prime ideal and e is the ramification degree. Moreover
A/n; is the field with p’ elements for each i and ef% is the degree of the extension.
Now let n=p’. If f divides j, then a"—aen; for each i, but it need not be in 11‘,-2,
so we have P = [[*_, n;#'. If f does not divide j, then @"—a need not be in any
prime ideal containing (p), so P,f =(p). Hence we have

2.4. Lemma. With notation as above and K a Galois extension of the rationals with

k
(p=11 = inA,
i=1
then

)] if n is a not a prime power,
pa_ (P if n is a power of p but not a power of p’,
A

k
Il =" if nis a power of p’.
i=1

Of course P; can fail to be principal only if 7 is a suitable power of a prime at
which X is ramificd. For example K =Q()/=5) is ramified at the prime 2 and Pj =
(2,1+y/=5), i.e. it is not a principal ideal. If each P is principal, then L 4 is poly-
nomial. In any case L4 can be embedded in a polynomial ring as follows.

If K is an infinite field it is known (3, 21.2.10] that L, the ground ring for the
universal formal K-module, is K[m,,m,,...] with log F(x, ) =log x+log y where
logx=Y,,mx'* . In other words the power series logx defines an isomorphism
from the universal FKM to the additive one, G(x, y)=»'+y. Moreover this FKM
gives an FAM over R, =A[m;,m,,...] and hence a homomorphism L,—R,. 2.3

can be used to show this map is injective in the same way that 1.3 is used in the case
A=2Z.
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The generalization of the group I' is easy. Let I, denote the corresponding
group of power series over A.

2.5. Lemma. Let F be a FAM and yeIy. Then G(x, y)=yF(y~'(x), y () is also
a FAM.

Proof. Let [a]z(x) and [a];(x) denote the endomorphism of F and G correspon-
ding to aeA. Then it is easy to check that [alg(x) can be taken to be

yalp(y~ ). O

It follows that we can define a Hopf algebroid L 4B=L 4[b,, b,, ...] as in Section
1. If F is defined over a torsion free ring, it has a logarithm as in 1.6, which brings
us to the notion of p-typicality. In Section 1 the theory works best for FGL’s
defined over Z,)-algebras. Such an FGL is easily seen to be a formal Z,-module.

2.5. Definition. Let A be a discrete valuation ring with maximal ideal (r), finite
residue field F, and quotient field K. If K has characteristic 0 and R is an A-
algebra mapping injectively to R, K, then a FAM over R is A-typical if its
logarithm has the form ¥ 1/x? with 1 e R®, K.

Again this definition can be generalized and any FAM is canonically isomorphic
to an A-typical one [3, 21.5.6). For the rest of this section A will be as in 2.5. The
analogue of 1.7 is

2.6. Theorem. There is a universal A-typical FAM over a ring Vy=A[{,vs,...]
with deg v4 =2(q" —1). The logarithm of this FAM is f(x) given recursively by

A
U; i i
fay=x+ X — fi067)
i>0 T
where f },"i’ is obtained from f, by substituting (v)? for v} for all n>0.

Note that the generators v depend on the choice of 7, the logarithm f,(x) being
fixed.

If A is a Z,-algebra, then an A-typical FAM is also a p-typical FGL, so there
is a homomorphism 8,:V —V,. It must send the logarithm f(x) of 1.7 to f4(x)
above and this enables us to calculate it explicitly. For example

2.7. Corollary. Let K be a degree J extension of Q in which p is unramified and does
not split, and let A be the ring of integers in K localized at (p). Using p as a uni-
JSormizing parameter in A gives

0 iffti,

falv) = {Uf/‘f if f|i.
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Proof. We have g=p” so f4(0)=3,., A{’x"vx )X O(Ai)xpi. The result follows by
equating coefficients of these two power series. [

The analogue of 1.8 is

2.8. Lemma. Let F be an A-typical FAM, yeI, and

G(x, »)=yF(y~'(x), 71 ().
Then G is A-typical if
y ') = YFtAx?  for some tfeR.

This leads to the Hopf algebroid ¥,T=¥,[t{, t3,...] corresponding to the
groupoid of isomorphisms among A-typical FAM’s. Here deg t,‘,4 =2(q" - 1).

2.9. Theorem. The maps
Va2 WT and A:V;T-V,T®,V,T
are given by
m@) = LAAG )T with TFof ) = TFnaf)7tf mod(n)

and

Lraeh =L eul.

Proof. All but the mod(n) formula for g can be easily deduced from results in [3].
We will prove the formula on the nose for a different set of generators w; and
then show they agree with the v’ mod(n). The v are defined recursively by

ad= ¥ Atep )T
O<i<n

which can be rewritten as

nfa)=nx+ ¥ f1(f'x9).

i>0
The formula for the w{! is nearly identical, namely

6} amf= ¥ M) or [nl(x)= YFwfx? where wii=n.
0<isn i=0

Hence the w;! are integral and we now show they agree with the v/ mod(r) and
hence generate V,. Comparing the two defining formulae gives

2 ED) fA(Wiqui)— ;ﬂfA(U:ﬂxqi)o

i=0
Let g4 be the functional inverse of f,. Applying it to both sides gives
gamx)= L wix? —p TFufixs.

iz0 i>0
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If the left hand side is integral and divisible by 7, then the desired congruence will
follow by induction on i. To show that g,(nx)/n is integral note that its functional
inverse is

fa@y/n=Y A0/

which is integral since 74, is.
To prove the right unit formula we reindex (1) and get

@ L mif =L o)
applying ny gives

L mf @) = L AR newidy”
and substituting (1) on the left hand side gives

T AR ) = DAt nrwty?
or

L L) = T fati nr(w)?).
Applying the inverse of f, to both sides gives
LEwha) = Tt ne(w)?
as desired. [J
Now we consider the chromatic spectral sequence for FAM’s with A4 a discrete

valuation ring as in 2.5. Its construction is quite straightforward. We have the
chromatic resolution

0~ ¥~ M3-My—
obtained from SES’s

0-N5—M;-N;*1-0
where N§ =¥, and M} =(vz)"'N?%.

2.10. Lemma. There is a spectral sequence converging to Exty, r(V4, V4) as in 1.11
with E”'s =Ext] AT(V MA)

As in Section 1 we abbreviate Exty,r(¥;, M) by Ext(M) for a ¥, V4 T-comodule M.
As before the problem of computing Ext(M}3) reduces in prmcnple to finding
Ext((v}) 'V, /12) where I2 =(m,vf, ..., 01 ) C V.

We let

Kym)=Fglv7, ()" and  Z,4(n) =K (n)«®y, VaT @y, K ().

The ring structure of X'4(n) is
Za(m) =K mltf 18, 1/ - (v Ayi'sh)
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by 2.9. The proof of 1.12 given in [6] generalizes easily and we have

2.11. Changes of Rings Theorem.
Ext((v) " VAT/I}) =Extg, ;i (Ka(m)s, K4 (n)s).

The proof of 1.13 given in [8] also generalizes easily once we have the appropriate
formulatlon Let F; be the FAM over F,r given by the composite ¥4~ K 4(n)—F,»
sendmg v to 1. Now any FAM over a finite field is also a formal A-module,

whore A is the completion of A, so we assume now that A is complete and that its
qu itient field K is a finite extension of Q,. We will describe the endomorphism
ring EZ of FA (see [3, 21.8.15]). It is an A-algebra of rank n® generated by a
primitive (g” — 1)th root of umty wA (sending x to @4x) and S4 (send x to x?) with
Si=nand S,ws=w]S,. DA=EA®,K is a central division algebra over K. Edis
a complete local ring with maximal ideal (S;) and residue field F,». We let
SAC(EX)* be the group of units congruent to 1 mod(S,).

2.12. Theorem. Z4(n)®x, ), Fq is a Hopf algebra isomorphic to the continuous
linear dual of the F-group algebra of S4.

3. Some applications and open questions

In this section A4 will be either the ring of integers in a finite extension of @ (global
case) or the localization or completion of same at some prime (local case). In the
local case for a V¥ T-comodule M, Ext,(M) will denote Ext, r(V4, M) and
Ext (V) will be abbreviated by Ext,. In the global case similar abbreviations will
be made for Ext groups defined over L B.

The attentive reader no doubt notice our omission in Section 2 of an analogue
of 1.10, the relation between local and global Ext groups. We do not know if such
an isomorphism holds in general, so we will merely formulate a conjecture. Suppose
A is the ring of integers in a number field, i.e. a finite extension of Q. Then Ext,
is an A-module and can therefore be localized at any prime ideal 7 in A. Let A4,
denote the localization of A. This ring is a DVR as in 2.5 so we have 4 ,-typical
Ext groups.

3.1. Local-global Conjecture. For an L 4B-comodule M
A, @4 Extr, p(A, M)=Exty, 1(4,, V&, M).

3.2. Theorem. Ext = A, concentrated in dimension zero and ExtS, for s>0 is all
torsion.

Proof. Let K be the quotient field of A. The torsion free part of Ext, injects
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into K®4Ext,, so it suffices to compute the latter. One easily sess that it is
isomorphic to Ext (K&, V,) or Ext,(K®,4L,). In the local case this group is
Exty, 0)(K4(0)x, K4(0)s) and 24(0) =K,4(0)s=K.

In the global case one has K@y L4 =Ly =K[m,, m,,...] by [3, 21.4.1] where the
m; are the coefficients in the log series. The calculation of Ext (K®L,)=Extg
proceeds as in the case A =Z to give the desired result. [

The determination of Ext} is more difficult and we only have partiai results. We
begin by recalling the calculation in the classical local case, A = Z, ,,. From the CSS
we have a SES

0—E}O>Ext' »E} -0,

The chromatic theory gives E*!=0 so we need to compute E*° and E}*® and for
the former we need Exti(p,(ul‘ 'V/(p)) for s=0,1. Using 1.11 and 1.12 (see [9] for
details) we have

3.3. Lemma. For p>2, Ext (vi'V/(p)) = K(1)+®E(hy) where hye Ext"%~2 cor-
responds to the primitive t, € VT/(p). For p=2 the group is

K(1)+® P(hg) ® E(1)

where g, € Ext"® is represented by vi3(iy+t3) +vi%vyt, €07 WVT/(2).
Here E( ) and P( ) denote exterior and polynomial algebras.

To compute Ext’(M!) we use the SES

0~ M~ M2 M1 =0
giving

i )
3.4 0-ExtO(M?)— Ext°(M ")~ Ext®(M')—— Ext! (M?) - .-

where 4 is the connecting homomorphism and Ext(M?) is described in 3.3. The im-
age of i is generated by {v}/p:keZ} and this is the subgroup of exponent p. We
need to determine how many times each generator is divisible 5y p. An element in
Ext®%(M!) is not divisible by p iff it has a nontrivial image under . To compute
this image one divides by p and applies ng —n.. For p>2 and p{,/ we have

s . f
o oy
(MrR—=m) =3 =J
nR pc+2 p

s0 &P /p** Yy =1~ 'hy and we get
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3.5. Theorem. For p>2

Exth! = Z/Ap'*"y if t=2(p-1)jp’ for pti, J>0,
0 otherwise,
l'+l'

generated by vi?'/p

The above argument breaks down for p=2. For example
2 2
l_)l _ v+
(mr—m) 8- 3
wkich represents 2 trivial element in Ext!(M?) so v#/2 is divisible by 4, contrary to
what one would expect by analogy with 3.4. One finds that

(v} +4v7'vy) vl
6 2’
so (¥+4v;'v,)/8 is in Ext®M' and is not divisible by 2. Since it involves

a negative power of v, it supports a nontrivial d;, in the CSS, hitting
v;/2v, € Ext®(M?). More generally for odd j and i=1 we have

i i
) (v} +4v7 "oy _ vi%e,
(mr—m 2i+3 )

and for j2'>1 this expression does not involve a negative power of v;.

(mr—m)

3.6. Theorem. For p=2

0 ift<0ortis odd,

Z/(2) if t is even but 411,

Z/(4) if t=4,

Z/2'*%) ift=j2*" for i=1 and j odd,

Ext :—;}é) =

the generators being

) i i _
v/ v 4 vi% 42 1p/2 3y,
2 4 4 an 2i+2

We will see below that the extra factor of p in 3.6 is caused by the presence of
a pth root of unity.

Now we will try to generalize the argument of 3.5. From 2.12 we see that the
analogue of 3.3 depends on the group $;, which is abelian and, if 4 has no pth
root of unity, torsion free. In any case the element A, will be present in its H’,
which is all we need. In the analogue of 3.4, im is generated by {(v{')*/n: ke Z}.

In order to proceed further we need the n-adic valuation v: A—QU {00} satisfy-
ing

v{i@y=00 iff a=0, v(ab) = v(a) + v(b),
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v(@+b)=min{v(a),v(b)}, v(@)=0,
v@=0 iff aisaunit and v(p)=1.

Hence if a e (n*), then v(a) = kv(r). It is known that each local A has such a valua-
tion and that v(z) = 1/e where e is the ramification index of p in A4, i.e. the number
such that (n°)=(p),

3.7. Theorem. If A is local with v(n)>1/(p—1). Then

Lo [A/(p'n) if t=2(q~ 1)jp' with p{j andj >0,
Ext;'= .
0 otherwise,
generated by (v{'y?'/(np'), where q is the cardinality of the residue Jield A/(n).

[Note that 3.5 is a speciai case of 3.7, but that Z ;) does not satisfy the hypothesis
v(m)>1/(p-1).]

Proof. We proceed as in 3.5 and show that

A o d . A . ;_
Of)Y?  juf)? !

- — = 4,
(Mr—mL) 2 " i

from which the result follows. To make this calculation we have ng(v{') =v{' + nt{',
) _
Avip' TP\ ey A -k, Ark
(mr—n )i )P =Y (o7 )P ()
>0\ K
and we need to know the valuation of each of the coefficients (“*')z* for k>1 is

greater than that for k=1. For k=1 this valuation is clearly i+ v(n).
Now we need two simple facts which the reader can verify:

'\ . v(k) 1
=i—v(k for k>1: —=s———.
u(k) i—v(k) and for k—1=p-1

Hence the valuation of the kth coefficient is i — v(k) + kv(m). Subtracting i+ v{(m)
gives (k — 1u(n) — v{x), which is positive for all k>1 if v(r)>1/(p-1). O

What happens when v(n) < 1/(p—1)? We will look at two examples, the rings of
integers in Q;(V3) and Q,(v3). The latter is the cyclotomic extension of Q; obtained
by adjoining cube roots of unity. We can take n= ]/E? and in both cases v{r)=1/2.
Now consider the expansion

al j3‘ , T 1
(1~ 1)) =k§o( ; )wﬁ)ﬂ ke )

Since v(k)/(k-1)<1/2 unless k=3, we only have to consider the first and third
terms. We have

(g~ n ) = ') 'vs')
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=@ + 71y - ') - ) P ) - (v Pti!) mod(z*)
=30 Parf + 22 (Y - (P + e

=(n+ 7))

The number 3z + 7 is zero or nonzero depending on which of the two examples we
are considering. Hence for A =2Z;(V3) we get a result similar to 3.7, while for
A =Z;(],/:_3) we get larger Ext! groups as in 3.6. In general when v(z)=1/(p-1)
we get the extra factor of n when 7 can be chosen to satisfy n”+pn=0
mod(n”*"), which is the case if the field has pth roots of unity.

Now we will discuss the global Ext! groups. In the classical case 4 = Z, Ext! can
be read off from 3.5 and 3.6 using 1.10. The result is that Ext}?™ = Z/(jj,,) for cer-
tain numbers j, having some interesting properties, e.g.

3.8. Theorem. Up to 1 factor of 2 the number j,, is the greatest common division
of the numbers kN(k" — 1) for ke Z and N sufficiently large.

A proof and further discussion can be found in [l1]. For example, j,=12,
k%=1 mod(8) for 21k, k*= mod(3) for 31k and no similar relations exist for larger
primes, so the number given by the theorem is 24.

3.9. Global Conjecture. For global A, Ext}2"=A/J2 where J2 is, up to some
small factor, the ideal generated by a”(a™ - 1) for ae A and N sufficiently large.

The numbers j,, of 3.8 are also related to Bernoulli numbers and the values of
the Riemann zeta function at negative integers, but these properties do not appear
to generalize to other number fields. For example if the field is not totally real its
Dedekind zeta function vanishes at all negative integers.

Our evidence for this conjecture is purely local (although the similarity between
J2 and the P2 of 2.4 could have some significance), so we are assuming 3.1. The
local form of the conjecture would have J; be the ideal generated by a™ — 1 for all
units 2€ 4. Then we have J2 C(n) iff (g— 1) divides m, so let m=(q—1)n. If A is
complete, then any unit congruent to 1 mod(r) is a (¢ — 1)th power, and we can
reformulate 3.9 as

3.10. Local Conjecture. If A4 is the ring of integers in a finite extension of @, with
maximal ideal (7) and residue field F,, then

Extkz"(q" h =A/J,ﬁq_ 1)
where Jj,_y, is the ideal generated by elements of the form ¢"—1 for units ae A
congruent to 1 mod(n).

The Ext}j’ for other ¢ must vanish since ¥, T is concentrated in dimensions divisi-
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bie by 2(g - 1). If A satisfies the hypothesis of 3.7, then 3.10 is true since
a'-1=(1+nb)"-1=Y, (n)n"bk

k>0 \k

for some beA and we can analyze this expansion in the same we analyzed
(f! + 2ty

Wext we will consider some general properties of the Hopf algebras X ,(n) of
2.11. let A be the ring of integers in a finite separable extension K of the p-adic
numbers Q,. Let (1)C A be the maximal ideal with A/(n)=F, where ¢= p’. Let
e=1/v(n). Then ef is the degree of the extension [2, Proposition 1.5.3]. Recall the
homomorphism 8,: V= ¥;. We extend it to a Hopf algebroid map 6,: VT >V, T
as follows. A map 8 from V,T to an A-algebra R corresponds to an isomorphism
between two A-typical FAM’s over R, and in particular to an isomorphism between
two p-typical FGL’s over R. Hence we have a natural transformation of functors
[V4T, -1—1VT, —] which must be represented by a homomorphism 6, as above.

3.11. Lemma. (2) With notation as above

e if fli,

0  otherwise.

04(t)= {

(b) Let L be the unramified extension of Q, of degree f and BCL its ring of in-
tegers. Then K is a totally ramified extension of L of degree e and we denote by
64,8 the map from Vg to V,. We have

v, iffli,
0 otherwise,

Op(v) = {

and 075(I3) =12 where I2 =(n,v{, ..., v1_)C V, and IE, = (n,vf, ..., 05 _ ). More-
over 0,4(vp) =cil)f mod I where k=(p™ - 1)/(p" - 1) and c € F is the mod()
reduction of p/n®.

Proof. For (a) the elements ¢; and #; are defined by 1.8 and 2.8. An isomorphism
y from an A-typical FAM F to another one must satisfy
y )= TFtAxT = T rxP with ty=1'=1

by 2.8 and 1.8 and the result follows.
For (b) we take p as our generator of the maximal ideal in B. Then we have

Ja(x) =65f(x), so
px+ ¥ 050)0(fP(xP ) =px+ ¥ vBr9(x?)

from which we can compute 6g(v;) by induction on i.
For the statement about 84,5 we use the generators wi of ¥ used in the proof
of 2.9 defined by

afa)= T fawix?) with wi=n.
i20
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This is equivalent to
[n1) = EFwix?

Now (7°)=(p) and we want a formula for [#€](x). We have for example
(rhe= EwA o) = T witwf)7x" mod(m),

3.12 (le= L7 i) wi) e (wye-x® mod(m)
l‘ l:.
where g; qi‘”'"z*‘ i, Observe that the coefficient of x? is nonzero
mod I = (7:, wi,. w“ 1). Now p=n°mod(n*!), so the same is true of the coef-
ficients of [p](x)= ZF w,”x" Since we saw ia the proof of 2.9 that w?=v? mod(p),
the result follows.
For the mod I reduction of 8, (Vnes), consider the reductxon of 3 12. The leading

term on the right is (w; )"x" , 50 equating the coefficients of x7" gives

c 'O =(). O

3.13. Corollary. There is a Hopf algebroid homomorphism

0,4: Z(nef)—Z4(n)
with
77r  If f divides i,
otherwise,

04(t) = {

and 6,4(vnep) = c(vy ) where k=(p"™/ ~1)/(p"V - 1), ceF, is the mod(n) reduction
of p/n%, e is the ramification index and p’ is the cardmalzty of the residue field.

For n =1 this is related (via 1.13 and 2.12) to the fact that the field KX (an extension
of @Q, of degree ef) embeds in the division algebra D,.

N.B. A proof of 3.1 has recently been found by my student A. Pearlman. His ac-
count of it will include a proof of 1.10, which does not seem to exist currently in
the literature.

Since L,B=L,®; LB, L, is an LB-comodule and standard arguments show
Exiy, p(L4, Lg)=Ext;p(L,L,). Hence if there exists a spectrum S, with
MU(S,4)=L, as an LB-comodule, then our Ext group would be the E,-term for

the ANSS converging to 74(S4). Apparently BP(S,)+ V; except possibly when p
splits completely in 4.
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