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Introduction 

In recent years the Adams-Novikov spectral sequence has proven to be a useful 
tool in stable homotopy theory. Its &-term is an Ext group derived from a certain 
universal formal group law. In this paper we show how to derive a similar Ext group 
from a universal formal A-module, where A is the ring of integers in a number field 
or its p-adic completion. We do not know if this group has any topological 
significance, i.e. we do not know if it is the &-term of any spectral sequence. 

In Section 1 we sketch the relevant theory behind the ANSS &-term. In Section 
2 we generalize this theory from formal group laws to formal A-modules using 
results from 921 of I-Iazewinkel [3]. In Section 3 we make some calcnlllations and 
discuss some open questions. In particular we state a conjecture about Ext’ 
generalizing certain well known connections between the order of the image of the 
J-homomorphism and Bernoulli numbers. 

1. Formal group laws and the ANSS &-term 

Proofs and referencles for most results in this section can be found in [3] and [l l] 
unless otherwise stated. 

1.1. Definition. A formal group law (FGL) over a commutative unitary ring R is 
a power series F(x, y) E R[[x, y]] satisfying three conditions, 

(i) F(0, X) = F(x, 0) =x, 
(ii) F(x, Y) = F(Y, x), and 

(iii) W% ~1, z) = F(x, F(Y, ~1). 
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These correspond to the existence of an identity, commutativity and associativity 
in an abelian group. A thorough and lucid treatment of this theory can be found 
in [3]. 

1.2. Definition. A universal FGL U(x, y) over a ring L is one having the property 
that for any FGL F over R there is a homomorphism 0 : L-M such that B(U(x, y)) = 
0x9 Yb 

The existence of this object is easy to establish. Write 

Then 1.1 implies certain relations among the coefficients au, e.g. (i) says aio = 
aoi = 0 for i > 1, and (ii) says a$ = aji. We let L = Z[a@l, where I is the ideal 
generated by these relations, and v(x, y) = 1 a&yj. 

The explicit structure of this L is more difficult and was first determined by 
Lazard IL?]. A crucial step in his argument is 

1.3. Comparisoti Lemma. Let F and G be two FGL’s over R which agree module 
(x, yr. Then 

where 
G(x, Y) =F(x, Y) + aC,(,< y) mod&, Y)“+ ’ 

(xi-y)“-x”-y” 
ae:R and C,(x,y)=- 

v(n) 

with v(n) = 1 unless n is a power of a prime p in which case v(n) =p. 

To describe L it is convenient to introduce a grading on it by setting 
degaii=2(i+j-1). Hence if degx=degy- = -2, then F(x,y) is homogeneous of 
degree -2. 

1.4. Theorem. L = Z[xl , x2, l . . ] where deg xi = 2i. 

Proofs of 1.3 and I.4 can be found in [3] and [l 11. 
Quillea’s theorem establishes an isomorphism between L and n&MU) as follows. 

One hau MU*(CP”) = K*(MU)[[X]] with XE MU2(CP”); since we are in co- 
homology the coefficient ring n*(MU) is negatively graded. The H-space map 
CP” x C'P" +CP” sends x to a power series in x@ 1 and 1 @x which is easily seen 
to be a FGL. Hence we get a homomorphism 8: L-+n+(MU) which is Quillen’s 
isomorphism. 

. Let rcZ[[x]J be the group of power series of the form CirO bixi+’ 
with bo= 1 under composition. Cl 
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r acts on L as follows. Let U(x, y) be the universal FGL and y U. Then 
y-r u@(x), y(y)) Is another FGL over L and is therefore induced by some ring en- 
domorphism $ : L+L. Since y is invertible $ is an automorphism and one easily 
checks that this defines a Faction on L. 

The ANSS Q-term for the sphere can be shown to be isomorphic to H*(T; L). 
It is usually identified as Ext MU,o(~*(MU), n*(MU)) where n*(MU) = L and 
MU+(MU) = L(bl, bz, . . . ) with a certain coproduct. By a standard argument this 
Ext group is isomorphic to Ext&!, L) where B = Z[bl, b2, . . .I. This ring B can be 
identified with the ring of integer valued functions on r. An element y or can be 
written as y = CirO bixi+l with bO = 1 and bi E 2. Then a polynomial in B associates 
an integer to each y. If y’= C bix’+l and y”= C byxi+‘, then 

By equating the coefficients of xk in this equation one obtains the usual coproduct 
in MU,(MU), leading to our description of the &-term. 

If one localizes at a prime p one can replace MI/*(MU) by a smaller, more 
manageable object, W*(W). 

1.6. Definition. Let F be a FGL over a torsion free ring R. Then log x is the power 
series over Q @R given by 

logx= - 
s 

x dt 

0 F2& 01 

where F2(x, y) = aF/ay and one has 

log F(x, y) = log x + log y, 

i.e. the logarithm is a isomorphism over R@Q betwetli F and the additive FGL 
x + y. F is p-typical if log x= Cizo JiX*‘. 

The definition of p-typical can be generalized to an arbit. try R. More importantly 
it can be shown (Cartier [12]) that any FGL over a Ztp)-alL=*bra R (here ZtpJ is the 
ring of integers localized at p) is canonically isomorphic to a ptypical one. 

1.7. Theorem. There is a universal p-typical FGL over a ring V- Zfp)[vl, v2, . ..] 
with deg v,, = 2(pn - 1). The logarithm of this FGL is f(x) given recursively by 

f(x) =x+ ,Fo ; f qd) 

where f (*‘) is obtained from f(x) E Q Q V[[x]] by substituting v,P’ for v, for euch 
n. El 

For example 
l-+P 

4 
4 4 

A2=- 
02 =- 

P’ 
f- 

P2 P 
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and 
03 

jl3=-+ 
uZUf2+ oluzp 

+ 
of +fJ+p2 

P P2 P3 l 

The ring V is isomorphic to n&P) in the same way that L is isomorphic to 
In*. The canonical isomorphism referred to above leads to a splitting of the 
p-localization of iMU into a wedge of suspensions of BP. 

Unfortunately there is no reasonable subgroup of r which acts on V because most 
power series do not preserve p-typicality. Instead one has 

1.8. Lemma. Let F be a p-typical FGL over a torsion free ring R, y E r an invertible 
power series and C(x, y) = yF(y-l(x), y-‘(y)). Then G is p-typical iff 

log y-‘(x) = c log ti 9’. 
ii20 

This is Lemma 1.26 of [l 11. 

Recall A4&(MU) = L[br , b2, . . . ] s LB. A homomorphism 8 from this ring to 
any R corresponds to an FGL F over R (given by the restriction of B to L) 
and a power series f(x) = C B(Bi)xi in R[[x]]. Equivalently, 6 is determined by 
F, G =jF(f-l(x),f-‘( y)), and an isomorphism between them. Similarly a homo- 
morphism from 

BP,(BP)= V[t,, t2, . ..I= VT to R 

is determined by an isomorphism between two p-typical FGL’s over 11. These obser- 
vations are due to Landweber [ 131. Hence the sets Hom(V, R) and Hom( VT, R) con- 
stitute the objects and morphisms in the category of ptypical FGL’s over R and 
isomorphisms between them. This category is a groupoid, i.e. a small category in 
which every morphism is invertible. It follows that VT is a cogroupoid object in the 
category of commutative rings. Such objects have been christened Hopf algebroids 
by Haynes Miller, since a commutative Hopf algebra is a cogroup object in the 
same category. Accordingly there are various structure maps between V and VT 
corresponding to the structure of the groupoid. In particular there are maps 
qL, VR : V --) VT (known as the left and right units) corresponding to the source and 
target of a morphism, and d : VT-+ VTBv VT (known as the coproduct), cor- 
respon&ng to composition of morphisms. Here the tensor product is with respect 
to the bimodule structure given by qR and qL. 

1.9. Lemma. In BI i*@e) = VT, qL : V + VT is the standard inclusion and qR is 
&?tl by ~R(A,,) = C Ait!: i in VT@Q. Moreover we have 

c FUjfJpl = ~F~R(vj)‘~i mod(p) 

where CF denotes summation using the FGL instead of ordinary addition, e.g. we 
write F[qy)=x+Fy. The coproduct is given by C niA(tj)p’= c Izjt~iQt~“’ or 
equivuiently CFA(tj) = CF tjQ ty’. 
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The Ext group we want is defined in the category of VT-comodules, i.e. V- 
modules M equipped with suitable structure maps w : M-+ V’77& M. LB com- 
odules are similarly defined and Ext is the derived functor Horn. For any connen,:ive 
spectrum X, BP*(X) is a VT-comodule and Ext *( V; BP,(X)) is the &term of the 
ASS converging to the p-localization of n*(X). We also have the following local- 
global result. 

1.10. Theorem. For an LB-comodule M, 

For a VT-comodule M we will abbreviate Ext & V; M) by Ext(M). Of particular 
interest is Ext(V), the ANSS Q-term for the sphere. One approach to it is the 
chromatic spectral sequence (CSS) of [7] which we now describe. 

Define comodules M’ and N’ inductively as follows. fl= V, M” = 0;’ V@N” 
(where oO=p) and N”+’ - -M”/N”. Then the short exact sequences {SES) 

O_,N” -+M” ,N”+ 1 -+(-j 

splice together to make a long exact sequence (LES) 

called the chromatic resolution. Standard homological algebra gives 

1.11. Lemma. There is a spectral sequence converging to Ext( V) with EFS = 
ExtS(Mn) and d, : E,“IS*E,“+rSS-‘fl. 

Each element in M” is annnihilated by some power of In = (p, ul, . . . , F/n _ 1 ) c I/ 

and multiplication by Di is surjective for is n and an isomorphism for i .= n. We 
define comodules .!!$“- ;’ mductively by L4$t = M” and Mr G is the kernci of 
multiplication by Di_ 1 in M/l-f ‘. Hence we have SES’s 

leading to LES of Ext groups which in principle reduce the problem of computing 
Ext(M”) to that of finding Ext(Mi), where Mf = 0,’ V/In. This group is surprisingly 
accessible, thanks to some profound insights of Jack Morava; indeed the CSS wu 
constructed in order to exploit this. It is very closely related to the cohomology Inf 
the automorphism group of a certain FGL over the field with p” elements. This 
theory is developed in [6], [S] and [9] and we will give a brief account of it no?v. 

Let K(n)* = ffp[On, v; ’ ] and make it a V-module by defining multiplication by v, 
to be trim. ial if i#n. ‘Then let 

230 =WO&v VT&K(n)*. 

This is a Hopf algebroid (called the nth Morava stabilizer algebra) corresponding 
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to the category of p-typical FGL’s over IF,-algebras R for which the map 8: V-U? 
factors through K(n)*. (Such FGL’s are said to have height n. The height of an FGL 
over a field of characteristic p determines it up to isomorphism over the algebraic 
closure.) From 1.9 one can deduce that 

C(n) =K(n)*&, s,, . ..]/(v.f - I.&j) 

as a ring, and it inherits the 
blem at hand is given by 

coproduct from VT. The relevance of C(n) to the pro- 

1.12. Change of Rings Theorem [6]. 

Ext@f!f) = Extz~,,,(K(n)*, W&J. 

To relate this to group cohomology, make lFP. a K(n)*-module by sending v, to 
1 and let r;;l be the corresponding FGL over lFPn. Its endomorphism ring E, is an 
algebra of rank n2 over the p-adic integers generated by a primitive (p”- 1)th root 
of unit o (the endomorphism sending x to iiix where isI is the mod(p) reduction of 
o) and an element S (sending x to xP) subject to the relations So =wPS and 
S” =p. (The endomorphism corresponding to a natural number k sends x to a 
power series [k](x) defined inductively to be F(q [k - l](x)) as in 2.1 below. In Fn 
one has [p](x) = 8.) This ring is a maximal order in Dn = &,@I&, a central 
division algebra over the p-adic numbers. It is also a complete local ring with maxi- 
mal ideal (S) and residue field ff’n. Let &C&z denote the group of units con- 
gruent to 1 mod(S). It is a nilpotent pro p-group, the inverse limit of its (finite) im- 
ages in &/(Sk). Hence it is a compact topological group and we have 

1.13. Theorem. C(n)@ K(n)&” iS a Hopf algebra iSO?nOrphk to the COntinUOUS 

linear dual of the If,-group algebra of S,,. 

This result and 1.12 imply a close relation between Ext(M*) and the continuous 
mod(p) cohomology of Sn. In particular El = ZP so SI ~2" is the group of limits 
congruent to 1 mod(p). It is known that any degree n extension K of Q can be 
embedded in the division algebra D,,. By letting K be the pth cyclotonic extension 
we find that SP_ 1 has a subgroup of order p. Its cohomology is useful for detecting 
elements in Ext( V), the ANSS E2-term for the sphere; see [ lO]. 

2. Formal A-modules 

The reference for all results in this section unless otherwise stated is #21 of [3]. 
A formal A-module (FAl+vI) is a certain type of FGL defined over an A-algebra R. 
Before defining it we need 

. An endomorphism of an FGL F is a power series f(x) E R[ [xl] satis- 
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fying f(F(x, y)) = F(f(x), f(y)). For each integer n an endomorphism [n](x) is given 
as follows, [O](x) = 0 and [n + l](x) = F(s [n](x)) for nz0. We define [-n](x) by 

F(blO, bax)) = 0. 

Note that [n](x)=nxmod(x*) and F@, [-l](x)) =0 so [-l](x) is the formal group 
inverse of X. It is easy to verify that 

Hence we have a homomorphism from 2 to the endomorphism ring of F. It is 
known that if R is a finite field of characteristic p, then [p](x) determines F. 

2.2. Definition. Let A be the ring of integers in a number field or its p-adic com- 
pletion and let R be an A-algebra. An FGL over R is a formal A-moduk (FAM) 
if the homomorphism Z+EndF above extends to A, i.e. if there are power series 
[a](x) for each a E A having suitable properties. 

If R has characteristic p, then an FGL over R is automatically a formal ZP- 
module, where 2’ denotes the padic integers. This follows from the fact that 
[p](x)=0 mod&*), SO [p’](x) ~0 mod&*‘), so a power series in p (i.e. a p-adic 
integer) will lead to a power series with coefficient in R. A similar argument works 
if R is a J&-algebra. 

For A the ring of integers in a finite extension K of the p-adic numbers Q,, an 
important example of a formal A-module over A was given by Lubin-Tate [ 51. They 
used to construct explicit abelian extensiors of K. 

The FGL defined above over K(n)* is closely related to the mod(p) reduction of 
the Lubin-Tate FAM for A the unramified degree n extension of ZP. However, the 
relation between the Ext groups 1.12 and the corresponding FAM Ext group (to be 
defined below) is more remote. There is a homomorphism from the former to the 
latter analogous (via 1.13 and 2.12) to the restriction map from the cohomology of 
S,, to the subgroup of AX (with A as above) consisting of units in A congruent to 
1 mod(p). 

We wish to generalize the theory sf Section 1 to FAM’s. The definition of a 
universal FAM is obvious and we denote its ground ring by LA. Its existence is easy 
to show; in addition to the coefficients of F one needs the coefficients of [a](x) for 
all a E A, and these must satisfy certain relations. Then LA is simply the polynomial 
ring over A on all these indeterminants modulo the ideal generated by all the 
relations. 

There is a FAM comparison lemma, stated and proved in [3] as 21.2.4. 

2.3. FAM Comparison Lemma. Let A be a torsion free ring and let F and G be two 
FAiW’s which agree modufo terms of degree n. Then 

F(x, y) = G(x, y) + d C,(X, y) mod(x, y)” + ’ 
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where 
d(a - a”) E (v(n)) for all a E A and v(n) = 1 

unless n is a power of a prime p, in which case v(n) =p. 

The condition on d is vacuous if n is not a prime power. If A is the ring of integers 
in a number field K in which the prime p splits completely, then the condition is 
vacuous when n is a power of p. Using the grading on LA introduced above, it 
follows that the indecomposable quotient of Li” is the ideal Pt generated by all 
such d. If K has class number greater than one, then Pt may not be principal and 
LA will not be a polynomial ring. The argument of 2 1.3.5 in [3) indicates that LA 
is polynomial if all of the ideals P: are principal. 

If K is a sialois extension of the rationals we can describe the e more explicitly. 
In A we have the ideal decomposition 

where each ni is a distinct prime ideal and e is the ramification degree. Moreover 
A/ni is the field with p’ elements for each i and efl is the degree of the extension. 
Now let n =pj. If f divides j, then an - a E Ri for each i, but it need not be in nf, 
SO we have Pt = nf__, nie-‘. If f does not divide j, then a” -a need not be in any 
prime ideal containing (p), so Pt = (p). Hence we have 

2.4, Lemma. With notation as above and K a Galois extension of the rationals with 

(P)= li ni” in A, 
ia=1 

then 
(1) if n is a not a prime power, 

PA n’ (P) 

C 

if n is a power of p but not a power of pf’ 
k 

n ni e4 ifnisapowerof#, 
i=l 

0f course Pt can fail to be principal only if n is a suitable power of a prime at 
which K is ramified. For example K= Q(~) is ramified at the prime 2 and F$ = 
(2,1+ J-is>, i.e. it is not a principal ideal. If each Pt is principal, then LA is poly- 
nomial. In any case LA can be embedded in a polynomial ring as follows. 

If K is an infinite field it is known 13, 21.2. IO] that LK, the ground ring for the 
universal formal K-module, is K[mi, ~~22, . . . ] with log F(x, y) = log x+ log y where 
log X= Liz0 l?liXi+ ‘. In other words the power series logx defines an isomorphism 
from the universal FILM to the additive one, G(x, y) =~*+y. Moreover this FKM 
gives an FAM over & = A[ml, m2, . . .] and hence a homomorphism LA-‘RA. 2.3 
can be used to show this map is injective in the same way that 1.3 is used in the case 
A=Z. 
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The generalization of the group r is easy. Let rA denote the corresponding 
group of power series over A. 

2.5. mrna. Let F be a FAM and y E IJJ. Then G(x, y) = yF( y- * (x), y-l ( y)) is also 
a FAM. 

Proof. Let [al&) and [111&x) denote the endomorphism of F and G correspon- 
ding to a EA. Then it is easy to check that [aJo can be taken to be 
YwlF(Y-xm* 0 

It follows that we can define a Hopf algebroid LAB = LA [bl, b2, . . . ] as in Section 
1. If F is defined over a torsion free ring, it has a logarithm as in 1.6, which brings 
us to the notion of p-typicality. In Section 1 the theory works best for FGL’s 
defined over ZtPj -algebras. Such an FGL is easily seen to be a formal Z(,,-module. 

2.5. Definition. Let A be a discrete valuation ring with maximal ideal (II), finite 
residue field (F, and quotient field K. If K has characteristic 0 and R is an A- 
algebra mapping injectively to, R@* K, then a FAM over R is A-typical if jits 
logarithm has the form C @xq’ with nt E RQA K. 

Again this definition can be generalized and any FAM is canonically isomorphic 
to an A-typical one [3, 21.5.61. For the rest of this section A wi/I be as in 2.5. The 
analogue of 1.7 is 

2.6. Theorem, There is a universal A-typical FAM over a ring VA =A[$, v& ..*I 
with deg v,? = 2(qn - 1). The logarithm of this FAM is fA(x) given recursively by 

VA 
f,(x)=x+ c i- fT’J(xq’) 

i>o 72 

where fiqi) is obtained from fA by substituting (v:)~’ for vt for a// n > 0. 

Note thait. the generators vt depend on the choice of it, the logarithm fA(x) being 
fixed. 

If A is a Z(,,-algebra, then an A-typical FAM is also a p-typical FGL, so there 
is a homomorphism 6A. l V + VA. It must send the logarithm f(x) of 1.7 to fA(x) 
above and this enables us to calculate it explicitly. For example 

2.4. Corollary. Let K be a degreefextension of (9 in which p is unrumified and does 
not split, and let A be the ring of integers in K localized at (p). Using p as a uni- 
formizing parameter in A gives 

eA (vi) = 
t 

0 if ffi, 
v$ iffli. 
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Proof, We have q=pf so fA(x) = &, A$@'(T= Z: 6(Ai)xp'. The result follows by 
equating coefficients of these two power series. U 

The analogue of 1.8 is 

2.8. Lemma. Let F be an A-typical FAM, y EVA and 

as Y) =YF(PW9 P(Y))@ 

Then G is A-typ~a.11 if 

y--‘(x) = C”t?fli for s5me tt E R. 

This leads to the Hopf algebroid V,T= 5 [@, tt, . ..I corresponding to the 
groupoid of isomorphisms among A-typical FAM’s. Here deg tt =2(qn - 1). 

Proof. All but the mod(z) formula for qR can be easily deduced from results in [33. 
We will prove the formula on the nose for a different set of generators We and 
then show they agree with the 04 mod(n). The I.# are defined recursively by 

nJ,A = C 4If (Of__ j)4i 
OSi<f# 

which can be rewritten as 

d(x) = 7rx+ c fA(u$Q. 
i>O 

The formula for the WA is nearly identical, namely 

Osisn 
or [n](x) = zF wi”,, where wt = ft. 

iZ0 

Hence the WA are integral and we now show they agree with the IJ~ mod(n) and 
hence generate I$ Comparing the two defining formulae gives 

7w= c f~(Wfb+-- c fA(l$d). 
ir0 i>O 

Let g, be the functional inverse of fA. Applying it to both sides gives 
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If the left hand side is integral and divisible by n, then the desired congruence will 
follow by induction on i. To show that g&x)/~ is integral note that its functional 
inverse is 

fA(nx)/lc = c Li(lrX)%r 

which is integral since It’Ai is. 
To prove the right unit formula we reindex (1) and get 

(2) C 7ZJ4 = C 41i($)qi 

applying ?fR gives 

and substituting (1) on the left hand side gives 

c &4(J$)qi(t;)qi+L c &4(f; )qiqR(Wk”)q’+j 
or 

Applying the inverse of fA to both sides sives 

CF w,A(tf f = c t&eqR(wjy 

as desired. 0 

Now we consider the chromatic spectral sequence for FAM”s with A a discrete 
valuation ring as in 2.5. Its construction is quite straightforward. We have the 
chromatic resolution 

()-+Q+~A-+~f,-b- 

obtained from SES’s 

O-+N’A+M’A-+N;+‘-+O 

where ti = & and Ml = (vf )- ’ N‘i. 

2.10. Lemma. Them is a spectral sequence converging to Ext &r( VA, VA) as in 1.11 

with EpS = EXfSy,#I,M:b 

As in Section 1 we abbreviate Ext VAT( k& M) by Ext(M) for a I&T-comodule M. 
AS before the problem of computing Ext(Mz) reduces in principle to finding 
Ext((v~)-l~/I~) where 1:=(1&v& . . ..v~_.~)C 5. 

We let 

The ring StrUCtUre Of &(n) iS 

&(n)=&(n)*[t~, tf, ...]/(v~(t~)q” - (u~)qit~) 
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by 2.9. The proof of 1.12 given in [d] generalizes easily and we have 

2.11. Changes of Rings Theorem. 

The proof of 1.13 given in [8] also generalizes easily once we have the appropriate 
formulation. Let Ft be the FAN over ffqn given by the composite b +KA (n)-+ lFqe 
sending u: to 1. Now any FAM over a finite field is also a formal d-module, 
where A is the completion of A, so we assume now that A is complete and that its 
qu rtient field K is u finite extension of Q. We will describe the endomorphism 
ring Bt of Ft (see [3, 21.8.15)). It is an A-algebra of rank n2 generated by a 
primitive (q” - 1)th root of unity &)A (sending x to @4x) and SA (send x to XQ) with 
sj=?r and &~A=i@$+ OnA = Bt @A K is a central division algebra over K. Et is 
a complete local ring with maximal ideal @A) and residue field F+ We let 
st C(Ef)’ be the group of units congruent to 1 mod(SA). 

2.12. Theorem. &&)@K&), Q IF n is a Hopf algebra isomorphic to the continuous 
linear dual of the ffqn-group algebra of St. 

3. Some applications and open questions 

In this section A will be either the ring of integers in a finite extension of Q (global 
case) or the localization or completion of same at some prime (local case). In the 
local case for a l$J-comodule M, ExtA(M) will denote Ext br( I& M) and 
ExtA( VA) will be abbreviated by ExtA . In the global case similar abbreviations will 
be made for Ext groups defined over LAB. 

The attentive reader no doubt notice our omission in Section 2 of an analogue 
of 1.10, the relation between local and global Ext groups. We do not know if such 
an isomorphism holds in general, so we will merely formulate a conjecture. Suppose 
A is the ring of integers in a number field, i.e. a finite extension of Q. Then ExtA 
is an A-module and can therefore be localized at any prime ideal n in A. Let A, 
denote the localization of A. This ring is a DVR as in 2.5 so we have Qtypical 
Ext groups. 

3.1. Local-global Conjecture. For an LA B-comodule M 

3.2. eorem. Exti - -A, concentrated in dimension zero and Exti for s >O is all 
torsion. 

roof. Let K be the quotient field of A. The torsion free part of 
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into K& ExtA, so it suffices to compute the latter. One easily sees that it is 
isomorphic to Ext,@& VA) or ExtA(K@& LA). In the 
Ext~~~&K&))*, KA(o)+) and CA(O) =&(Q)*=K. 

In the global case one has KQ& LA = LK = K[m,, m2, . . .] 

mi are the coefficients in the log series. The calculation 
proceeds as in the case A = 2 to give the desired result. 

The determination of Ext; is more difficult and we only 
begin by recalling the calculation in the classical local case, 
we have a SES 

O-+E;**+Extl-+E$’ -+O. 

lolzal case this group is 

by [3, 21.4.11 where the 
of ExtA (K@ LA) = Ext, 
cl 

have partial results. We 
A = Ztpj. From the CSS 

The chromatic theory gives El a r =O so we need to compute Ef* and E$* and for 
the former we need Ext&)(ui’ V/(p)) for s= 41. Using 1.11 and I. 12 (see [9] for 
details) we have 

3.3. Lemma. For p>2, Extq,,(ui’V/(p)) =K(l)&E(ho) where hoEExt’B2p-2 cor- 
responds to the primitive tl E VT/(p). For p = 2 the group is 

where @I E Ext’#* is nppresented by oi3(12 + t f > + oi4u2 tl e vi’ VT/(2). 
Here E( ) and H)( ) denote exterior and polynomial algebras. 

To compute Ext*(M* ) we use the SES 

. 
()+MP--I_rM’--P-r~‘-+() 

giving 

. 

3.4 O+Ext”(M$+Exto(M1) ---% Bxt*(M$+ Ext’ (M;) -+ l a. 

where 6 is the connecting homomorphism and Ext(Mf ) is described in 3.3. The im- 
age of i is generated by {of/p : k E 2) and this is the subgroup of exponent p. We 

need to determine how many times each generator is divisible by p. An element in 
Ext*(M’) is not divisible by p iff it has a nontrivial image under 6. To compute 
this image one divides by p and applies qR - tfL. For p>2 and p{ j we have 

so G(v{~‘/P” * ) = c/p’_ ‘ho and we get 
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I Z/(p’“‘) 
Ext$$= o 

ift=2(p4)jpi forpfj, J’>O, 
otherwise; 

generated by v{p’/pi+ ‘. 

The above argument 

4 
(ttR - VL) jf 

breaks down for p=2. For example 

= 44 + t 12 
2 * 

w$ieh represents a trivial element in Ext’(@) so vt/2 is divisible by 4, contrary to 
what one would expect by analogy with 3.4. One finds that 

SO (vf + 4bi’Q/8 is in ExtON’ and is not divisible by 2. Since it involves 
a negative power of vl, it supports a nontrivial d, in the CSS, hitting 
vi/2v1 EEx~O(AY~). More generally for odd j and ir 1 we have 

(rl 
R- 

l lL) (I,: + 4Vi1V2)j2i-' V{2iQl 

2i+3 
=- 

2 

and for j2’> I this expression does not involve a negative power of vl. 

3.6. Theorem. For p = 2 

f- 0 if tl0 or t is odd, 

Ext& = 

t 

Z/(2) if t is even but 4ft, 
2x4) if t=4, 
Z/(2i+2) if t==j2’+‘for iz 1 and j odd, 

the generators being 

uj 3 and v{2’$2i+‘pv2 
2’ 4 ++2 . 

& 

We will see below that the extra factor of p in 3.6 is caused by the presence of 
a pth root of unity. 

Now we will try to generalize the argument of 3.5. From 2.12 we see that the 
analogue of 3.3 depends on the group St, which is abelian and, if A has no pth 
root of unity, torsion free. In any case the element ho will be present in its HI, 
which is all we need. In the analogue of 3.4, im i is generated by { (vf )‘/n : k E 2). 

In order to proceed further we need the n-adic valuation v : A +QU { 00) satisfy- 
ing 

v(a)=00 iff a=O, v(ab) = v(a) + v(b), 



Formal A-modules 341 

u(a + b) 2 min{ u(a), o(b)}, v(a) r: 0, 

v(a) = 0 iff a is a unit and v(p) = 1. 

Hence if aE (A~), then v(a) =kv(n). It is known that each local A has such a valua- 
tion and that V(R) = l/e where e is the ramification index of p in A, i .e. the mumber 
such that (ne) = (p), 

3.7. Theorem. If A is local with v(n)> l/(p - 1). Then 

if t = 2(q - 1)jp’ with p{ j andj > 0, 

otherwise, 

generated by (vr )jpi/(lcp’), where q is the catdinality of the residue #eid A/(n). 
[Note that 3.5 is a speclai case of 3.7, but that Zt2, does not satisfy the hypothesis 

V(A)> l/(p- l).] 

Proof. We proceed as in 3.5 and show that 

from which the result follows. To make this calculation we have qR(vp) = vf’ + ntt, 

so 

and we need to know the valuation of each of the coefficients ($!‘)n’ for k> 1 is 
greater than that for k = 1, For k = 1 this valuation is clearly i + v(x). 

Now we need two simple facts which the reader can verify: 

=i-v(k) and for k>l: - - 
k-lSp-1’ 

Hence the valuation of the kth coefficient is i - v(k) + kv(z). Subtracting i+ v(n) 
gives (k - l)v(n) - v(k), which is positive for all k> 1 if v(n) > l/(p - 1). c2 

What happens when v(n)~ l/(p- l)? We will look at two examples, the rings of 
integers in Q(fi) and Q(@. The latter is the cyclotomic extension of Q3 obtained 
by adjoining cube roots of unity. We can take R = m and in both cases v@) = l/2. 
Now consider the expansion 

) (vf)j3’-k(ntp )k. 

Since v(k)/(k - 1) < l/2 unless k = 3, we only have to consider the first and third 
terms. We have 
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= (VP + R&3 - (v;4)3 - lr3(v:')" (v;4(tt)3 - (vf’)3t;4) mod(n4) 

= 3(4)%t,A + 7c3(t/Qr - a3(tf’ )’ + d(v~)%~ 

= (37E + 7t3)(vfp2t:‘. 

The number 3~ + z3 is zero or nonzero depending on which of the two examples we 
are considering. Hence for A = Z3(fi) we get a result similar to 3.7, while for 
A = S(D) we get larger Extr groups as in 3.6. In general when v(n) = l/( p - 1) 
we get the extra factor of R when n can be chosen to satisfy np +pn ~0 
mod(np+ I), which is the case if the field has pth roots of unity. 

IVow we will discuss the global Ext ’ groups. In the classical case A = 2, Ext ’ can 
be read off from 3.5 and 3.6 using 1.10. The result is that Ext>2m = Z/(j,) for cer- 
tain numbers jm having some interesting properties, e.g. 

3.8. Theorem. Up to tz factor of 2 the number jm is the greatest common division 
of the numbers k*(k”‘- 1) for k E 2 and N sufficiently large. 

A proof and further discussion can be found in f 11. For example, j2 = 12, 
kz- 1 mod(8) for 2fk, k2= mod(3) for 3{k and no similar relations exist for larger 
primes, so the number given by the theorem is 24. 

3.9. Globa Conjecture. For global A, Extizm =A/@ where .I: is, up to some 
small factor, the ideal generated by aN(um- 1) for a E A and N sufficiently large. 

The numbers jm of 3.8 are also related to Bernoulli numbers and the values of 
the Biemann zeta function at negative integers, but these properties do not appear 
to generalize to other number fields. For example if the field is not totally real its 
Dedekind zeta function vanishes at all negative integers. 

Our evidence for this conjecture is purely local (although the similarity between 
Jt and the 1”,A of 2.4 could have some significance), so we are assuming 3.1. The 
local form of the conjecture would have Ji be the ideal generated by am - 1 for all 
units ra E A. Then we have J’ C(n) iff (q - 1) divides m, so let m = (q- 1)~ If A is 
complete, then any unit congruent to 1 mod(n) is a (q- 1)th power, and we can 
reformulate 3.9 as 

3.10. Local Conjecture. If A is the ring of integers in a finite extension of Qp with 
maximal ideal (R) and residue field lFq, then 

Exti”(4-‘)=A/J,q,_ ,) 

where J.&_ r) is the ideal generated by elements of the .iorm a” - 1 for units a E A 
congruent to 1 mod(z). 

The Ext>’ for other t must vanish since 4 r is concentrated in dimensions divisi- 
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bEe by 2(q- 1). If A satisfies the hypothesis of 3.7, then 3.10 is true since 

a” -l=(l+nb)“-l=~;O 
0 

; nkbk 

for some t, E A and we can analyze this expansion in the same we analyzed 
(vp + a@)“. 

Next we will consider some general properties of the Hopf algebras J&(n) of 
2.11. let A be the ring of integers in a finite separable extension K of the p-adic 
numbers (II&. Let (@CA be the maximal ideal with A/(Z) = 1F, where q=pf. Let 
e = ~/V(A). Then ef is the degree of the extension [2, Proposition 1.5.31. Recall the 
homomorphism 19~. l V+ I$. We extend it to a Hopf algebroid map & : VT+ 4 T 

as follows. A map 8 from &T to an A-algebra R corresponds to an isornorphism 
between two A-typical FAM’s over R, and in particular to an isomorphism between 
two p-typical FGL’s over R. Hence we haare a natural transformation of functors 
[VAT, -I+[ VT, - ] which must be represented by a homomorphism OA as above. 

a. (a) With notation as above 

@ACti)= o 

t 

4$f iffl i, 
otherwise. 

(b) Let L be the unramified extension of Q., of degree f and BC L 
tegers. Then K is a totally ramified extension of L of degree e and 
t&,* the map from V’ to l$ We have 

its ring of in- 
we denofe by 

8ebi) = 
v?f iff 1 i, 

o 

otherwise, 

and &&I;‘)=IG whereI;f=(z,vfl,...,vf_I)c b and I~=(z,v~,..~,v&_I)~ More- 
over OA(v,,~l) = c(vt Jk mod I’ where k = (pnef - I)/(pnf - 1) and c E ffq is the mod(n) 
reduction of p/ze. 

Proof. For (a) the elements ti and tt are defined by 1.8 and 2.8. An isomorphism 
y from an A-typical FAM F to another 3ne must satisfy 

Y-‘(X) = CFtAXQi= CFtiXPi with to = tt = 1 

by 2.8 and 1.8 and the result follows. 
For (b) we take p as our generator of the maximal ideal in B. Then we have 

fB (x) = @Bf (x), so 

PX + C 8B(vi)@B( f (p’)(xp’)$ =pX+ C Vrf (q”(Xq’) 

from which we can compute &(vJ by induction on i. 
For the statement about 6$/n we use the generators WA of b used in the proof 

of 2.9 defined by 

ZfA (x) = fA(wtx$ with wf = n. 
i20 
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This is equivalent to 

[n](x) = CFWi”xqi. 
Now (7te) = (p) and we want a formula for [?re](sr). We have for exam 

[n2]x= CF~fQ~](~))qis c wi”<wj”)qi# mod(n), 
i, j>O 

3.12 beI = CF 
. . 

Wi$(W&1(W$2 l ** (w$+‘,XO; mod@) 
l~,lp..*, l i>O 

where ~j=Qi’+h+‘**!id Observe that the coefficient of # is nonzero 
modl”=(n, w&., w& I)* Now p = ne mod(ne+ ’ ), so the same is true of the coef- 
ficients of [p](x) = c”w/kq’. Since we saw irl the proof of 2.9 that w/% $ mod(p), 
the result folows. 

For the mod 1: reduction of @~(v~e~)~ co sider the reduction of 3.12. The leading 
term on the right is (w,” )&x4”, so equating the coefficients of ~9’” gives 

3.13. Corollary. There is a Hopf tzfgebroid homomorphism 

with 
OA : C(nef )+2$(n) 

OA (ti) = 
1 

f$f if f divides i, 
0 otherwise, 

and OA (v~~J = c@f )k where k = (pnef - l)/(p”f - I), c E IF9 is the mod@) reduction 
of p/z’, e is the ramificution index and pf is the cardrnafity of the residue field. 

For n = 1 this is related (via 1.13 and 2.12) to the fact that the field K (an extension 
of QP of degree ef) embeds in the division algebra II,,,. 

N.B. A proof of 3.1 has recently been found by my student A. Pearlman. His ac- 
count of it will include a proof of 1 .lO, which does not seem to exist currently in 
the literature. 

S4ince LAB= LA& LB, LA is an LB-comodule and standard arguments show 
ExiLAB(LA, LA) = ExttB(L, LA). Hence if there exists a spectrum SA with 
A4U&TA) = LA as an LB-comodule, then our Ext group would be the &term for 
the ANSS converging to I&S,& Apparently B&(&)1+ b except possibly when p 
splits completely in A. 
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