A Software Driven Undergraduate Fractal Course

Douglas C. Ravenel
University of Rochester
Rochester, New York 14627

email: drav@harpo.math.rochester.edu

April, 1995

[Submitted to Fractals, Computer Graphics, and Mathematics Education,
edited by M. Frame and B. Mandelbrot]

The ambiguity in the title is intentional; the phrase ‘software driven’ refers
both to the curriculum of the course and the students taking it. For the
past three I years I have taught a sophomore level course at the University
of Rochester on the mathematics of fractal images. The classroom I use is
equipped with 25 50MHz 486 IBM compatible PCs, and an 8 foot overhead pro-
jector. Students taking the course are required to have a year of calculus and
some computer experience. The second requirement appears to be redundant,
since anyone who would want to take such a course would also be computer
literate, in many cases more so than I am. The course appears to have more
appeal to computer science majors than math majors. The level of enthusiasm
in the students is rare for an undergraduate math course. On many occasions
they have surprised me with their energy and originality.

Software used

Before describing the content of the course, I will describe the software used.
All of it, with the exception of Mathematica and some programs I wrote, is freely
available on the internet. I list them in approximate order of their importance
in the course.

e Fractint, an extremely well written omnibus program for creating fractal
images quickly, and the workhorse program for the course. (Its existence
accounts for the absence of commercial fractal software for MSDOS. Un-
fortunately, it is not available on the Macintosh, but there is an XWindows
version.) The program includes code for 32-bit integer arithmetic, which
runs quite a bit faster than comparable floating point arithmetic, and
gives the program its remarkable speed. It has a comprehensive menu of
fractal types, enabling one to reproduce almost every fractal image that
has appeared in print anywhere, and a versatile programming language

enabling a user with modest skills to create many types not on the menu.
Each image produced can be rotated, reflected, and magnified by many
orders of magnitude, and one can manipulate the color scheme in various
ways.

e Cobweb, Orbit and Curves, three homemade BASIC programs which illus-
trate the behavior of dynamical systems related to Mandelbrot and Julia
sets. In Cobweb, the function y = f(z) = 22 + ¢ (for a specified real value
of ¢) is plotted for x in a specified interval, along with the diagonal line
y = x. For a specified o (usually 0), a vertical line is drawn from (zg,0)
to (xo, f(x0)), followed by a horizontal line to (f(zo), f(2o)). This process
(vertical line to the curve followed by horizontal line to the diagonal) is
repeated a specified number of times, 25 iterations being the default. One
can replace the function f by any of its iterates. With this program one
can produce graphic illustrations of stable and unstable fixed points, pe-
riodic and preperiodic points, bounded and unbounded orbits, and chaos.
The Curves program plots several iterates of f simultaneously. The Or-
bit program plots orbits for complex values of ¢ and = and has similar
features.

e Mathematica, which I use for certain symbolic and numerical calculations,
such as locating periodic points near a given preperiodic point in the
Mandelbrot set, which in turn can be located by solving certain polynomial
equations either numerically or symbolically.

e FDesign, a mouse driven program for generating IFS attractors geomet-
rically. One specifies a collection of contracting affine maps (an iterated
function system) by drawing a reference triangle and then drawing its im-
ages under the various maps. The program displays the corresponding
IFS attractor instantly, either in a corner window or on the full screen,
with the images of the attractor under the various maps coded by color.
The parameters of the affine maps can be exported to Fractint.

e Animation software, for animating a sequence of image produced by Fractint.
One needs a program such as DTA to assemble a sequence of gif files (gif
is the graphics format used by Fractint to store images) into an f£1i or
flc file (f1i and flc are animation formats), which can then be viewed
as an animation by a suitable display program.

Organization of the course

I assign two texts for the course, Barnsley [Bar88] and Lauwerier [Lau91],
but I do not follow them closely. (Devaney’s new book [Dev92] appears to be
closer to the mark, but I have not had a chance to use it yet.) I use [Bar88] only
in the second half of the course when I talk about iterated function systems. I
place most of the books on fractals in our library (our librarian tells me that

they are the ones most often stolen) on reserve and occasionally assign readings
from them.

I begin the course by showing the video [PJSZ90], which serves as an intro-
duction to both the subject as a whole, and to the first of two major topics in
the course, Mandelbrot and Julia sets associated with the function f(z) = 22+c.
Then I introduce the relevant concepts from dynamical systems, using the BA-
SIC programs described above to provide illustrated examples.

The second half of the course is devoted to iterated function systems (IFSs),
which is the subject of Barnsley’s book. This entails discussing 2 x 2 matrices
and metric spaces, which I do as informally as possible. I stress that the proof of
what I call the main theorem of the subject (see below) contains in it the ideas
behind the computer algorithms used to depict IFS attractors. Such a direct
link between a rigorous proof and an efficient algorithm is rare in mathematics.

The course work consists of four projects, which I encourage students to do
in groups of up to three people. I offer a long list of possible topics for each
project and encourage the students to invent their own topics. Each project
involves some degree of programming, and I have found that they rarely need
my help with that aspect of their work. Each is handed in as a printed report
with computer generated illustrations, often accompanied by program listings.

Early on I tell them how to use the software provided to make an animated
sequence of fractal images; this is explained in more detail below. Everybody is
required to make at least one animation as part of a project, and they seem to
like doing this. The course ends with a ‘fractal film festival’ with films made by
the students, with prizes offered for the best ones, as determined by class vote.

Mandelbrot and Julia sets

In the following paragraphs, I will say briefly here what I spend several weeks
explaining to my students in the class.

For an analytic function such as f(z) = 22+, the filled in Julia set Ky is the
set of points z with bounded orbits under iteration of f. Computationally one
needs an escape criterion to recognize an unbounded orbit. For f(z) = 2% + ¢,
one knows that the orbit of z is unbounded if |z|] > 2. To create an image
of Ky, a program such as Fractint must compute the orbit for the value of z
corresponding to each pixel on the screen, up to a specified maximum number
of iterations, typically 150. As soon as a value with modulus greater than 2
is reached, the pixel is colored according to the escape time, the number of
iterations required to meet the escape criterion. If the modulus is still less than
2 after the maximum number of iterations, the program assumes that the pixel
is in K¢ and colors it accordingly. Fractint has various shortcuts for recognizing
in advance when certain points have bounded orbits, thereby saving itself the
trouble of computing the full 150 (or more) iterations in many cases.

A theorem of Julia and Fatou (proved before 1920, without the aid of
Fractint) says that for polynomial f, the set K is connected if and only if
it contains the critical points of f, i.e. iff the critical orbits are all bounded. For
f as above there is only one critical point, namely z = 0. The Mandelbrot set

for a one (or more) parameter family of analytic functions (such as the family
22 + ¢ for varying c) is defined to be the set of parameter values for which each
critical orbit of the corresponding function is bounded. The boundedness of an
orbit can be determined computationally with the help of an escape criterion as
above. In a picture of the Mandelbrot set, the points on the screen correspond
to parameter values, and they are colored according to the escape time of the
associated critical orbit or orbits.

Let M denote the usual Mandelbrot set, the one for the set of functions
f(z) = 2% + ¢ for varying c¢. The first thing one sees upon looking at it is a
cardioid shaped region around ¢ = 0. Simple calculations show that for each ¢
inside this cardioid, the critical orbit converges to a stable fixed point, and for
¢ = 0 the orbit itself is fixed. To the left of the cardioid is a circular region of
radius 1/4. The critical orbit for its center, ¢ = —1, is a cycle of period 2, and
for each ¢ inside the circle, the critical orbit converges to such a cycle. Also
attached to the main cardioid are infinitely many smaller regions usually called
buds, roughly circular in shape. For each value of ¢ in such a region, the critical
orbit converges to a cycle of the same period. There is one such region for each
rational number between 0 and 1, the denominator of the number being the
period of the cycle. One has a precise formula for the point where each bud is
attached to the main cardioid, and an approximation for the size of each bud.

Closer inspection reveals many miniature replicas of M known as ‘baby Ms.’
The largest of these has the cusp of its cardioid at ¢ = —7/4, is roughly 1/50th
the size of the original M, and the critical point for the center of its cardioid is a
3-cycle. Further investigation shows that these baby Ms occur in clusters around
values of ¢ for which the critical orbit is preperiodic, i.e. it becomes periodic
after some noise at the beginning. Mathematica, used as a numerical tool,
can be of great help in locating and analyzing these preperiodic and periodic
points in M. A theorem of Lei [Lei90] says that in a small neighborhood of
a preperiodic value of ¢, the Mandelbrot set M exhibits self-similarity with a
predictable scaling factor, and that this neighborhood is nearly identical to a
similar neighborhood of the point z = ¢ in the Julia set corresponding to c. 1
will explain below how one can program Fractint to illustrate this result.

The combinatorics of the Mandelbrot set are best encoded in Douady-Hubbard’s
theory of external angles, which assigns one or more real numbers between 0
and 1 to each point on the boundary of M. The external angles of preperiodic
points are always rational. Informal accounts of this theory can be found in
Chapter 5 and Douady’s paper in [PR86], and in [Dou86]. So far I have not
much luck in enticing students to pursue this subject their projects.

One can also consider Julia sets for other functions, and Mandelbrot sets for
other families of functions. Here are some interesting examples.

e The cubic function f(z) = 23—3a?2+b, which has critical points at z = +a.
Fractint can be programmed to look at both critical orbits (for given values
of a and b) and to end its computation when either orbit escapes. This
is a 2-parameter family of functions, so the associated Mandelbrot set is
4-dimensional. One can look at a 2- dimensional slice of it by imposing

some relation between the two parameters, such as holding one of them
constant. One can make an animation by varying this slice.

e The rational function f(z) = ¢(z™ +z~™) for an integer n. Each 2nth root
of unity w is a critical point, but each of the 2n critical orbits behaves
in the same way. Hence the Mandelbrot set (with ¢ as parameter) can
be obtained by looking just at the orbit for z = 1. It has a garland like
appearance with 2n-fold symmetry, with a copy of the original M at each
¢ = w/2, and a hierarchy of smaller copies. Each Julia set has a similar
appearance.

e For each function f(z), one has the associated Newton function
Ni(z) =z = f(2)/f'(2).

Newton’s method for finding roots of f consists of iterating N¢; for most
initial values of z the orbit converges rapidly to a root. One gets interesting
fractals by looking at the set of initial values for which Newton’s method
fails, which is called the Newton-Julia set of f. To display it we color pixels
according to capture time rather than escape time; we stop computing an
orbit of Ny when |f(2)| becomes sufficiently small. For a family of fs one
gets a Newton-Mandelbrot set by considering the critical orbits of Ny for
each f; z is a critical point of Ny if f”(z) = 0.

Iterated function systems

IF'S attractors in the plane are compact subsets which in many cases can be
depicted on a computer screen with far less computing power (both in terms of
hardware and software) than is needed for Mandelbrot and Julia sets. Fractint
has an IF'S option in which it reads data from an ifs file and generates the
image in a manner I will describe below.

An iterated function system (IFS) in R? (or more generally any complete
metric space X) is a collection {F},...,F,} of contraction mappings on R?.
The main theorem of the subject says there is a unique nonempty compact
subset A C X (called the attractor) such that

A=Fi(A)U---UF,(A).

This is proved by considering a new metric space H(X) whose points are the
nonempty compact subsets of X. The (Hausdorf) metric on H(X) is defined as
follows. The distance d(K, L) between compact subsets K and L of X is the
smallest number r such that each point in K is within r of some point in L and
vice versa. If the metric space X is complete, so is H(X).

Given an IFS on X we define a mapping G of H(X) to itself by

G(K) = Fi(K)U - U Fp(K).

G is a contraction mapping. If each of the F; shrinks distances by a factor of
at most s < 1, then so does G. The contraction mapping theorem says that
a contraction mapping on a complete metric space has a unique fixed point.
Applying it to the contraction G on the complete metric space H(X) gives the
existence and uniqueness of A.

Given a compact Ky C R?, consider its orbit {K;} under G, defined by
K;+1 = G(K;). One sees easily that

Sid(.Kv()7 G(K()))

) <
d(A,K;) < ==

If one knows s and d(Ky, G(Kp)), one can choose ¢ so that this upper bound is
less than the radius of a pixel, regarding the computer screen as a rectangle in
the plane. This means that for practical purposes, A is the same as K;. For a
convenient choice of Ky (such as a single point in the center of the screen), this
gives us a finite computation of A known as the deterministic algorithm.

The deterministic algorithm is easy to implement but not very fast, since
one may have to compute each of the F; on thousands of pixels in each iteration.
A much faster method is the random algorithm, which is as follows. Choose a
point Py € K¢ and obtain P;1; from F; by applying one of the functions Fj},
chosen at random. Then P; € K;, so we know that for sufficiently large i, this
point is within a pixel’s radius of some point in A, and for such i we plot P; on
the screen. Each iteration requires computing just one function on one pixel, so
this algorithm is much faster.

The software (and much of Barnsley’s book) deals with the case when the
functions F; are affine, i.e. of the form

Fi(z,y) = (a;x + by + e, cix + dyy + fi)

for 6n constants a; through f;. One also needs to assign a probability p; to each
of these, for the purpose of making the random choice. Experience has shown
that it is best to make p; proportional to the absolute value of the determi-
nant a;d; — b;c;, assigning a minimal positive probability when the determinant
vanishes. FDesign does this automatically (after the user defines the 6n con-
stants geometrically), but Fractint does not. With this choice of p;, the points
produced by the random algorithm are evenly distributed over A.

It is instructive to see what happens when one does not choose the probabil-
ities this way. In version 17.2 of Fractint (which is about 3 years old) one can
edit the ifs file and see the result immediately. Unfortunately this feature is
not present in later versions of the program.

Making fractal animations

In the summer of 1993, Jeffrey Lampert, a student in my first fractals course,
hired on as a summer intern for me, and found the software used for animations.
Fractint can save the images it creates as gif files. A sequence of such files
can be assembled into a f1i or flc file, which is in effect a film, for which

there are several display programs available. Fractint also has a batch language
(not the same as the formula language described below); it can respond to a
series of instructions stored in a key file. (The Fractint package comes with a
demonstration program which is a DOS batch file telling Fractint to read a file
called demo.key. One can learn its batch language by examining that file.)

An animation typically consists of 100 or so incrementally varying images
produced by Fractint. It is prohibitively tedious to make them all by hand, or to
make them with a handwritten key file. Instead the students write a program
in their favorite language that will generate the desired key file for them. If
they are animating a sequence of IFS images, it is usually necessary to generate
a specially designed ifs file as well.

Once produced and saved by Fractint, the images have to be assembled into
an animation file. The entire process of image production, saving and assembly
can take up to a minute of computing time per frame, depending on the speed of
the computer and the resolution (usually 320 x 200 or 640 x 480) and complexity
of each image.

Some examples of Fractint formulas

Fractint has a formula mode which is in effect a simple programming lan-
guage. It allows the user to define the function f(z), the initial point of each
orbit, and the escape criterion. These typically vary with the pixel, and may
also be controlled by two user defined complex parameters pl and p2. The
formulas are stored in a text file (with the extension frm) read by Fractint, and
the user may change the values of pl and p2 each time a new image is created.

Fractint computes the orbit assigned to each pixel and colors it accordingly.
When the program is written one assumes the default screen coordinate system,
which has the corners of the screen at £2 4 1.54, with pixel as a predefined
complex variable. Once the image has been produced one has all of the usual
Fractint options of zooming, reflecting, recoloring, etc.

Here are descriptions of some frm programs that I have found useful.

o [llustrating Lei’s theorem. [Lei90] (This concerns the similarity between
small regions of M and small regions of corresponding Julia set.) One
can program Fractint to show different images in different quadrants of
the screen in the following way. Define functions characteristic functions
c1(z), c2(2), c3(2), and cy4(z), for each the four quadrants. (The frm
syntax includes the absolute value, real and imaginary parts of a complex
variable, so it is possible to make this definition.) Then by defining

f(2) = c1(2) f1(2) + ca(2) fa(2) + €3(2) f3(2) + ca(2) fa(2)

one is effectively looking at four different functions in the four quadrants
of the screen. Using the user defined parameter p1 for ¢, one can define f
and the initial point of each orbit in such a way that one sees in the four
screen quadrants

a neighborhood of ¢ in M magnified 5 times,

the same neighborhood magnified 100 times,

the Julia set for ¢, and

a neighborhood of ¢ in the Julia set magnified 100 times.

o [llustrating Feigenbaum points. (A Feigenbaum point in M is a limit point
of a converging sequence of periodic points in which the period increases
exponentially, rather then linearly as in the case of a preperiodic point.)
This is similar to the previous example, but we show four successive mag-
nifications of M around the point ¢ = p1, with the magnifications being
powers of the number § = p2. For complex values of 4, this ‘magni-
fication’ includes a rotation. The best known example of a Feigenbaum
point is ¢ = —1.401155.. .. (the limit point of the period doubling scenario)
with 0 = 4.669201 .. ., the Feigenbaum number. Some other examples are
listed in [Mil89]. One can also use this program to illustrate self-similarity
around preperiodic points, the simplest example being ¢ = —2 with § = 4.

o The Curry-Garnett-Sullivan experiment. [CGS83] The authors study the
Newton-Mandelbrot and Newton-Julia sets for the cubic function

fz)=22+(c—-1z—c

The Newton function Ny has four critical points, three of which are roots
of f. The orbit of the fourth critical point, z = 0 (where f"(z) = 0),
may or may not converge to a root. The values of ¢ for which it fails to
do so comprise the Newton-Mandelbrot set. The papers shows a small
copy of the original M in this set, centered at ¢ = .31 + 1.62¢, for which
the critical orbit converges to a cycle of period 2. To see this Newton-
Mandelbrot set with Fractint, set ¢ = pixel, and iterate the function Ny
starting at z = 0 and stopping when | f(z)| gets small, say less than 1076.
For a Newton-Julia set, set ¢ = p1, z = pixel and iterate as before.

Conclusion

My experience with this course has convinced me that the study of fractals
is a great way to draw students into mathematics. The image of a fractal on a
computer screen has a fascination for both the specialist and the casual observer.
Anyone curious about its properties and how it is produced quickly finds herself
in deep mathematical waters. There is readily available software that makes it
easy to illustrate lectures on fractals in real time. This subject is a motivational
tool that the mathematical community should make the most of.

References

[Bar88]
[CGS83]

[Dev92]

[Dou86]

[Lau9l]

[Lei90]

[Mil89]

[PJSZ90]

[PRS6]

M. F. Barnsley. Fractals Everywhere. Academic Press, Boston, 1988.

J. H. Curry, L. Garnett, and D. Sullivan. On the iteration of a rational
function: computer experiments with Newton’s method. Communi-
cations in Mathematical Physics, 91:267-277, 1983.

R. L. Devaney. A first course in chaotic dynamical systems : theory
and experiment. Addison-Wesley, 1992.

A. Douady. Algorithms for computing angles in the Mandelbrot set.
In M. F. Barnsley and S. G. Demko, editors, Chaotic Dynamics and
Fractals, pages 155-168, Academic Press, 1986.

H. Lauwerier. Fractals: Endlessly Repeating Geometrical Figures.
Princeton University Press, Princeton, 1991.

T. Lei. Similarity between the Mandelbrot set and Julia sets. Com-
munications in Mathematical Physics, 134:567-617, 1990.

J. W. Milnor. Self-similarity and hairiness in the Mandelbrot set.

In M. C. Tangora, editor, Computers in Geometry and Topology,
pages 211-257, 1989.

H.-O. Peitgen, H. Jurgens, D. Saupe, and C. Zahlten. Fractals, an
animated discussion [videorecording], interviews with E. Lorenz and
B.B. Mandelbrot. W.H. Freeman, New York, 1990.

H. O. Peitgen and P. H. Richter. The Beauty of Fractals. Springer-
Verlag, New York, 1986.

