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1 6, in the Adams-Novikov spectral sequence

0; in the Adams-Novikov spectral sequence
Browder’s theorem says that 8; is detected in the classical Adams spectral sequence by

w2 eix?" (2/2,2)2).
This element is known to be the only one in its bidegree.

It is more convenient for us to work with the Adams-Novikov spectral sequence, which maps to
the Adams spectral sequence. It has a family of elements in filtration 2, namely

2,6i—2j
Bi/i € Extyy ) (MU, MU

for certain values of of i and j. When j = 1, it is customary to omit it from the notation.

6; in the Adams-Novikov spectral sequence (continued)
Here are the first few of these in the relevant bidegrees.

04 : Bg/s and B

6s : Bis/16> Bi2/4 and By

B : B32/325 Baayg and Bay o

6 : Bea /o4 Bag)16 Baasa and Pas

and so on. In the bidegree of 6;, only B,;-i /-1 has a nontrivial image (namely h?) in the Adams
spectral sequence. There is an additional element in this bidegree, namely o ;.

We need to show that any element mapping to h? in the classical Adams spectral sequence has
nontrivial image the Adams-Novikov spectral sequence for 2.

0; in the Adams-Novikov spectral sequence (continued)

+

. .
Detection Theorem. Letx € Exti,}zl;* (Mv) (MU,,MU,) be any element whose image in EXti=2!+1 (Z/2,Z.)2)

l:S h? with j > 6. (Here A denotes the mod 2 Steenrod algebra.) Then the image of x in H>*"' (Cs; . (Q))
is nonzero.

We will prove this by showing the same is true after we map the latter to a simpler object involving
another algebraic tool, the theory of formal A-modules, where A is the ring of integers in a suitable
field.




2 Formal A-modules

Formal A-modules
Recall the a formal group law over a ring R is a power series

F(x,y)=x+y+ Y a; X'y’ € R[[x,y]]
ij>0

with certain properties.

For positive integers m one has power series [m](x) € R[[x]] defined recursively by [1](x) = x and

[m](x) = F(x, [m — 1] (x)).

These satisfy
[m+n](x) = F([m](x), [n](x)) and [m]([n](x)) = [mn](x).

With these properties we can define [m](x) uniquely for all integers m, and we get a homomorphism
7 from Z to End(F), the endomorphism ring of F.

Formal A-modules (continued)
If the ground ring R is an algebra over the p-local integers Z,) or the p-adic integers Z, then we
can make sense of [m](x) for min Z,) or Z,,.

Now suppose R is an algebra over a larger ring A, such as the ring of integers in a number field or
a finite extension of the p-adic numbers. We say that the formal group law F is a formal A-module if
the homomorphism 7 extends to A in such a way that

[a](x) = ax mod (x?) fora € A.

The theory of formal A-modules is well developed. Lubin-Tate used them to do local class field
theory.

Formal A-modules (continued)

The example of interest to us is A = Zs[x]/(x* + 1) = Z,[{s], where (g is a primitive 8th root of
unity. The maximal ideal of A is generated by = = {3 — 1, and * is a unit multiple of 2. There is a
formal A-module G over R, = A[w*!] (with |w| = 2) satisfying

logg(G(x,y)) =logg(x) +logg(y)

where . .
w2152

logg(x) =}

n>0

”n

The classifying map A : MU, — R, for G factors through BP,, where the logarithm is

logg(x) = Z 0%

n>0

1.5

1.6

1.7




Formal A-modules (continued)
Recall that BP, =Z5)[v1,v2,...] with |[v,| =2(2" — 1). The v, and the ¢, are related by Hazewinkel’s
formula,

Vi
oy = =
! 2
3
V2 Vl
b6 = =4+
? 273
2 4 7
vy o VivaHvavp vy
b3 = 242 211
3 2+ n +8
0 = v74+v1v§—|—v§+\}3v§ v%vé—%—v?v%—kvzv%z ﬁ
T2 4 8 16

3 m(MUW)andR,

The relation between MU“) and formal A-modules

What does all this have to do with our spectrum Q = D~'MU®)? Recall that D = K§8>N§ (Zgl) )NS (A,
We saw earlier that inverting a product of this sort is needed to get the Periodicity Theorem, but we
did not explain the choice of subscripts of A. They are the smallest ones that satisfy the second part
of the following.

Lemma. The classifying homomorphism A : (MU ) — R, for G factors through mt.(MU™)) in such
a way that

e the homomorphism AW (MU (4)) — R, is equivariant, where Cg acts on m.(MU (4)) as
before, it acts trivially on A and yw = {gw for a generator y of Cg.
o The element D € 1t,(MU™) that we invert to get Q goes to a unit in R..

We will prove this later.

4 The proof of the Detection Theorem

The proof of the Detection Theorem
It follows that we have a map

H*(Cg; 1. (D~ 'MU™)) = H*(Cg; 1, (Q)) — H*(Cg;R,.).

The source here is the E>-term of the homotopy fixed point spectral sequence for 7.(Q), and the
target is easy to calculate. We will use it to prove the Detection Theorem, namely

. 2,271 . . 20i+!
Detection Theorem. Letx € Exty;, ;) (MU, ,MU.,) be any element whose image in Exty”  (Z/2,Z./2)
is h? with j > 6. (Here A denotes the mod 2 Steenrod algebra.) Then the image of x in 22 (Cs; . (Q))

LS nonzero.

We will prove this by showing that the image of x in H>?""' (Cg;R,) is nonzero.

The proof of the Detection Theorem (continued)
We will calculate with BP-theory. Recall that

BP.(BP) = BP,[t1,12,...] where |t,| =2(2" —1).

We will abbreviate Exty, (sp) (B, BP,) by Ext*. For a BP,(BP)-comodule M (such as BP, (X)), we
will abbreviate Extgp, (gp) (BPs, BP;) by Ext(M).

1.8
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There is a map from this Hopf algebroid to one associated with H*(Cs;R,) in which #, maps to
an R.-valued function on Cg (regarded as the group of 8th roots of unity) determined by

F n
[E)(x) = Y (o, ™"

n>0

An easy calculation shows that the function #; sends a primitive root in Cg to a unit in R,.

The proof of the Detection Theorem (continued)

Let .
1 2/ i1,2/—i 2.2/l
b1,j1 =5 Z (z) {tﬂtl ’} € Ext

0<i<2i
It is is known to be cohomologous to f3,;1 /21 and to have order 2. We will show that its image in

g2 (Cs;R.) is nontrivial for j > 2.
H*(Cg;R,) is the cohomology of the cochain complex

—1 —1
R.[Cs] ! ] Trace R.[Cs] .

R, [CS
where Trace is multiplication by 1 +y+---+ 7.

The proof of the Detection Theorem (continued)
The cohomology groups H*(Cs; R, ) for s > 0 are periodic in s with period 2. We have

H'(CsiRom) = ker(1+§"+-+ &™) /im (5" —1)
w"A/(m)  form odd

w"A /(%) form =2 mod 4
w"A/(2)  form=4mod 8

0 form=0mod 8
H*(Cg;Ram) = ker(&y'—1)/im(1+ &0+ + &™)
B w"A/(8) form=0mod 8
o 0 otherwise

An easy calculation shows that by ;| maps to 4w2j, which is the element of order 2 in H2 (C8;Ryj+1).

Sidebar on chromatic fractions
)

It is common to write f3;/; as a chromatic fraction EWE What does this mean? For suitable i and
V1

j» i is an element of Ext% (BP* /(2, v{ )) and there are short exact sequences

J .
and 0—= BP./(2) ~= X -2BP,/(2) — X 2BP,/(2,v]) — 0
0 — BP, — BP, — BP./(2) —0

leading to connecting homomorphisms

Ext® (BP./(2,v])) = Ext" 92 (BP, /(2)) - Ex*%2 (BP,)

<
o™
<
5

Vo b

_

—_
N
<

—_
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The proof of the Detection Theorem (continued)
To finish the proof we need to show that the other fBs in the same bidegree as 3,1 J2-1 =
Be(j0)/2i-1 map to zero. We will do this for j > 6. The set of these is

{ﬁc(j7k)/2j—l—2k: 0<k< ]/2}
where ¢(j, k) = 2]—1—2k(1 _~_22k+1)/3'

We will see in the proof of the Lemma below that v; and v, map to unit multiples of 73w and
n’w? respectively. This means we can define a valuation on chromatic fractions compatible with the
one on A in which |2|| =1, ||| = 1/4, ||v1]| = 3/4 and ||v2|| = 1/2. We extend the valuation on A
to R, by setting ||w|| = 0.

The proof of the Detection Theorem (continued)
Hence for k > 1 and j > 6 we have
v;(jﬂk)
zv%j—l—Zk
(k) 32071 |
2 4
2J 4 0i-1-2  3.9j-1-2
= G — ) —1
= (2 '—7.2737 31 > 5,

1Be(jsy 12l =

This means ﬁc( jk)/2i—1-2 maps to an element that is divisible by 8 and therefore zero, since the
homomorphism cannot lower this valuation.

The proof of the Detection Theorem (continued)
We have to make a similar computation with the element o ,;_;. We have

2/ -1
Vi
2

320 —1)

4
21
17124 for j > 3.

lloniill

v

This completes the proof of the Detection Theorem modulo the Lemma.

5 The proof of the Lemma

The proof of the Lemma
Here it is again.

Lemma. The classifying homomorphism A : t,(MU) — R, for G factors through mt,(MU™) in such
a way that

o the homomorphism A : 1, (MU®)) — R, is equivariant, where Cg acts on m,(MU®) as
before, it acts trivially on A and yw = Cgw for a generator y of Cg.
o The element D € T, (MU(4>) that we invert to get S goes to a unit in R..

1.18




The proof of the Lemma (continued)
To prove the first part, consider the following diagram for an arbitrary ring K.

MU,(MU)
I R
T.(MU (MU

) (MU®) m.(MU)
Nj /
M ; %
v
K

The maps A; and A; classify two formal group laws F} and F> over K. The Hopf algebroid MU, (MU)
represents strict isomorphisms between formal group laws. Hence the existence of A s equivalent
to that of a compatible strict isomorphism between F and F,.

The proof of the Lemma (continued)
Similarly consider the diagram

n*(MU(4))
. (MU) m.(MU) N %AW N m.(MU) . (MU)
A v Ay
K

The existence of A(4) is equivalent to that of compatible strict isomorphisms between the four formal
group laws Fj classified by the 4;.

The proof of the Lemma (continued)

n*(MU(4))
. (MU) .(MU) N %M“) " m.(MU) . (MU)
M v ; Ay
K

Now suppose further that K has a Cg-action and that A(4) is equivariant with respect to the previously
defined Cg-action on MU™®). Then the isomorphism induced by the fourth power of a generator v € Cg
is the isomorphism sending x to its formal inverse on each of the F;.

This means that the existence of an equivariant A4 is equivalent to that of a formal Z[{s]-module
structure on each of the F;, which are all isomorphic. Setting K = R, proves the first part of the
Lemma.

The proof of the Lemma (continued)
Here is the Lemma again.

Lemma. The classifying homomorphism A : (MU ) — R, for G factors through mt,(MU™)) in such
a way that

e the homomorphism AW 7, (MU (4>) — R, is equivariant, where Cg acts on T.(MU <4>) as
before, it acts trivially on A and yw = {gw for a generator v of Cs.
o The element D € T, (MU(4>) that we invert to get L goes to a unit in R,.




The proof of the Lemma (continued)
For the second part, recall that D = K(lg)Nf (Z§4>)N§ (A2, where
~@) _ ) Xk forg=2
K7L N§(rp_,) otherwise.

Since our formal A-module is 2-typical we can do the calculations using BP in place of MU.
Hence we can replace x,x_; € @MU by v € m,BP and ry_ € T.MU ANMU by t; € m.BP ABP. We

have E}((z) = vi. Using Hazewinkel’s formula we find that

vi = (=1 —4n® —6m —4)w = unit-w
va = (@4r+11x% 6w —6)w® = unit- W
v3 (407 + 1667 + 2371+ 100)w’ = unit- 7w’
vy = (—1575471% — 566317 — 634957 — 9707)w'.
(where each unit is in A) so v4 (but not v, for n < 4) and therefore N§ (Kf)) maps to a unit in R,. 1.23

The proof of the Lemma (continued)
We have Z,(CZ) = 1. We consider the equivariant composite

BP® - BPY SR,

under which -
Gew™ ~
nR(gn) g T

Using the right unit formula we find that
n — (T4+2)w = unit-wTw
n o (P57 49145

(4))

This means 1, (but not #;) and therefore N§(A,) maps to a unit in R,. 1.24

The proof of the Lemma (continued)

Finally, we have Z,(f) =1(1) € BPY, where t,(1) is the analog of ry»_;(1). Then we find

W2”71
4(1) — -
2"—1
) -
ﬂn

This implies
AV = 0@ a1 e B oy,
Thus we have shown that each factor of

—(8 —(4 -2
D=AYNS B NS (BT

and hence D itself maps to a unit in R,, thus proving the lemma. 1.25
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