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1. INTRODUCTION

Let G be a finitely generated nilpotent group. The object of this paper is to
identify the Bousfield localization L, BG of the classifying space BG with respect
to a multiplicative complex oriented homology theory h.. We show that L, BG is
the same as the localization of BG with respect to the ordinary homology theory
determined by the ring hg. This is similar to what happens when one localizes
a space X with respect to a connected ring theory E: it follows from results of
Bousfield [Bou79, Theorem 3.1] that Lg X is the localization of X with respect to
ordinary homology with coefficients in the ring Fy. The point in this paper is that
we do not require the spectrum A to be connected.

Our main result is

Theorem 1. Let G be a finitely generated nilpotent group, and let hy be a mul-
tiplicative complex oriented homology theory. Then LpBG = LrBG, where R is
the ring ho and Lg s localization with respect to the ordinary homology theory
determined by R.

The hypothesis that h, be multiplicative is not essential to any of our arguments.
We include it mainly to avoid cumbersome statements, and because most complex
oriented theories of interest, such as Morava K-theory, are multiplicative. By mod-
ifying somewhat the results it seems that one could remove the assumption that h.
is multiplicative. However, do not consider this case. Complex orientability is used
in an essential way, in the proof of Theorem 3.

Our method of proof is to begin with finite p-groups and proceed by induction on
the order of the group. We show that if G has a normal subgroup H such that BH
is hu-local, G/H = Z/p, and B(G/H) is R-local for R = hg, then BG is h.-local.
We do this by studying the fibration

BH — BG —s B(G/H) = BZ/p

To pass to arbitrary finitely generated nilpotent groups, we use the arithmetic
square decomposition of L, X due to Mislin and Bousfield.

Our main task is to study the fibration displayed above. In general it is not true
that if the base and fibre of a fibration are local with respect to some homology
theory, then the total space is also local. For example in the fibration

S? — RP? — BZ/(2)
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both fiber and base are local with respect to ordinary integral homology, but the
total space is not [BK72], [DDK77].

Our technique for dealing with this problem is to use the following lemma. If B
is a space and C is a class of fibrations over B, say that C has h.-accessible fibres if
any h.-equivalence (over B) between fibrations in C induces an h.-equivalence on
fibres.

Lemma 2. Let h, be an arbitrary homology theory, and consider the diagram

™

F E B

Fl —— L,E _Lnm B
in which each Tow is a fiber sequence. Suppose that B and F' are both h.-local, and
that there exists some class C of fibrations over B which has h.-accessible fibres and
contains both m and Lpmw. Then E is h.-local.

Proof. Since C has h.-accessible fibres and h.(g) is an equivalence, h.(f) is also
an equivalence. The space F' is h,-local by assumption, and F” is h,-local since it
is the homotopy fiber of a map between h.-local spaces. Therefore f, being and
hs-equivalence between h.-local spaces, is an equivalence. It follows that ¢ is also
an equivalence and F is h.-local. [l

In order to use this lemma, we show in the next section that if A, is a multi-
plicative complex oriented homology theory with the property that hg is a vector
space over Z/p, then the class of all fibrations over BZ/p has h.-accessible fibres.

2. FIBRATIONS OVER BZ/p

In this section we prove the following theorem. The results and arguments are
inspired by the work of Kriz [Kri].

Theorem 3. Let h, be a multiplicative complex oriented homology theory such
that the Ting ho is a mod p vector space. Suppose that E and E' are fibrations over
BZ/p with fibres F and F’, respectively, and that f : E — E’ is a map over BZ/p
which induces an isomorphism hE = h.E’'. Then f also induces an isomorphism
ho = hoF'.

Recall that the homotopy coequalizer of a pair of maps f, g : X — Y is obtained
by taking the cylinder X x [0, 1] and gluing one end to Y by f and the other end
to Y by g. This construction is sometimes also called the double mapping cylinder
of f and g. Given maps of pairs f, g: (X, A) — (Y, B), the homotopy coequalizer
of f and g is the pair (Z,C), where Z is the homotopy coequalizer of the two maps
X — Y and C is the homotopy coequalizer of the two maps B — C. A diagram of
pairs equivalent to

(x,4) L% (v, B) — (2,0)
is said to be a homotopy coequalizer diagram. The following lemma is elementary.

Lemma 4. Let

(X, 4) L% (v, B) —— (2,0)
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be a homotopy coequalizer diagram. Suppose that hs is a homology theory. Then
there is a natural long exact sequence

C— hi(X,A) f*__g,* hi(Y,B) _ hi(Z,C) _ hifl(X,A) ...

Lemma 5. Let G be a group of order p with generator g, and V a mod p vector
space with an action of G. Then the endomorphism (1 — g) of V is nilpotent (in
the sense that for some integer k, (1 — g)* = 0). In particular, the kernel of
(1—g):V =V is nontrivial.

Proof. Tt is possible to choose k = p, since, in view of the fact that we are working
mod p, (1 —g)? =1—g? =0. O

Lemma 6. Suppose that h, is a multiplicative complex oriented homology theory.
Consider a homotopy fibre square

in which ¢ and ¢ are principal S'-bundles. If f induces on isomorphism on h.,
then so does g.

Proof. Let £ be the complex line bundle over E’ associated to ¢’ and & the complex
line bundle over E associated to q. Denote the Thom spaces of these bundles by
M (&) and M (¢') respectively. There is a map of cofibration sequences

q

E E M(€)
g‘ f M(f)
=L M(¢')

The map h.(f) is an isomorphism by hypothesis. By the Thom isomorphism for
h, the map h.(M(f)) can be identified with h.(f) and so it too is an isomorphism.
The fact that h.(g) is an isomorphism follows from looking at long exact homology
sequences and using the five lemma. [l

Proof of Theorem 3. Let G denote the group Z/p, and g € G some chosen gener-
ator. We can assume that F' and F’ are G-spaces, and that f is obtained up to
homotopy by taking the Borel construction §(f) on a G-map F' — F’. (One way
to obtain a suitable G-space equivalent to F', for instance, is to take the pullback
over E — BG of the universal cover of BG.)

Suppose that X is a G-space (in our case either F' or F’). Note that the homotopy
coequalizer of the G-maps 1, g : G — G is the circle S! with the usual rotation
action of G. More generally, the homotopy coequalizer of 1, g : X XG — X X G is the
product G-space X x S! Taking Borel constructions gives a homotopy coequalizer
diagram

BX xG) —2 B(X x G) —— B(X x §Y)
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where u and v are the appropriate induced Borel construction maps. It is clear
that 3(X x S1) is the total space of a principal S'-bundle over 3(X), in fact, the
total space of the pullback along the map 3(X) — BG of the usual principal S*-
bundle 3(S') — BG. The Borel construction (X x G), on the other hand, can be
identified up to homotopy with X itself in such a way that u and v can be identified
with the original maps 1 and g.

Let E denote the Borel construction B(G, F' x S') and E’ the Borel construc-
tion B(G, F' x S'). According to the above considerations we have a homotopy
coequalizer diagram

(F',F) —%s (F',F) —— (E', )

Since h.(F’, E) vanishes by assumption, h.(E’, E) vanishes by Lemma 6. Lemma 4
then implies that the endomorphism (1 — g.) of h.(F’, F') is an automorphism, but
by Lemma 5 this can happen only if h.(F’, F') = 0, in other words, only if the map
F — F' induces an h,-isomorphism. O

3. LOCALIZATION OF CLASSIFYING SPACES

We begin by recalling a result of Bousfield [Bou82] about localizations of BZ/p.
(In that paper he actually determines Lj, K (A, n) for any homology theory h, and
any abelian group A.) We say that a space is h.-acyclic if the reduced homology
B*(X ) vanishes, or equivalently if Lj,(X) is contractible.

Lemma 7. If h, is a multiplicative homology theory, then the space BZ/p is hy-
acyclic if p is invertible in hy and h.-local otherwise. FEquivalently, Lp,BZ/p =
LrBZ/p, where R = hy and Lr denotes localization with respect to H.(—; R).

With Theorem 3 in hand we can prove the following.

Theorem 8. Suppose that h, is a multiplicative complex oriented homology theory,
and that G is a finite p-group. The space BG is h, acyclic if p is invertible in hg
and h.-local otherwise.

Proof. If p is invertible is hg it is obvious from the Atiyah-Hirzebruch spectral
sequence that BG is h.-acyclic, so we assume that p is not invertible in hy and
prove that BG is h.-local. Suppose first that hg is a Z/p-vector space. We argue
by induction on the order of G. Let H C G be a normal subgroup of index p.
The space BZ/p is h.-local by Lemma 7, and so there is a diagram of fibration
sequences:

BH BG BZ/p

F' — L,BG —— BZ/p.

It thus follows immediately from Lemma 2 and Theorem 3 that BG is h,-local.
Now consider a general h of the specified type. For a prime ¢, let h/q denote the

smash product of the spectrum h representing h, with a mod ¢ Moore spectrum
denoted here by M. Clearly h/q is still complex orientable: This is true since

a complex orientation for a spectrum FE is a class # € E?(CP*) with certain
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properties. One has a map £ — E A M induced by the unit in M, and one can use
the image of z under this map as a complex orientation for E A M.

Alternatively, E is complex orientable iff it is an M U-module spectrum. If F is
an MU-module spectrum, so is E A M.

If X is a space, let Xq denote the localization of X with respect to rational
homology. Since (BG)q = *, it follows from Proposition 7.2 of [Bou82] that we
have a fibration sequence

LhBG — [, Ly)BG — (Hq L, /qBG>Q — pt.

where ¢ runs though the primes not invertible in hy. We know from above that
Ly, BG = BG and that Lj,,BG = pt. for ¢ # p. It follows that L,BG = BG as
claimed. m

Slightly more generally we have

Theorem 9. Suppose that G be a finite nilpotent group and that h is a multiplica-
tive complex oriented homology theory. Then LoBG = LrBG, where L is as in
Lemma 7. In particular, if no prime dividing the order of G is invertible in hy,
then BG is h.-local.

Proof. The group G is the direct product of its Sylow p-subgroups G, so we have
BG ~ Hp BG, and L, BG ~ Hp Ly, BG,. The factors in this second product can
be identified with the help of Theorem 8. There is a similar product formula for
LrBG. O

We now turn to the proof of the main theorem.

Proof of Theorem 1. 1t is shown by Bousfield in [Bou82] that for any space X,
LpX ~ LpLrX where Lp is localization with respect to H.(—; R). It is easy to
check that a map of spaces is an isomorphism on H,(—; R) if and only if it is an
isomorphism on @©pH.(—;Z/p ® R) as well as an isomorphism on H,(—; Q ® R).
Let P be the set of all primes which are not invertible in R. Tt follows that a map
of spaces is an isomorphism on H,(—; R) if and only if it is an isomorphism on
H.(—; @pepZ/p), as well as, if Q ® R # 0, an isomorphism on H.(—; Q). Since
BG is a nilpotent space, the results of [DDK77] imply that if Q ® R = 0 there is
an equivalence

LrBG ~ H Lz,,BG

peP

while if Q ® R # 0 there is a homotopy fibre square

LRBG _ HpG’F’LZ/pBG

(BG)q —— (Teplz/pBG)a.

We will carry out the proof by showing that LzpBG is h.-local, so that L, BG =~
LyLrBG ~ LrBG. To do this we will show that all of the constituents in the
above formulas for Lrp BG are h,-local, and then appeal to the fact that the class
of h.-local spaces is closed under homotopy inverse limit constructions.
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Now according to [BK72, VI 2.6, 2.2 and TV §2] the space Ly, BG ~ (Z/p)sc BG
can be identified as B(Gp), where G, = limG/T?G is the p-lower-central-series
completion of G. In particular Ly, BG is equivalent to the homotopy inverse limit
of the tower {B(G/T?G)}s. If p € P then each space in this tower is h.-local
(Theorem 8), and so Ly, BG is h.-local by homotopy inverse limit closure. By the
same principle, HpeP Lz,,BG is hs-local.

We can complete the proof by showing that if Q ® R # 0 then any space W
local with respect to rational homology is also local with respect to h.. Given the
definition of what it means for a space to be h,-local, we have to show that any
h.-equivalence f : X — Y induces a bijection f# : [Y,W] — [X, W] (where the
brackets indicate homotopy classes of maps). However, by [Bou82, 3.3|, such an
f is a rational equivalence, so the fact that f# is a bijection follows from the fact
that W is local with respect to rational homology. [l

4. POSSIBLE EXTENSIONS AND RELATED PROBLEMS

It was shown above that the Bousfield localization with respect to certain ho-
mology theories of the classifying space BG of a finitely generated nilpotent group
G is the same as the localization with respect to a classical homology theory with
appropriate coefficients. The question remains open for other (non finitely gener-
ated) nilpotent groups and other localization functors. Using the fact that K (F,2),
where F' is any free abelian group, is local with respect to complex K- theory it
is not hard to see that so is K(G,1) for any abelian group G and in fact one can
show that theorem 1 holds for any abelian group.

To go beyond Eilenberg-MacLane spaces the following is a natural possible ex-
tension of the main results above.

Let N be a nilpotent space whose homotopy groups vanish above certain dimen-
sion n. Is it true that any Bousfield homological localization of N is equivalent to
its localization with respect to a well chosen classical homology theory?

Similar question arise beyond the realm of Bousfield homological localization.
Namely, one may ask for analogues of the above questions for an arbitrary homo-
topical localization Ly with respect to an arbitrary map f. In that case it is not
true that the localization will be the same as the localization with respect to a well
chosen classical homology. This is because the map BZ/p* — BZ/p, induced by
the quotient group map, is in fact a homotopy localization map, but it is not an
homological localization map. But one does expect that an arbitrary localization
LN of a nilpotent space N as above will also be a nilpotent space with vanishing
homotopy groups above a certain dimension that depends only on n.
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