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2.1

1 Our strategy

Our strategy

Main Theorem. The Arf-Kervaire elements θ j ∈ π2 j+1−2(S
0) do not exist for j ≥ 7.

2.2
We will prove it by producing a map S0→Ω, where Ω is a nonconnective E∞-ring spectrum with

the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence in which the image of each
θ j is nontrivial. This means that if θ j exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that πk(Ω) depends only on the reduction of
k modulo 256.

(iii) Gap Theorem. πk(Ω) = 0 for −4 < k < 0. This property is our zinger. Its proof involves a
new tool we call the slice spectral sequence. It will be the subject of tomorrow’s talk.

How the theorem follows from the existence of Ω

Here again are the properties of Ω:

(i) Detection Theorem. If θ j exists, it has nontrivial image in π∗(Ω).
(ii) Periodicity Theorem. πk(Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The
argument for θ j for larger j is similar, since |θ j|= 2 j+1−2≡−2 mod 256 for j ≥ 7. 2.3

2 The construction of Ω

How we construct the spectrum Ω

The construction of Ω requires the use of equivariant stable homotopy theory.

Roughly speaking, an equivariant G-spectrum is a spectrum X with an action of the group G. For
us the group of interest will be C8. This leads to a fixed point spectrum XG and a homotopy fixed
point spectrum XhG, with a map XG→ XhG.
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For a G-space X , XG is the subspace fixed by all of G, which is the same as the space of equivariant
maps from a point to X , MapG(∗,X). To get XhG, we replace the point here by an free contractible
G-space EG.

The homotopy type of XhG = MapG(EG,X) is known to be independent of the choice of EG.
The unique map EG→∗ leads to the map XG→ XhG. 2.4

How we construct the spectrum Ω (continued)
We construct a C8-spectrum Ω̃ and show that

• Ω̃hC8 satisfies the detection and periodicity theorems.
• Ω̃C8 satisfies the gap theorem.

Hence our proof depends on a fourth property:

(iv) Fixed Point Theorem The map Ω̃C8 → Ω̃hC8 is an equivalence.

We will come back to the definition of Ω̃ below. 2.5

3 MU and its equivariant relatives

MU and its equivariant relatives
The starting point for the construction of Ω̃ is the action of C2 on the complex cobordism spectrum

MU given by complex conjugation. The resulting C2-equivariant spectrum is denoted by MUR and
is called real cobordism theory. This terminology follows Atiyah’s definition of real K-theory, by
which he meant complex K-theory equipped with complex conjugation.

Next we use a formal tool we call the norm NG
H for inducing up from an H-spectrum to a G-

spectrum when H is a subgroup of G. 2.6

MU and its equivariant relatives (continued)
For an H-space X , we have a G-space

MapH(G,X),

where H acts on G by right multiplication and G acts on the mapping space via right multiplication in
G. The underlying space here is the Cartesian product X |G/H|. G permutes the factors the same way it
permutes cosets, and each factor is invariant under H. The norm functor is an analogous construction
in the stable category.

The case of interest to us is X = MUR, H = C2 and G = C2n+1 . This means that the underlying
spectrum of NG

H X is MU (2n), the 2n-fold smash power of MU . 2.7

MU and its equivariant relatives (continued)
In order to proceed further we need to introduce RO(G)-graded homotopy, where RO(G) denotes

the orthogonal representation ring of G. Let SV denote the one point compactification of orthogonal
representation V , and for a G-space or spectrum X define

π
G
V X = MapG(S

V ,X).

Note that when the action of G on V is trivial, an equivariant map SV = SdimV → X must land in the
fixed point set XG, so

π
G
n X = πnXG.

In the stable category we can make sense of this for virtual as well as actual representations, so
we get homotopy groups indexed by RO(G), which we denote collectively by πG

? X . 2.8
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MU and its equivariant relatives (continued)
Recall that

π∗(MU) = Z[x1,x2, . . . ] with |xi|= 2i.

It turns out that any choice of generator xi : S2i→MU is the image under the forgetful functor of a
map

Siρ
xi // MUR.

Here ρ denotes the regular real representation of C2, which is the same thing as the complex numbers
C acted on by conjugation. 2.9

MU and its equivariant relatives (continued)
For G = C2n+1 , the G-spectrum NG

C2
MUR is underlain by MU (2n). π∗MU (2n) is a graded polyno-

mial algebra over Z where

• there are 2n generators in each positive even dimension 2i.
• they are acted on transitively by G.

For a group generator γ ∈ G and polynomial generator ri ∈ π2i, the set{
γ

jri : 0≤ j < 2n}
is algebraically independent, and γ2n

ri = (−1)iri. 2.10

4 The slice filtration

The slice filtration
Now we introduce our main technical tool, the slice filtration.

First we need to recall some things about the classical Postnikov tower. The mth Postnikov section
PmX of a space or spectrum X is obtained by killing all homotopy groups of X above dimension m
by attaching cells. The fiber of the map X → PmX is PmX , the m-connected cover of X .

These two functors have some universal properties. Let S and S>m denote the categories of
spectra and m-connected spectra. The functor Pm is Dror nullification with respect to the subcategory
S>m. This means

• For all spectra X , PmX ∈S>m.
• For all A ∈S>m and X ∈S , map of function spectra S (A,PmX)→S (A,X) is a weak equiv-

alence.

In other words, the map PmX → X is universal among maps from m-connected spectra to X . 2.11

More about the Postnikov tower
Similarly the map X → PmX is universal among maps from X to spectra which are S>m-null in

the sense that all maps to them from m-connected spectra are null. In other words,

• The spectrum PmX is S>m-null.
• For any S>m-null spectrum Z, the map S (PmX ,Z)→S (X ,Z) is an equivalence.

Since S>m ⊂S>m−1, there is a natural transformation Pm → Pm−1, whose fiber is denoted by
Pm

m X .

Thus we get a the Postnikov tower

. . . // Pm+1X // PmX // Pm−1X // . . .

Pm+1
m+1 X

OO

Pm
m X

OO

Pm−1
m−1 X

OO

in which the homotopy limit is X and the homotopy colimit is contractible. The mth fiber Pm
m X is

HπmX , the Eilenberg-Mac Lane spectrum for the mth homotopy group of X . 2.12
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An equivariant Postnikov tower
In what follows G will be an arbitrary finite cyclic 2-group, and g = |G|. Let S G denote the

category of G-equivariant spectra. We need an equivariant analog of S>m. Our choice for this is
somewhat novel.

Recall that S>m is the category of spectra built up out of spheres of dimension >m using arbitrary
wedges and mapping cones.

For a subgroup H of G with |H|= h and an integer k, let

Ŝ(kρH) = G+∧H SkρH

where ρH denotes the regular real representation of H. Its underlying spectrum is a wedge of g/h
spheres of dimension kh which are permuted by elements of G and are invariant under H. 2.13

An equivariant Postnikov tower (continued)
We will replace the set of sphere spectra by

A =
{

Ŝ(kρH), Σ
−1Ŝ(kρH) : H ⊂ G, k ∈ Z

}
.

We will refer to the elements in this set as slice cells. Note that Σ−2Ŝ(kρH) (and larger desus-
pensions) are not slice cells. A free slice cell is one of the form Ŝ(kρ{e}), a wedge of g k-spheres
permuted by G. Note that

Σ
−1Ŝ(kρ{e}) = Ŝ((k−1)ρ{e}).

Nonfree slice cells are said to be isotropic.

In order to define S G
>m, we need to assign a dimension to each element in A . We do this in terms

of the underlying wedge summands, namely

dim Ŝ(kρH) = kh and dim Σ
−1Ŝ(kρH) = kh−1.

2.14

An equivariant Postnikov tower (continued)
Then S G

>m is the category built up out of elements in A of dimension >m using arbitrary wedges,
mapping cones and smash products with equivariant suspension spectra.

With this definition it is possible to construct functors PG
m and Pm

G with the same formal properties
as in the classical case.

Thus we get an equivariant analog of the Postnikov tower

. . . // Pm+1
G X // Pm

G X // Pm−1
G X // . . .

GPm+1
m+1 X

OO

GPm
m X

OO

GPm−1
m−1 X

OO

in which the homotopy limit is X and the homotopy colimit is contractible. 2.15
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5 The slice spectral sequence

The slice spectral sequence

. . . // Pm+1
G X // Pm

G X // Pm−1
G X // . . .

GPm+1
m+1 X

OO

GPm
m X

OO

GPm−1
m−1 X

OO

We call this the slice tower. GPm
m X is the mth slice and the decreasing sequence of subgroups of

π∗(X) is the slice filtration. We also get slice filtrations of the RO(G)-graded homotopy πG
? (X) and

the homotopy groups of fixed point sets π∗(XH).

There is an important difference between this tower and the classical one. In the classical case
the map X → PmX does not change homotopy groups in dimensions ≤ m. This is not true in the
equivariant case. 2.16

The slice spectral sequence (continued)
Equivalently, in the classical case, Pm

m X is an Eilenberg-Mac Lane spectrum whose mth homotopy
group is that of X . In our case, π∗(

GPm
m X) need not be concentrated in dimension m.

This means the slice filtration leads to a (possibly noncollapsing) slice spectral sequence converg-
ing to π∗(X) and its variants.

One variant has the form

Es,t
2 = π

G
t−s(

GPt
t X) =⇒ π

G
t−s(X).

Recall that πG
∗ (X) is by definition π∗(XG), the homotopy of the fixed point set.

This is the spectral sequence we will use to study MU (4)
R and its relatives. 2.17

The slice spectral sequence (continued)
A large portion of our paper is devoted to proving that the slice spectral sequence has the desired

properties. From now on we will drop the symbol G from the functors Pm, Pm and Pm
m .

Slice Theorem . In the slice tower for NG
C2

MUR, every odd slice is contractible and P2m
2m = Ŵm∧HZ,

where Ŵm is a certain wedge of 2m-dimensional slice cells (to be discussed in tomorrow’s talk) and
HZ is the integer Eilenberg-Mac Lane spectrum. Ŵm never has any free summands.

2.18
Our G-spectrum Ω̃ (where G =C8) is obtained from the E∞-ring spectrum NG

C2
MUR by inverting

a certain element D ∈ πG
19ρG

NG
C2

MUR. The choices of G and D are the simplest ones leading to a
homotopy fixed point set with the detection property. The slice tower for Ω̃ has similar properties to
that of NG

C2
MUR .

6 The gap theorem

Proving the gap theorem
The gap theorem follows from the fact that πG

−2 vanishes for each isotropic slice, i.e., for each
one of the form

Ŝ(kρH)∧HZ

for any nontrivial subgroup H and any integer k. This will be the subject of tomorrow’s talk.

In order to give a feel for these calculations we offer the following picture of πG
∗ SkρG ∧HZ for

G =C8 and various integers k. 2.19
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Some C8 slices
A picture of πG

∗ SkρG ∧HZ for G =C8 and various integers k.
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7 The periodicity theorem

Proving the Periodicity Theorem
We now outline the proof of the Periodicity Theorem, assuming the Slice Theorem.

We establish some differentials in the slice spectral sequence and show that certain elements
become permanent cycles after inverting a certain D ∈ πG

19ρG
NG

C2
MUR. This leads to an equivariant

self map
Σ

256
Ω̃→ Ω̃.

It is an ordinary homotopy equivalence, and this is known to imply that it induces an equivalence on
homotopy fixed point sets. 2.21

Digression on Geometric Fixed Points
The key tool for studying differentials in the slice spectral sequence is the geometric fixed point

spectrum, denoted by ΦGX for a G-spectrum X . It has much nicer properties than the usual fixed
point spectrum XG, which fails to commute with smash products and infinite suspensions.

In order to define it we need the isotropy separation sequence, which in the case of a finite cyclic
2-group G is the cofiber sequence

EC2+→ S0→ ẼC2.

Here EC2 is a G-space via the projection G→C2 and S0 has the trivial action, so ẼC2 is also a
G-space. 2.22

Geometric Fixed Points (continued)

EC2+→ S0→ ẼC2.

Under this action ECG
2 is empty while for any proper subgroup H of G, ECH

2 = EC2, which is
contractible. For an arbitrary finite group G it is possible to construct a G-space with the similar
properties.

Definition. For a finite cyclic 2-group G and G-spectrum X, the geometric fixed point spectrum is

Φ
GX = (X ∧ ẼC2)

G.
2.23
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Geometric Fixed Points (continued)

Φ
GX = (X ∧ ẼC2)

G.

This functor has the following properties:

• For G-spectra X and Y , ΦG(X ∧Y ) = ΦGX ∧ΦGY .
• For a G-space X , ΦGΣ∞X = Σ∞(XG).
• A map f : X → Y is a G-equivalence iff ΦH f is an ordinary equivalence for each subgroup

H ⊂ G.

From the suspension property we can deduce that

Φ
C8MU (4) = MO,

the unoriented cobordism spectrum. Its homotopy type has been well understood since Thom’s work
in the 50s.

Moreover there is a theorem saying that inverting a certain element in the slice spectral sequence
converging to π∗XG gives one converging to π∗Φ

GX . 2.24

Back to the Periodicity Theorem
Our knowledge of the slice spectral sequence converging to

π∗Φ
GMU (4) = π∗MO

gives us a very good handle on the one converging to π∗(MU (4))G. This enables us to prove the
Periodicity Theorem.

Typically one proves theorems about differentials in such spectral sequences by means of some
sort of extended power construction. In our case, all of the necessary geometry is encoded in the
relation between π∗MU and π∗MO! 2.25

8 The detection theorem

Proving the Detection Theorem
The proof of the detection theorem is a calculation with the Adams-Novikov spectral sequence.

It is the one part of our proof that could have been done 30 years ago.

Similar methods were used in the 70s to prove an odd primary analog (for p > 3) of our theorem.
In that proof a key tool is a homomorphism{

Adams-Novikov
E2-term for S0

}
→ H∗

(
Cp;

certain
coefficients

)
It is based on the fact that a formal group law of height p−1 can have nontrivial automorphisms

of order p. 2.26

Proving the Detection Theorem (continued)
For us it is a composite homomorphism{

E2-term
for S0

}
→
{

E2-term
for Ω

}
→ H∗

(
C8;

something
easy

)
in which each θ j has a nontrivial image.

It is based on the fact that at the prime 2 a formal group law of height 4 can have nontrivial
automorphisms of order 8. 2.27
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9 The slice and reduction theorems

Proving the Slice Theorem
Recall that a pivotal step in our proof is the Slice Theorem, which identifies the layers in the slice

tower for MUR and its relatives.

For each cyclic 2-group G=C2n+1 there is a equivariant (noncommutative) ring spectrum A which
is a certain wedge of slice cells. It maps to NG

C2
MUR in such a way that the underlying wedge of

spheres hits all of the underlying homotopy of MU (2n). Thus both NG
C2

MUR and S0 are A-modules.

Reduction Theorem. The A-smash product NG
C2

MUR∧A S0 is equivariantly equivalent to the integer
Eilenberg-Mac Lane spectrum HZ.

2.28
The proof of this is the hardest calculation in our paper. Deriving the Slice Theorem from it is a

formality.

8


	Our strategy
	The construction of 
	MU and its equivariant relatives
	The slice filtration
	The slice spectral sequence
	The gap theorem
	The periodicity theorem
	The detection theorem
	The slice and reduction theorems

