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MORAVA STABILIZER ALGEBRAS AND THE
LOCALIZATION OF NOVIKOV’S E.-TERM

HAYNES R. MILLER AND DOUGLAS C. RAVENEL

The E2-term of the Adams-Novikov spectral sequence [2] for a spectrum X
localized at the prime p has the form

* (BP, M) (0.1)Ext,

where BP is the Brown-Peterson spectrum [2] at p and M is the "BP,BP-
comodule" [1] BP,(X). Pecall [2] that BP, r,(BP) Z()[vl v., ...],
Ivl 2p 2. The purpose of this paper is to identify (0.1) with an Ext
group over a smaller "Hopf algebra" in case M is v,,-local, by which we mean
that vn acts on M bijectively.
The first theorem in this direction is due to Jack Morava [14]. Morava

shows that if M is a vn-local comodule which is killed by the ideal I.
(p, vl v_l) and finitely generated over v,-BP,/I,, then (0.1) may be
computed in terms of the continuous cohomology of a certain p-adic Lie group
with coefficients in a finite dimensional representation over Fn constructed
out of M.
We prove the following "covariant" analogue of this theorem in Section 2.

Let K(0), Q, and K(n), F[v v-1] for n > 0, with the obvious BP,-
algebra structures. Let K(n),K(n) K(n), p, BP,BP @,, K(n), ;it
inherits from BP,BP the structure of a Hopf algebra over the graded field K(n) ,.
THEOREM 2.10. I] M is vn-local and IM O, then

Extse,e* (BP, M) Ext(),-()*(K(n),, K(n), @,, M)
under the natural map.

In Section 3 we strengthen Theorem 2.10 by dropping the requirement that
I,M 0. Let E(n), Z()[v v., v-] with the obvious BP,-algebra
structure, and let E(n),E(n) = E(n), (),, BP,BP @,, E(n), Then we
have

THEOREM 3.10. I] M is v,-local, then

* (E(n),, ,Ext,,* (BP, M) Ext(n),() E(n) @, M)

under the natural map.

Thus higher generators can be neglected, at the cost of introducing a rather
complicated set of relations into BP,BP.
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These change of rings theorems rest on a version of Shapiro’s Lemma which
we prove in Section 1. In this section we also review the definition and elemen-
tary properties of Hopf algebroids.

This paper forms the link between the work of the second author in [16]
and [17] and our joint work with W. S. Wilson in [12] and [13]. The latter has
resulted in proofs of the essentiality of a great many elements in the stable
homotopy ring. Briefly stated, our program is to compute a portion of the
Novikov E-term for the sphere, ExtBe..p* (BP, BP,), by means of the
"Bockstein" long exact sequences induced in Ext.e..p* (BP, by the short
exact sequences

0 -- BP,/In v_% BP,/In -, BP,/In/l --) O. (0.2)

The foundation of the analysis of these long exact sequences is the study of

lim Ext.e..e* (BP. BP./I),

where the maps in the directed system are induced by multiplication by vn
It is easy to see that this limit is just Ext.e.Be* (BP, v-IBP,/In), which
Theorem 2.10 now identifies with Ext(),(n)* (K(n), K(n),). This is a
substantial simplification: K(n),K(n) is a Hop] algebra over a field, while
BP,BP is a (much larger) Hop] algebroid (see Section 1 below) over the (com-
plicated) ring BP, Thus the computation of Ext().(,)* (K(n), K(n),)
falls within the scope of the methods of Peter May’s thesis, and is carried out
in certain cases in [17].
We wish to thank J. F. Adams, Peter Landweber, and Steve Wilson for

useful conversations, and we gratefully acknowledge the deep influence Jack
Morava has had on our work.

Section 1. Hopf algebroids and a Shapiros Lemma.
We shall work here in somewhat greater generality than is necessary in the

sequel. We begin by recalling Adams’ algebraic context [1] for cooperation
coalgebras for generalized homology theories.

Let K be a commutative ring. A Hop] algebroid (A, r) (over K) is a co-
groupoid object in the category of commutative graded K-algebras. Thus we
have structural K-algebra maps R L :A - F (source, target), F --, A
(identity), A F -- F () F (composition), c F -- F (inverse). Here F becomes
a left A-module via vL and a right A-module via v, and F ) F is the usual
tensor product of bimodules. We require of these maps that A and e be A-
bimodule maps and that the following diagrams commute.

A(R)r< r(R)r----, )r(R)A
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r ,> r(R) r

1 1 (R)r
r(R)r--- ;r(R),r(R)r

F

I’

A

/R

r < r(R)a r---- r
c.r r.c

where c. r(, () ,2) c() and r.c( ) c().

We leave to the reader the amusement of interpreting these diagrams as

the axioms for a cogroupoid object. We will frequently let the coefficient
algebra A be understood and write r for (A, r).
A (le]t) r-comodule is a left A-module M together with an A-linear mp
M r M such that the following diagrams commute.

M rM

r
A morphism of r-comodules is an A-linear map ] M N such that 1

Right comodules are defined analogously.
In general the category (r-(comod) of r-comodules may fail to have kernels;

but if r is A-flat (as left or equivalently as right module) then the bottom
row of the diagram

0 ) L ) M ) N
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is exact if the top row is, so L exists and defines a comodule structure on L.
(F-comod) is then easily seen to be an Abelian category.
Our central example of a Hopf algebroid is (BP, BP,BP); see [2], [10].

BP,BP BP,[tl t2, is fiat over BP, For any spectrum X, BP, (X)
is a BP,BP-comodule.

For another example, note that if then F is just a commutative
Hopf algebra over the graded commutative ring A.
A F-comodule M is a relative injective iff it is a summand of an extended co-

module, i.e., one of the form F () X for some A-module X. A comodule map
is a relative monomorphism iff it is split-mono as a map of A-modules. Using
these notions we may build resolutions in the usual way, and define Extr* (A,)
as the relative right derived functor of the graded K-module-valued functor
Homr (A, ). We refer the reader to [4], section 4, for a discussion of relative
homological algebra. Throughout the paper, "injective" will always mean
"relative injective" in this sense.

In particular we have the standard [4] or cobar resolution L*(F; M). In
degree n,

L(r; M) r (R) (R) r (R) i

with (n -I-" 1) factors of F, and differential

where

and

"(R) (R)’r.(R)

The usual contracting homotopy

S(o @ @ m) (o), @ @ ,, @ m

shows that L*(r; M) is a relative injective resolution, so that Extr* (A, M) is
the homology of the cobar complex

a*(r; M) Homr (A, n*(r; M)).

Our first job is to show that Extr* (A, M) may be computed using a wider
class of complexes than those described above.

LEMM 1.1 Let F be A-flat and let 0 -- M --) I -. I --> be a sequence
o] F-comodules which is exact (over K) and such that ]or each i, Extr (A, I) 0

lor all q > O. Then Extr* (A, M) H(Homr (A, I*)).
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Pro@ Consider the double complex

X** ft*(I’; I*).

Both of the associated spectral sequences ([3], XV 6) collapse at E2 to give the
desired equality.
Now let r (r, r) (A, I’) -- (B, ) be a map of Hopf algebroids. For a

F-comodule M, B @a M is naturally a -comodule via the B-linear extension of

M. > r, M@A iF@ @A M @n (B@a M).

The usual lifting argument shows that r induces mp

, Extr* (A, M) Ext,* (B, B @ M).

Symmetrically, if M is a right F-comodule, then M @a B is a right Z-co-
module. In particular F @a B is a right Z-comodule. It is also obviously
left F-comodule, and in a compatible way, so we have functors

(r-comod) (Z-comod). (1.2)

(r @ B)

Here N’zN" is the eotensor produet of the right -eomodule N’ and the left
Z-eomodule N", defined as the K-module kernel of

Write r, B a and r* (V @a B)Uz

These funetors are adjoint"

Homr (M, r’N) Hom (r,M, N)

naturally in M (F-eomod), N (Z-comod). In particular

Homr (A, r*N) Hom (B, N).

Since they will be of use lter we display the adjunction morphisms [4]. The
front adjunction au M r*r,M is defined as the composite of the morphisms
in the top line of the commutative diagram

M ,--> r M > (r . B) (B @. M)

r @. M -. (r @. B) @. (B @ M)

where J( @ m) @ 1 @ 1 @ m. The back adjunetion B r,*N N is
the B-linear extension of the top composite in the eommutative diagram in
which g(, @ b @ n) r(,)n(b) @ n.
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(r(R)B) D N----- 2: [:]z N-- N

(F () B) () N -g) Z (). N

An ideal I C A is invariant iff the ideal in F generated by (I) coincides
with the ideal generated by n,(I). The most elementary change of rings
theorem is now the following.

PROPOSitiON 1.3. Let I C A be an invariant ideal, A/I, F/IF
r/FI. Then:
(a) Thee is a unique Hop] algebroid structure on (, P) such that the projection

(A, P) (, ) is a map o] Hop] algebroids.
(b) For M (-comod), M is an isomorphism. For N (r-comod), a is
t. projection N N/IN.
(c) The adjoint pair (1.2) gives an equivalence between (P-comod) and the lull
subcategory o/(F-comod) generated by N such that IN O.
(d) I1 IN 0 then

, Extr* (A, N) Ext,* (A, N)
is an isomorphism.

Proo]. (a) and (b) are immediate, and (b) implies (c). (d) follows from
the fact that , "(F; N) (P; N) is an isomorphism.

PoPosoN 1.4. ("Shapiro’s Lemma"). Let (A, F) (B, ) be a
morphism o/Hop/algebroids. Let F be A-fiat and assume that F B is injective
as a right Z-comodule. Then

* (B, N)Extr* (A, v’N) Extz
naturally in the Z-comodule N, in such a way that ]or a F-comodule M the following
diagram commutes.

Extr* (A, M)

x* (, *,M) x* (B, ,M)
Prl. LeX be a righg B-module such ghag r@ B is a summand of X@ .

I*Leg N I* be a resolugion of N over Since I* is B-splig exaeg, (X @, )
X @, I* is exaeg, and ghus ghe summand *I* (r @ B)I* is exaeg
well. urghermore if I" is a summand of @ Y for ghe lefg B-module Y ghen

is an exgended r-eomodule. Thus igs summand *I (r @ B)I is an
ineegive r-eomodule. The isomorphism now follows by adjoingness and Lemma
1.1.
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Commutativity of the diagram follows from commutativity of the correspond-
ing diagram for Hom.

Section 2. The height n change of rings theorem.
We now turn our attention to the Hopf algebroid (BP, BP,BP); thus a

"comodule" will be a BP,BP-comodule. Recall [7], [5], that the only invariant
prime ideals inBP, areI, (p, vl, .-.,v,_l),0_<n <_ o. For0
let_BP, denote the full subcategory of comodules M which are finitely presented
over BP, and killed by I,. By Proposition 1.3 this is equivalent to the category
of finitely presented BP,BP/I,, (BP,BP)-comodules.
The following generalizations of two theorems of P. S. Landweber will be

useful. Their proofs are just as in [8], [9], once we observe that the invariant
prime ideals of BP,/I,, pull back to the ideals Im, m >_ n, in BP,
PROPOSITION 2.1. M @ B_.. has a finite filtration by subcomodules FM such

that ]or each i, FM/F_IM is a suspension o] BP,/I ]or some with n

PROPOSITION 2.2. Let G be a BP,/I,,-module. G (., is exact on B_.. iff
v is a nonzerodivisor on G/I ]or all k with n <_ k < .

Definition 2.3. A comodule M is of height n iff I.M 0 and v M is n
isomorphism.

If M is a comodule killed by I. then v M is a comodule map (because .v
v. (mod I)), so

v.-M lim M

is a eomodule, of height n. In particular, let B(n). v.-BP./I.. Then for
any eomodule M killed by I., v,,-IM B(n). (n.. M.
LetK(O). Q andK(n). F[v., v.-] forn > O. There is an obvious

ring-map r "BP. ---. K(n).. Using it, form

K(n), BP K(n), (.. BP,BP
BP,K(n) BP,BP (,. g(n)

g(n),g(n) g(n), (,. BP,BP (,. g(n),

Clearly K(n),K(n) is a commutative Hopf algebra over K(n), and there is
natural map of Hopf algebroids r BP,BP -- K(n),K(n).

Since I. is invariant, we have a factorization

Bin),-----> K(n), wlt,.).(.)t%K(n),BP
BP, ) BP,BP ) K(n),BP
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of ring-maps. Thus K(n),BP is a right B(n) ,-module. It is also obviously a

left K(n),K(n)-comodule, and we have’

PROPOSITION 2.4. There is a map

K(n),BP g(n),K(n) (x,n), B(n),
which is an isomorphism o] K(n),K(n)-comodules and o] B(n) ,-modules, and
which carries 1 to 1.

Proo]. Our proof is a counting argument; and in order to meet requirements
of connectivity and finiteness, we pass to suitable "valuation rings." Thus let

k(0), Z() C g(0),

/c(n), F[vn] C g(n), n > 0

lc(n),BP k(n), @Be. BP,BP C K(n),BP

b(n), k(n),[u, u2 C B(n),
where uk )n-l)n+k

It follows from Theorem 1 of [15] that in k(n),BP,
n(v+) =- vt" +v. t mod (w(v 1) (v/_,)). (2.5)

Hence R BP, k(n),BP factors through an algebra map b(n), -- k(n),BP.
It is clear from (2.5) that as a right b (n),-module, k(n),BP is free on generators

tl"’t2 where 0 _< a < p and all but finitely many a are 0; in partic-
ular it is of finite type over b(n),
Now define

s(n), k(n),BP (b(n). k(n), C K(n),g(n);

by the above remarks s(n), k(n),[tl t ]/(to -v t" k _> 1) as an
algebra. (l(n),, s(n),) is clearly a sub Hopf algebroid of (K(n), K(n),K(n));
so s(n), is a Hopf algebra over the principal ideal domain k(n),.
The natural map BP,BP -- s(n), makes BP,BP a left s(n),-comodule, and

this induces a left s(n),-comodule structure on k(n),BP. We will show that
the latter is an extended left s(n),-comodule.

Define a b(n),-linear map ] k(n),BP ----> b(n), by

](t) 1 if a (0,0,...)

(0 otherwise.

Then ] satisfies the equations

1 id. b(n), ---, b(n),

l s(n), --,

Now let ] be the s(n),-comodule map lifting 1"
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lc(n),BP s(n), (k (n lc(n),BP

] [1()] (2.6)

s(n), ((). b(n),
Since #(x) 1 #(x), is b(n),-liner, so ] is too. We claim ] is n iso-
morphism. Since both sides re free of finite type over b(n), it suffices to
prove that ] (n). lc(n), is n isomorphism. But (2.6) is then reduced to

s(n),
A s(n), @), s(n),

so the claim follows from unitrity of A.
Now the mp K(n), . ] satisfies the requirements of the proposition.

COROLLARY 2.7. # B(n), K(n), K(n)*K(n) K(n),BP is an isomorphism
o] B(n),-modules.

Proo]. The naturM isomorphism

B(n), K(n), (),(n) (g(n),K(n) (. B(n),)
is B(n), -linear nd crries 1 to 1. Hence

B(n),K(n)* H),(.)(K():K,_(n)(,),B(n),)
K(n), (),() K(n),BP

commutes, and #u is an isomorphism.
For any comodule M we have a natural factorizatiou

,-

B(n), ),,. M
of the adunction morphism

POOSlTION 2.8. aM is an isomorphism.

Proo]. We shll prove below (Lemm 2.11) that every comodule is direct
limit of finitely presented comodules. Thus we my assume that M is finitely
presented. Replacing M by M/IM leaves source nd target unaltered, so
we my ssume that M

Proposition 2.2 implies that B(n), @e. nd K(n), @e, re exact onB
nd by Proposition 2.4, BP,K(n), is exact on (K(n),K(n)-eomod).
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Thus if M _B/2 is filtered as in Proposition 2.1, then both source and target of
are filtered, and by induction using the 5-1emma we are reduced to considering

M BP,/I, >_ n.
IfM BP,/Iwithl > n, then both source and target are0. IfM

BP,/I, it is easy to see that is transformed by the conjugation c to

B(n), K(n), [:]().:,) K(n),BP,
which is an isomorphism by Corollary 2.6.

THEOREM 2.9. The category o] BP,BP-comodules o] height n is naturally
equivalent to the category o] K(n),K(n)-comodules.

Pro@ The functors giving the equivalence are of course * BP,K(n)
[:](,,),() and , K(n), )B,,. NowN ",*N N is clearly an isomorph-
ism for any K(n),K(n)-comodule N. On the other hand we identified a with
the map M B(n), (),, M, which is an isomorphism exactly when M is of
height n.

THEOREM 2.10. The natural map

* (BP, M) ---, Ext * (g(n) g(n) () M)EXtBP,Bp (n) ,g(n) , ,
is an isomorphism i] M is o] height n.

Proof. By Proposition 2.4, our Shapiro’s Lemma applies, and the result
follows from Proposition 2.8.
We now turn to a proof of

LEMMA 2.11. Every BP,BP-comodule is a direct limit o] finitely presented
comodules.

We begin with a result due to P. S. Landweber ([9], Prop. 2.4).

LEMMA 2.12. Every element o] a BP,BP-comodule M is in the image o] a
comodule map ]rom a comodule which is ]ree and finitely generated over BP,

Pro@ First let N be a right BP,BP-comodule which is free and finitely
generated over BP, and write (x) r(x) N (),, BP,BP
N* Hom, (N, Z) is naturally a left BP,-module, and in fact a left
BP,BP-comodule with (y) " z ) r*(y), where z is the conjugate
ct, of t and where r* Homz. (r Z()).

In particular, for d _> 0 let N(d) be the right sub BP,-module of BP,BP
generated by {z "lal _< d}, where lal 2a(p 1) is the dimension of z.
Since/(z) is homogeneous, this is a subcomodule of BP,BP.
Now let M be an arbitrary comodule, and let x M. There exists an integer d

such that (x) N(d) ), M. By associativity, (x) corresponds under he
isomorphism N(d) (. M

_
Home, (N(d)*, M) to a comodule map. If

y N(d)* is such that
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(z,,y)=fl0
then y hits x, and we are done.
Note that N(d)* is the BP-homology of the Spanier-Whitehead dual of

the d-skeleton of BP.

COaOLLAaY 2.13. Every BP,BP-comodule is the direct limit o] its finitely
generated sub-comodules.

COROLLARY 2.14. Every BP,BP-comodule M is a quotient o] a comodule F
which is BP,-]ree. I] M is finitely generated over BP, then we may talce F to be
finitely generated over BP,

Proo] o] Lemma 2.11. By Corollary 2.13 we may assume that M is finitely
generated. By Corollary 2.14 there is a short exact sequence

O--, R--) F-, M--) O

of comodules such that F is free and finitely generated over BP,. Let 2 be the
directed set of finitely generated subcomodules S of R. Then by Corollary 2.13
and the exactness of lim,

M lira F/S;

and each F/S is finitely presented.

Section 3. The v,,-local change of rings theorem.
In this section we will generalize the change of rings theorem of Section 2 to

a larger category of comodules. Instead of requiring that I. annihilate the
comodule, we demand only that each element be killed by some power of In.

Definition 3.1. Let A be a commutative ring and I C A an ideal. An
A-module M is I-nil iff for each x M there is an integer ] such that Ikx O.
M is I-nilpotent iff for some ]c, IkM O.

These notions coincide when M is finitely generated.
This condition is related to the invertibility of v, by the following Lemma.

LEMMA 3.2. I] the BP,BP-comodule M is I,-nil, then there exists a unique
BP,BP-comodule structure on

v,-lM lim M

such that the localization map M -- v,-IM is a map o] comodules.

Proof. Let M’ C M be a finitely generated subcomodule.
I,-nilpotent; say I,M O.

Then M’ is
Then ([11] "3.6) multiplication by vn on
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is a comodule map. Hence vjXM’, regarded as the direct limit of the system
k--

M’ > M’ M’

is a comodule in such wy that M’ -- v,-M is eomodule map. Also it is
eler that if M’ C M" C M with M" finitely generated then vjM vjM’’
is eomodule map. Thus v,,-M lim -xv M, the limit tken over finitely
generated subeomodules of M, is comodule. Uniqueness is clear.

Definition 3.3. A BP,BP-eomodule M is v-local iff v ets bijeetively on M.

Example 3.4. Let N BP,/I. Define eomodules N, M inductively
s follows. Suppose that N has been defined and is I,+rnil. Then M,
v+, N is a comodule by Lemma 3.2, and the exact sequence

0 N M +,,N 0

defines n I,+,+rnil eomodule N+. M is v+rloel. This example plys
a central role in [13].
We postpone to the end of this section proof of the following result of

Peter Landweber. We re grateful to him for llowing us to include it.

POVOSWON 3.5. Any v-local comodule is I-nil.

We next describe the replacement in this context for K(n),

Definition 3.6. Let

E(n), ,,[ ..., v, -]
with the BP,-algebra structure sending v to 0 for i > n.

Remark 3.7. Let E, be ny BP,-module on which the sequence p, v
is regular that is, such that v acts injectively on E,/IE, for all n 0. Then
by Prop. 2.2 E, @,v. is exact on BEo, so by Lemm 2.11 E, @.v. is exact on
the category of BP,BP-comodules.
Now suppose E, is commutative BP,-lgebr on which p, v, is regular.

Then define

E,E E, @,v. BP,BP ,v. E,
E,E is Hopf algebroid by extension of the structure maps for BP,BP. We
claim that E,E is E,-flt. For n E,-module M,

E,E. M E, ,,. (Be,BP ,. M).

By the b0ve remarks nd the fltness of BP,BP, this is an exact functor of M,
as desired.

Topological Remark 3.8. If E, is a BP,-module on which p, Vl acts
regularly, then by the above remarks E, (X) E, (Bv. BP, (X) defines an
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additive homology theory on spectra. Thus there is a spectrum E such that
E, (X) r, (E A X) naturally in X; see [2], Remark 6.5. Clearly

r, (E A E) E, ),, BP,BP @),. E,. (3.9)

In any case if E, E(n),, one can show from the work of [18] and [19]
that E(n) is an associative ring-spectrum in such a way that the map BP, ---,

E(n),( is multiplicative. By Remark 3.7, the right-hand side of (3.9) is
E(n),-flat, so r,(E A E) is the usual [1] Hopf algebroid of cooperations and
(3.9) is an isomorphism of Hopf algebroids. Thus there is an Adams spectral
sequence with

E2* ExtEn,E(* (E(n),, E(n),(X)),
natural in the spectrum X.

For example, E(0), is rational homology theory, and E(1), is a factor
of complex K-theory localized at p.
The main theorem of this section is

THEOREM 3.10. I/M is a v,,-local comodule then the natural map

* (E(n),,Extp.* (BP, M) ---, ExtE,n.( E(n), ),. M)

is an isomorphism.

The proof will use a couple of lemmas.

LEMMA 3.11. Any v-local comodule is a direct limit o] comodules v-lM where
M is finitely presented and I-nilpotent.

Proo]. Write M lim Ms as a direct limit of finitely presented comodules
by Lemma 2.11. Ms’ Im (is Ms--, M) is finitely generated and I-nilpotent
(since M is I-nil); let k() be the least integer k such that IkM, O. Then
is factors through Ms/IkSMs. Note that if < r in 2: then k() _< k(r), so
the comodules Ms/ISM form a directed system with limit M. Finally,
Ms/ISM is I-nil so v-Ms/ISMs is a comodule. Now the system of
these comodules has direct limit M v-M since localization commutes with
direct limits.

LEMMA 3.12. I] M is a finitely presented I,,-nilpotent comodule then v-M
has a finite filtration with quotients isomorphic to suspensions o] B(n),

Proo]. Consider a Landweber filtration of M. Since any quotient of an
I-nilpotent module is I-nilpotent, the associated quotients are suspensions
of BP,/I for k > n. Now invert v. Since localization is exact we obtain a
filtration with quotients

v_BP,/ik IB(n), if k n

0 if k >n.
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Proo] o] Theorem 3.10. We may assume M v,,-1M with M’ finitely pre-
sented and In-nilpotent, as the general case then follows from Lemma 3.11.
By Lemma 3.12 and Prop. 2.1 it suffices to prove the theorem for M’ BP,/In.
So consider the commutative diagram

(BP, B(n),)

7I’2 ,Ext*. (V(), K(),) Ext. (K(), K(),).
% is n isomorphism by Prop. 1.3, nd m is n isomorphism by Theorem 2.10,
so 1 is n isomorphism.
We turn now to a proof of Proposition 3.5.

LEMM/k 3.13.
and IkM O.

Let n > k >_ 0 and let M be a BP,BP-comodule such that v,,M M
Then each element o] M is vk-torsion.

Proo]. Suppose first that x M is primitive--i.e. b(x) 1 ( x--and let
x v,,y. Recall ([5] Lemma 1.7) that modulo I, Rv,, =- vt,_ - where
the other terms involve t" with lal < IpA._k]; here A._ is the multiindex with
I in the (n ])th place and 0 elsewhere. Now let/3o be a multiindex of maximal
dimension such that reo (y) 0. Then the coefficient of z’- / in

1 ( x b(vy) z"+ ( r,(v,)r(y) (3.14)

is vro (y), which is thus 0.
Next let/31 be a multiindex of maximal dimension such that v,r,(y) 0;

thus I/3,[ < ]/3ol. Multiply (3.14) by v and observe that the coefficient of
z’- + is vre, (y), which is thus 0.

Continuing, we find that re(y is v-torsion for all , and in particular for
0. That is, y is vk-torsion; so x vy is too, q.e.d.

Now let x be arbitrary. Let to be a multiindex of maximal dimension such
that ro(y O. Then for , 0, %ro(X , ao"r,(x) 0--i.e., ro(x is
primitive, and hence v-torsion. Proceeding by induction, we find that x is
primitive rood v-torsion, and hence is v-torsion.

Proo] o] Proposition 3.5. Since Io O, IoM O, and Lemma 3.13 implies
that M is I,-nil. Suppose inductively that M is I-nil for some k < n. Let
F1M {x M Ix 0} ;it is a subcomodule since I is invariant. Multiplica-
tion by v on FIM is clearly monic, and we claim that it is epic as well. Let
x FIM; there exists y @ M such that x v,y. Then 0 Ikx vL,y implies
Iy 0 since vn M is monic. Now define a filtration of M inductively by
means of the pull-back diagram

0 --+ F,M ---, F+,M ---+ FI(M/FM) 0

O "-* FM -- M -- M/FM -- 0.
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By induction F/IM/FM is v.-local and killed by I, and hence by Lemma 3.13
is v-torsion. So F+IM is I+l-nil for all i. Since M is I-nil, M lim FM
and hence M is I+l-nil. The proposition now follows by induction on k.
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