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Prelude

The Kervaire invariant problem was originally conceived as a
question about smooth framed manifolds.

Browder’s theorem of 1969
showed it was equivalent to
a question about the stable
homotopy groups of spheres.

Their determination has
occupied algebraic topol-
ogists for the past 80
years. I do not expect this
job to be completed in my
granddaughter’s lifetime.
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Prelude (continued)

The stable homotopy groups of spheres have been most
successfully studied using the Adams spectral sequence and
its variants.

Chart by Dan Isaksen
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Prelude (continued)

Mark Mahowald
1931-2013

This leads us to the Mahowald Uncertainty
Principle.

Any spectral sequence con-
verging to π∗S0 with an algebraically com-
putable E2-term has infinitely many differ-
entials.

Finding differentials in these spectral sequences requires some
additional geometric input. It is often some kind of equivariant
construction.
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Prelude (continued)

Finding differentials in these spectral sequences requires some
additional geometric input. It is often some kind of equivariant
construction.

Here are some examples.

•
In the 60s, Toda used an extended
power construction to show that if
x ∈ π∗S0 has order p, then α1xp = 0.

•
In the 70s, Nishida extended these
ideas to show that each positive di-
mensional element of π∗S0 is nilpotent.

•

In the 80s, Devinatz,
Hopkins and Smith
leveraged these ideas still
further to prove the
Nilpotence Theorem in
stable homotopy theory.
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Prelude (continued)

Norman Steenrod
1910-1971

Before any of this, Steenrod used
an equivariant construction to pro-
duce his operations and with them
the Steenrod algebra,

upon which
the Adams spectral sequence is
based.

Drawing by Bob Bruner
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1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle.

This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.

We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7.

The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial.

This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.7

The HHR strategy

Browder showed that the Kervaire invariant elements
θj ∈ π2j+1−2S0 exist iff the Adams spectral sequence element h2

j
is a permanent cycle. This is known to be true for 1 ≤ j ≤ 5.
We showed they do not exist for j ≥ 7. The case j = 6 remains
open.

Our strategy is to construct a nonconnective ring spectrum Ω
having a unit map S0 → Ω with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.
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1.8

The HHR strategy (continued)

Here again are the properties of Ω:

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for θj for larger j is
similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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1.9

The HHR strategy (continued)

The aim of this talk is to prove the Gap Theorem, which says
that π−2Ω = 0.

The Detection Theorem is proved with methods
available 20 years ago. The Periodicity Theorem requires
knowledge about differentials in the slice spectral sequence.
The Gap Theorem boils down to a surprisingly easy calculation
once the machinery has been set up.
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1.10

Equivariant stable homotopy theory

Our spectrum Ω is the fixed point set of a spectrum equipped
with a C8 action.

We need some notions from equivariant
stable homotopy theory.

What is a G-spectrum?

There is a lot of very technical literature about this, including
over 100 pages in the appendices to our paper. For the
purposes of this talk, use your favorite definition of a spectrum
with G acting on all spaces in sight, and require all structure
maps to be equivariant. You do not need to worry about
G-complete universes or ∞-categories!

The experts like to do this for compact Lie groups G, but we
only need cyclic groups of order 2, 4 and 8. We will assume
from now on that G is finite.
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1.11

Two useful functors

Let T G denote the category of pointed G-spaces;

basepoints
are always fixed by G. For a subgroup H ⊆ G where is a
forgetful functor i∗H : T G → T H .

We need to consider its left and right adjoints L,R : T H → T G,
known as induction and coinduction. Adjointness means that
for a pointed G-space X and a pointed H-space Y we have

T G(LY ,X ) = T H(Y , i∗HX ) and T H(i∗HX ,Y ) = T G(X ,RY ).

It turns out that
LY =

∨
G/H

Y = G+ ∧
H

Y ,

where G permutes the H-invariant wedge summands, and G+

denotes G with a disjoint basepoint. We can define a similar
functor from H-spectra to G-spectra.
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Two useful functors

Let T G denote the category of pointed G-spaces; basepoints
are always fixed by G. For a subgroup H ⊆ G where is a
forgetful functor i∗H : T G → T H .

We need to consider its left and right adjoints L,R : T H → T G,
known as induction and coinduction. Adjointness means that
for a pointed G-space X and a pointed H-space Y we have

T G(LY ,X ) = T H(Y , i∗HX ) and T H(i∗HX ,Y ) = T G(X ,RY ).

It turns out that
LY =

∨
G/H

Y = G+ ∧
H

Y ,

where G permutes the H-invariant wedge summands, and G+

denotes G with a disjoint basepoint. We can define a similar
functor from H-spectra to G-spectra.
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1.12

Two useful functors (continued)

L and R are the left and right adjoints of the forgetful functor i∗H .
This means

T G(LY ,X ) = T H(Y , i∗HX ) and T H(i∗HX ,Y ) = T G(X ,RY ).

It turns out that
LY =

∨
G/H

Y = G+ ∧
H

Y ,

where G permutes the H-invariant wedge summands, and G+

denotes G with a disjoint basepoint. We can define a similar
functor from H-spectra to G-spectra.

Similarly,
RY =

∧
G/H

Y ,

where G permutes the H-invariant smash factors. We denote
the stable analog of R by NG

H , the norm functor.
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1.13

Representation spheres

Let V be a finite dimensional orthogonal representation of G.

The key example for us is the regular representation ρG, the
vector space R[G] where G acts by left multiplication.

SV denotes both the one point compactification of V , with
basepoint at ∞, and the corresponding suspension spectrum.
It follows that SV+V ′

= SV ∧ SV ′
.

There is a way to define a spectrum S−V with a map from
S−V ∧ SV to the sphere spectrum S0 which is a homotopy
equivalence, but not an isomorphism.

Hence we can define SW for any virtual representation W . For
a G-spectrum X we define

πG
W X = [SW ,X ]G,

the group of homotopy classes of equivariant maps. Thus we
have homotopy groups graded over RO(G), the orthogonal
representation ring of G. We denote these collectively by πG

? X .
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The key example for us is the regular representation ρG, the
vector space R[G] where G acts by left multiplication.

SV denotes both the one point compactification of V , with
basepoint at ∞, and the corresponding suspension spectrum.
It follows that SV+V ′

= SV ∧ SV ′
.

There is a way to define a spectrum S−V with a map from
S−V ∧ SV to the sphere spectrum S0 which is a homotopy
equivalence, but not an isomorphism.

Hence we can define SW for any virtual representation W . For
a G-spectrum X we define

πG
W X = [SW ,X ]G,

the group of homotopy classes of equivariant maps. Thus we
have homotopy groups graded over RO(G), the orthogonal
representation ring of G.

We denote these collectively by πG
? X .
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1.14

Representation spheres (continued)

For a finite dimensional orthogonal representation W of
H ⊆ G,

we can apply our two functors to the H-spectrum SW ,
and get G-spectra

G+ ∧
H

SW

and
NG

H SW = SIndG
H W ,

where IndG
HW denotes the induced representation

R[G]⊗R[H] W .
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1.15

Real cobordism

Let MU be the Thom spectrum for the unitary group, also
known as the complex cobordism spectrum.

It is a
commutative ring object in our category. Recall that

π∗MU = Z[r1, r2, . . . ] where ri ∈ π2i .

It has a C2-action defined in terms of complex conjugation.

We denote the resulting C2-spectrum by MUR.
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1.16

Real cobordism (continued)

The C2-spectrum MUR has been studied extensively.

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson
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Real cobordism (continued)

The C2-spectrum MUR has been studied extensively.

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.16

Real cobordism (continued)

The C2-spectrum MUR has been studied extensively.

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.16

Real cobordism (continued)

The C2-spectrum MUR has been studied extensively.

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.17

Real cobordism (continued)

For a G-spectrum X , we let πu
∗X denote the homotopy of the

underlying ordinary spectrum.

We have the C2-spectrum MUR with

πu
∗MUR = Z[r1, r2, . . . ] where ri ∈ π2i .

Let γ ∈ C2 be a generator. The action of C2 on the ring πu
∗MUR

is determined by γ(ri) = (−1)i ri .

It turns out that ri : S2i → MU underlies an equivariant map

Siρ2
r i // MUR

where ρ2 denotes the regular representation of C2. We say that
r i refines ri .
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1.18

Constructing our spectrum Ω

For G = C8, we can form the norm NG
C2

MUR, which we
abbreviate by MU((G)).

It is underlain by the 4-fold smash
power MU(4) with the group G permuting the C2-invariant
factors.

It can be made into a periodic spectrum by inverting a certain
element D ∈ πG

19ρ8
MU((G)). D−1MU((G)) is the telescope for the

diagram

MU((G)) D // Σ−19ρ8MU((G)) D // Σ−38ρ8MU((G)) D // . . .

Calculations show that there is an element
∆ ∈ πG

256D−1MU((G)) such that the induced map

Σ256D−1MU((G)) ∆ // D−1MU((G))

is an equivariant homotopy equivalence. Our Ω is the G-fixed
point spectrum of D−1MU((G)).
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1.19

The slice spectral sequence

How do we make such calculations?

Our main tool an equivariant generalization of the Postnikov
filtration. In the latter we filter a spectrum X by its
(n − 1)-connected covers {PnX}. The cofiber of the map
Pn+1X → X is the spectrum obtained from X by killing all
homotopy groups above dimension n. It is the nth Postnikov
section of X , denoted by PnX .

This collection of cofiber sequences leads to what might be
called the Postnikov spectral sequence. There is a good
reason you have may not heard of it before: it is useless. Its
input and output are both π∗X .
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1.20

The slice spectral sequence (continued)

Nevertheless, there is a useful formalism associated with the
Postnikov tower.

Note that PnS, the category of
(n − 1)-connected spectra, is the smallest subcategory of S
(the category of all spectra), containing the set

Tn = {Sm : m ≥ n}

and closed under mapping cones, infinite wedges and retracts.
Hence the cofiber of a map between (n − 1)-connected spectra
is again (n − 1)-connected, but the fiber of such a map need
not be.
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1.21

The slice spectral sequence for G = C2

Again, PnS, the category of (n − 1)-connected spectra, is
generated by the set

Tn = {Sm : m ≥ n} .

We need an equivariant generalization of the set Tn.
For G = C2, consider the following spectra for each integer m.

G+ ∧ Sm and Smρ.

Here G+ ∧ Sm is the wedge of two m-spheres that are
interchanged by the generator γ ∈ C2.

Smρ is the one point compactification of mρ, where ρ denotes
the regular representation of C2. It is underlain by S2m.

We will call these spectra slice spheres.
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For G = C2, consider the following spectra for each integer m.

G+ ∧ Sm and Smρ.

Here G+ ∧ Sm is the wedge of two m-spheres that are
interchanged by the generator γ ∈ C2.

Smρ is the one point compactification of mρ, where ρ denotes
the regular representation of C2. It is underlain by S2m.

We will call these spectra slice spheres.
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The slice spectral sequence for G = C2 (continued)

For G = C2 the generalization of

Tn = {Sm : m ≥ n}

is
T G

n = {G+ ∧ Sm : m ≥ n} ∪ {Smρ : 2m ≥ n} .

Let SG denote the category of G-spectra. Define PnS
G to be the

subcategory generated by the elements of T G
n , i.e., by slice

spheres of dimension ≥ n.

This filtration of SG leads to the slice spectral sequence. Unlike
the classical Postnikov spectral sequence, it is extremely
useful. It maps to the classical one under the forgetful functor
SG → S. For a G-spectrum X it enables us to define G-analogs
of connective covers. The nth slice Pn

n X is the cofiber of the
map Pn+1X → PnX , just as in the classical case.
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For G = C2 the generalization of
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is
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Let SG denote the category of G-spectra. Define PnS
G to be the

subcategory generated by the elements of T G
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subcategory generated by the elements of T G
n , i.e., by slice
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This filtration of SG leads to the slice spectral sequence. Unlike
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useful. It maps to the classical one under the forgetful functor
SG → S.

For a G-spectrum X it enables us to define G-analogs
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For G = C2 the generalization of
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is
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n = {G+ ∧ Sm : m ≥ n} ∪ {Smρ : 2m ≥ n} .

Let SG denote the category of G-spectra. Define PnS
G to be the

subcategory generated by the elements of T G
n , i.e., by slice

spheres of dimension ≥ n.

This filtration of SG leads to the slice spectral sequence. Unlike
the classical Postnikov spectral sequence, it is extremely
useful. It maps to the classical one under the forgetful functor
SG → S. For a G-spectrum X it enables us to define G-analogs
of connective covers.

The nth slice Pn
n X is the cofiber of the

map Pn+1X → PnX , just as in the classical case.
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Let SG denote the category of G-spectra. Define PnS
G to be the

subcategory generated by the elements of T G
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spheres of dimension ≥ n.
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1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason.

The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected.

Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G.

For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m,

we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|,

where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation.

Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.23

The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point spectrum of an n-dimensional slice sphere need not be
(n − 1)-connected. Its homotopy groups need not be
concentrated in dimension n.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H ⊆ G and each integer m, we
define

G+ ∧
H

SmρH

to be a slice sphere of dimension m|H|, where ρH is the regular
representation. Then we define

T G
n =

{
G+ ∧

H
SmρH : m|H| ≥ n, H ⊆ G

}
,

the set of slice spheres of dimension ≥ n.



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.24

The slice spectral sequence for general groups G (continued)

We use the resulting filtration of SG to define

“connective
covers” PnX , “Postnikov sections” PnX and slices Pn

n X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper, the relatives of MUR mentioned above. In each case the
nth slice is contractible for odd n, and for even n it has the form

Pn
n X = Wn ∧ HZ,

where Wn is a wedge of n-dimensional slice spheres and HZ is
the integer Eilenberg-Mac Lane spectrum with trivial G-action.
Wn never has a wedge summand of the form G+ ∧ Sn.
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of SG to define “connective
covers” PnX , “Postnikov sections” PnX

and slices Pn
n X as

before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper, the relatives of MUR mentioned above. In each case the
nth slice is contractible for odd n, and for even n it has the form

Pn
n X = Wn ∧ HZ,

where Wn is a wedge of n-dimensional slice spheres and HZ is
the integer Eilenberg-Mac Lane spectrum with trivial G-action.
Wn never has a wedge summand of the form G+ ∧ Sn.
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1.25

The slice spectral sequence for MUR

We have a complete description of the slice spectral sequence
for MUR,

including all of its infinitely many differentials.

These differentials are needed in the proof of the Periodicity
Theorem.

As in the past, we need some extra geometry to understand
them. In this case it is all encoded in the well understood
relation between MU and MO, between complex and
unoriented cobordism.
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1.26

The proof of the Gap Theorem

The Gap Theorem says that π−2Ω = 0.

The spectrum Ω is the fixed point spectrum for a G-spectrum
D−1MU((G)), where G = C8.

The homotopy of D−1MU((G)) and its fixed point spectra can be
studied with the slice spectral sequence. Its input is the
homotopy groups of wedges of spectra of the form

Km,H = G+ ∧
H

SmρH ∧ HZ

for integers m and nontrivial subgroups H ⊆ G. This means
that its G-fixed point spectum Ω is built out of copies of K G

m,H ,
the G-fixed point spectrum of Km,H .

We will show that π−2K G
m,H vanishes in every case.

π−2Ω never had a chance!
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The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H?

We begin with the underlying
homotopy groups of Km,H for m ≥ 0. We have

πu
∗Km,H = πu

∗G+ ∧
H

SmρH ∧ HZ

= Hu
∗G+ ∧

H
SmρH (underlying homology)

=
⊕
|G/H|

H∗Sm|H|.

G+ ∧
H

SmρH is a finite G-CW complex. This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .
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We have

πu
∗Km,H = πu

∗G+ ∧
H

SmρH ∧ HZ

= Hu
∗G+ ∧

H
SmρH (underlying homology)

=
⊕
|G/H|

H∗Sm|H|.

G+ ∧
H

SmρH is a finite G-CW complex. This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .
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The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H? We begin with the underlying

homotopy groups of Km,H for m ≥ 0. We have
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= Hu
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reduced cellular chain complex Cm,H
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S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .
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The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H? We begin with the underlying

homotopy groups of Km,H for m ≥ 0. We have

πu
∗Km,H = πu

∗G+ ∧
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SmρH ∧ HZ

= Hu
∗G+ ∧
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SmρH (underlying homology)
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SmρH is a finite G-CW complex.

This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .
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The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H? We begin with the underlying

homotopy groups of Km,H for m ≥ 0. We have

πu
∗Km,H = πu

∗G+ ∧
H

SmρH ∧ HZ

= Hu
∗G+ ∧

H
SmρH (underlying homology)

=
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|G/H|

H∗Sm|H|.

G+ ∧
H

SmρH is a finite G-CW complex. This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .
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The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H? We begin with the underlying

homotopy groups of Km,H for m ≥ 0. We have

πu
∗Km,H = πu

∗G+ ∧
H

SmρH ∧ HZ

= Hu
∗G+ ∧

H
SmρH (underlying homology)

=
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|G/H|

H∗Sm|H|.

G+ ∧
H

SmρH is a finite G-CW complex. This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.27

The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H? We begin with the underlying

homotopy groups of Km,H for m ≥ 0. We have

πu
∗Km,H = πu

∗G+ ∧
H

SmρH ∧ HZ

= Hu
∗G+ ∧

H
SmρH (underlying homology)

=
⊕
|G/H|

H∗Sm|H|.

G+ ∧
H

SmρH is a finite G-CW complex. This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H ,

which

we denote by C−m,H .
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The proof of the Gap Theorem (continued)

How do we compute π∗K G
m,H? We begin with the underlying

homotopy groups of Km,H for m ≥ 0. We have

πu
∗Km,H = πu

∗G+ ∧
H

SmρH ∧ HZ

= Hu
∗G+ ∧

H
SmρH (underlying homology)

=
⊕
|G/H|

H∗Sm|H|.

G+ ∧
H

SmρH is a finite G-CW complex. This means that it has a

reduced cellular chain complex Cm,H
∗ of Z[G]-modules.

Describing it is a geometric exercise.

For G+ ∧
H

S−mρH , we can use the Z-linear dual of Cm,H , which

we denote by C−m,H .
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The proof of the Gap Theorem (continued)

It follows that

π∗K G
m,H = H∗

(
(Cm,H)G

)
for all m and H.

We now analyze Cm,H and (Cm,H)G for m ≥ 0.

First we need

WARNING Fixed points do not commute with
smash products, so (G+ ∧

H
SmρH ∧ HZ)G is not the

same as (G+ ∧
H

SmρH )G ∧ HZ, and H∗
(
(Cm,H)G

)
is

not the homology of
(G+ ∧

H
SmρH )G =

{
Sm for H = G
∗ otherwise.
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The proof of the Gap Theorem (continued)

It follows that

π∗K G
m,H = H∗

(
(Cm,H)G

)
for all m and H.

We now analyze Cm,H and (Cm,H)G for m ≥ 0. First we need
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The proof of the Gap Theorem (continued)

It follows that

π∗K G
m,H = H∗

(
(Cm,H)G

)
for all m and H.

We now analyze Cm,H and (Cm,H)G for m ≥ 0. First we need

WARNING Fixed points do not commute with
smash products,

so (G+ ∧
H

SmρH ∧ HZ)G is not the

same as (G+ ∧
H

SmρH )G ∧ HZ, and H∗
(
(Cm,H)G

)
is

not the homology of
(G+ ∧

H
SmρH )G =

{
Sm for H = G
∗ otherwise.
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The proof of the Gap Theorem (continued)

It follows that

π∗K G
m,H = H∗

(
(Cm,H)G

)
for all m and H.

We now analyze Cm,H and (Cm,H)G for m ≥ 0. First we need
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∗ otherwise.
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The proof of the Gap Theorem (continued)

It follows that

π∗K G
m,H = H∗

(
(Cm,H)G

)
for all m and H.

We now analyze Cm,H and (Cm,H)G for m ≥ 0. First we need

WARNING Fixed points do not commute with
smash products, so (G+ ∧

H
SmρH ∧ HZ)G is not the

same as (G+ ∧
H

SmρH )G ∧ HZ, and H∗
(
(Cm,H)G

)
is

not the homology of
(G+ ∧

H
SmρH )G =

{
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∗ otherwise.
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The proof of the Gap Theorem (continued)

We are analyzing Cm,H and (Cm,H)G for m ≥ 0.

The bottom G-cell of G+ ∧
H

SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.
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The proof of the Gap Theorem (continued)

We are analyzing Cm,H and (Cm,H)G for m ≥ 0.
The bottom G-cell of G+ ∧

H
SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m,

while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.
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The proof of the Gap Theorem (continued)

We are analyzing Cm,H and (Cm,H)G for m ≥ 0.
The bottom G-cell of G+ ∧

H
SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|.

Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.
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The proof of the Gap Theorem (continued)

We are analyzing Cm,H and (Cm,H)G for m ≥ 0.
The bottom G-cell of G+ ∧

H
SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.
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The proof of the Gap Theorem (continued)

The bottom G-cell of G+ ∧
H

SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.

It follows that for m ≥ 0, πiK G
m,H is trivial unless m ≤ i ≤ m|H|,

and πiK G
−m,H is trivial unless −m ≥ i ≥ −m|H|.

For the Gap Theorem we want to show that π−2K G
m,H = 0 in all

cases. From the above we see that the only values of m we
need to consider are m = −1 and m = −2.
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The proof of the Gap Theorem (continued)

The bottom G-cell of G+ ∧
H

SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.

It follows that for m ≥ 0, πiK G
m,H is trivial unless m ≤ i ≤ m|H|,

and πiK G
−m,H is trivial unless −m ≥ i ≥ −m|H|.

For the Gap Theorem we want to show that π−2K G
m,H = 0 in all

cases. From the above we see that the only values of m we
need to consider are m = −1 and m = −2.
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The proof of the Gap Theorem (continued)

The bottom G-cell of G+ ∧
H

SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.

It follows that for m ≥ 0, πiK G
m,H is trivial unless m ≤ i ≤ m|H|,

and πiK G
−m,H is trivial unless −m ≥ i ≥ −m|H|.

For the Gap Theorem we want to show that π−2K G
m,H = 0 in all

cases. From the above we see that the only values of m we
need to consider are m = −1 and m = −2.
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The proof of the Gap Theorem (continued)

The bottom G-cell of G+ ∧
H

SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.

It follows that for m ≥ 0, πiK G
m,H is trivial unless m ≤ i ≤ m|H|,

and πiK G
−m,H is trivial unless −m ≥ i ≥ −m|H|.

For the Gap Theorem we want to show that π−2K G
m,H = 0 in all

cases.

From the above we see that the only values of m we
need to consider are m = −1 and m = −2.
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The proof of the Gap Theorem (continued)

The bottom G-cell of G+ ∧
H

SmρH is

(G+ ∧
H

SmρH )H = G+ ∧
H

Sm

in dimension m, while the top cell is in dimension m|H|. Similar
statements hold for Cm,H , C−m,H and their fixed point
subcomplexes.

It follows that for m ≥ 0, πiK G
m,H is trivial unless m ≤ i ≤ m|H|,

and πiK G
−m,H is trivial unless −m ≥ i ≥ −m|H|.

For the Gap Theorem we want to show that π−2K G
m,H = 0 in all

cases. From the above we see that the only values of m we
need to consider are m = −1 and m = −2.
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The proof of the Gap Theorem (continued)
For the Gap Theorem we want to show that π−2K G

m,H = 0 in all
cases, and the only values of m we need to consider are
m = −1 and m = −2.

For simplicity I will do this for H = G = C2, this being similar in
essence to the cases where G = C8.

For m = 1, C1,C2 is the reduced C2-cellular chain complex for
Sρ2 . It is

1 2

Z Z[C2]
∇oo

where ∇ is the augmentation map sending the generator γ to 1.

Its Z-linear dual C−1,C2 is

−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.
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The proof of the Gap Theorem (continued)
For the Gap Theorem we want to show that π−2K G

m,H = 0 in all
cases, and the only values of m we need to consider are
m = −1 and m = −2.

For simplicity I will do this for H = G = C2,

this being similar in
essence to the cases where G = C8.

For m = 1, C1,C2 is the reduced C2-cellular chain complex for
Sρ2 . It is

1 2

Z Z[C2]
∇oo

where ∇ is the augmentation map sending the generator γ to 1.

Its Z-linear dual C−1,C2 is

−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.
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The proof of the Gap Theorem (continued)
For the Gap Theorem we want to show that π−2K G

m,H = 0 in all
cases, and the only values of m we need to consider are
m = −1 and m = −2.

For simplicity I will do this for H = G = C2, this being similar in
essence to the cases where G = C8.

For m = 1, C1,C2 is the reduced C2-cellular chain complex for
Sρ2 . It is

1 2

Z Z[C2]
∇oo

where ∇ is the augmentation map sending the generator γ to 1.

Its Z-linear dual C−1,C2 is

−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.
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The proof of the Gap Theorem (continued)
For the Gap Theorem we want to show that π−2K G

m,H = 0 in all
cases, and the only values of m we need to consider are
m = −1 and m = −2.

For simplicity I will do this for H = G = C2, this being similar in
essence to the cases where G = C8.

For m = 1, C1,C2 is the reduced C2-cellular chain complex for
Sρ2 . It is

1 2

Z Z[C2]
∇oo

where ∇ is the augmentation map sending the generator γ to 1.

Its Z-linear dual C−1,C2 is

−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.
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The proof of the Gap Theorem (continued)
For the Gap Theorem we want to show that π−2K G

m,H = 0 in all
cases, and the only values of m we need to consider are
m = −1 and m = −2.

For simplicity I will do this for H = G = C2, this being similar in
essence to the cases where G = C8.

For m = 1, C1,C2 is the reduced C2-cellular chain complex for
Sρ2 . It is

1 2

Z Z[C2]
∇oo

where ∇ is the augmentation map sending the generator γ to 1.

Its Z-linear dual C−1,C2 is
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The proof of the Gap Theorem (continued)

C−1,C2 is
−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.

Passing to fixed points gives

−1 −2

Z 1 // Z ask Martin

This has trivial homology, so π−2K C2
−1,C2

= 0.
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The proof of the Gap Theorem (continued)

C−1,C2 is
−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.

Passing to fixed points gives

−1 −2

Z 1 // Z ask Martin

This has trivial homology, so π−2K C2
−1,C2

= 0.
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The proof of the Gap Theorem (continued)

C−1,C2 is
−1 −2

Z ∆ // Z[C2]

where ∆ is the diagonal embedding sending 1 to 1 + γ.

Passing to fixed points gives

−1 −2

Z 1 // Z ask Martin

This has trivial homology, so π−2K C2
−1,C2

= 0.
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The proof of the Gap Theorem (continued)

Now we have to deal with m = −2.

C−2,C2 is

−2 −3 −4

Z ∆ // Z[C2]
1−γ // Z[C2]

Passing to fixed points gives

−2 −3 −4

Z 1 // Z 0 // Z

ask Martin again

This has nontrivial homology, but only in dimension −4, so
again π−2K C2

−2,C2
= 0.

This completes the proof of the Gap Theorem. 2 + 2 = 4



How I got bitten

Mike Hill
Mike Hopkins
Doug Ravenel

Prelude
Browder’s theorem

The Adams spectral
sequence

The Mahowald Uncertainty
Principle

Differentials

The HHR strategy
The spectrum Ω

Equivariant stable
homotopy theory
Two useful functors

Representation spheres

Real cobordism

Constructing our spectrum
Ω

The slice spectral
sequence
The case G = C2

General G

The slice spectral sequence
for MUR

The proof of the Gap
Theorem

1.33

The proof of the Gap Theorem (continued)

Now we have to deal with m = −2.

C−2,C2 is

−2 −3 −4

Z ∆ // Z[C2]
1−γ // Z[C2]

Passing to fixed points gives

−2 −3 −4

Z 1 // Z 0 // Z

ask Martin again

This has nontrivial homology, but only in dimension −4, so
again π−2K C2

−2,C2
= 0.

This completes the proof of the Gap Theorem. 2 + 2 = 4
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The proof of the Gap Theorem (continued)

Now we have to deal with m = −2.

C−2,C2 is

−2 −3 −4

Z ∆ // Z[C2]
1−γ // Z[C2]

Passing to fixed points gives

−2 −3 −4

Z 1 // Z 0 // Z

ask Martin again

This has nontrivial homology, but only in dimension −4, so
again π−2K C2

−2,C2
= 0.

This completes the proof of the Gap Theorem. 2 + 2 = 4
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The proof of the Gap Theorem (continued)

Now we have to deal with m = −2.

C−2,C2 is

−2 −3 −4

Z ∆ // Z[C2]
1−γ // Z[C2]

Passing to fixed points gives

−2 −3 −4

Z 1 // Z 0 // Z

ask Martin again

This has nontrivial homology, but only in dimension −4, so
again π−2K C2

−2,C2
= 0.

This completes the proof of the Gap Theorem. 2 + 2 = 4
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The proof of the Gap Theorem (continued)

Now we have to deal with m = −2.

C−2,C2 is

−2 −3 −4

Z ∆ // Z[C2]
1−γ // Z[C2]

Passing to fixed points gives

−2 −3 −4

Z 1 // Z 0 // Z

ask Martin again

This has nontrivial homology, but only in dimension −4, so
again π−2K C2

−2,C2
= 0.

This completes the proof of the Gap Theorem.

2 + 2 = 4
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The proof of the Gap Theorem (continued)

Now we have to deal with m = −2.

C−2,C2 is

−2 −3 −4

Z ∆ // Z[C2]
1−γ // Z[C2]

Passing to fixed points gives

−2 −3 −4

Z 1 // Z 0 // Z

ask Martin again

This has nontrivial homology, but only in dimension −4, so
again π−2K C2

−2,C2
= 0.

This completes the proof of the Gap Theorem. 2 + 2 = 4
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HAPPY BIRTHDAY MARTIN!
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