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1 Background and history

1.1 Browder’s theorem and its impact
Browder’s theorem and its impact

In 1969 Browder proved a remarkable theorem about the Kervaire invariant.

Browder’s Theorem (1969). The Kervaire invariant of a smooth framed (4m+2)-manifold M can
be nontrivial only if m = 2 j−1 − 1 for some j > 0. This happens iff the element h2

j is a permanent
cycle in the Adams spectral sequence.
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Browder’s theorem and its impact (continued)

Browder’s Theorem (1969). The Kervaire invariant of a smooth framed (4m+2)-manifold M can
be nontrivial only if m = 2 j−1 − 1 for some j > 0. This happens iff the element h2

j is a permanent
cycle in the Adams spectral sequence.
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Browder’s theorem and its impact (continued)

Browder’s Theorem (1969). The Kervaire invariant of a smooth framed (4m+2)-manifold M can
be nontrivial only if m = 2 j−1 − 1 for some j > 0. This happens iff the element h2

j is a permanent
cycle in the Adams spectral sequence.
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Browder’s theorem and its impact (continued)

Browder’s Theorem (1969). The Kervaire invariant of a smooth framed (4m+2)-manifold M can
be nontrivial only if m = 2 j−1 − 1 for some j > 0. This happens iff the element h2

j is a permanent
cycle in the Adams spectral sequence.

This result established a link between surgery theory, specifically an unanswered question in the
Kervaire-Milnor classification of exotic spheres, and stable homotopy theory, specifically the Adams
spectral sequence.

This connection made the problem of constructing a smooth framed manifold with nontrivial
Kervaire invariant in dimension 2 j+1 −2 a cause celebre in algebraic topology throughout the 1970s.
For 40 years it was the definitive theorem on this subject. .5

Browder’s theorem and its impact (continued)
Browder’s theorem says that there is a framed manifold with nontrivial Kervaire invariant in

dimension 2 j+1 −2 iff a certain element in the Adams spectral sequence survives. This would corre-
spond to an element θ j ∈ πn+2 j+1−2Sn for large n.

Mark Mahowald

Some homotopy theorists, most notably
Mahowald, speculated about what would
happen if θ j existed for all j. He derived
numerous consequences about homotopy
groups of spheres. The possible nonexis-
tence of the θ j for large j was known as
the Doomsday Hypothesis.
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Mark Mahowald’s sailboat
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Browder’s theorem and its impact (continued)

Drawing by Carolyn Snaith
London, Ontario 1981

There were numerous at-
tempts to construct such
manifolds thoughout that
decade. They all failed.
We know now that they
failed for good reason.
After 1980 the prob-
lem faded into the back-
ground because it was
thought to be too hard.
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Browder’s theorem and its impact (continued)
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Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson
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Browder’s theorem and its impact (continued)

Fast forward
to 2009

Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009.

“As ideas for progress on a particular mathematics problem atrophy it can disappear. Accordingly
I wrote this book to stem the tide of oblivion.” .10

Browder’s theorem and its impact (continued)

“For a brief period overnight we were convinced that we had the method to make all the sought
after framed manifolds - a feeling which must have been shared by many topologists working on this
problem. All in all, the temporary high of believing that one had the construction was sufficient to
maintain in me at least an enthusiastic spectator’s interest in the problem.” .11

4



Browder’s theorem and its impact (continued)

“In the light of the above conjecture and the failure over fifty years to construct framed manifolds
of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist. This
[is] why the quotations which preface each chapter contain a preponderance of utterances from the
pen of Lewis Carroll.” .12

1.2 Some early homotopy theory
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps f : Sn+k → Sk was

• Assume f is smooth. We know that any map f is homotopic to a smooth one.
• Pick a regular value y ∈ Sk. Its inverse image will be a smooth n-manifold M in Sn+k.
• By studying such manifolds, Pontryagin was able to deduce things about maps between spheres.
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Pontryagin’s early work on homotopy groups of spheres (continued)

Sn+k f // Sk

Mn ×Dk V n+k //
?�

OO

Dk
?�

OO

Mn //?�

OO

{y}
?�

OO

Let Dk be the closure of an open ball around a regular value y ∈ Sk. If it is sufficiently small, then
V n+k = f−1(Dk)⊂ Sn+k is an (n+ k)-manifold homeomorphic to M×Dk.

A local coordinate system around around the point y ∈ Sk pulls back to one around M called a
framing.

There is a way to reverse this procedure. A framed manifold Mn ⊂ Sn+k determines a map
f : Sn+k → Sk. .14
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Pontryagin’s early work (continued)
Suppose there is homotopy h : Sn+k × [0,1] → Sk between two such maps f1, f2 : Sn+k → Sk.

If y ∈ Sk is a regular value of h, then h−1(y) is a framed (n+ 1)-manifold N ⊂ Sn+k × [0,1] whose
boundary is the disjoint union of M1 = f−1

1 (y) and M2 = f−1
2 (y). This N is called a framed cobordism

between M1 and M2. When it exists the two closed manifolds are said to be framed cobordant.

Pontryagin (1930’s)

M1

M2

N

Framed cobordism
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Pontryagin’s early work (continued)
Let Ω

f r
n,k denote the cobordism group of framed n-manifolds in Rn+k, or equivalently in Sn+k.

Pontryagin’s construction leads to a homomorphism

Ω
f r
n,k → πn+kSk.

Pontyagin’s Theorem (1936). The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for k > n. We denote the resulting stable groups
by simply Ω

f r
n and πS

n .

The determination of the stable homotopy groups πS
n is an ongoing problem in algebraic topology.

.16

1.3 Classifying exotic spheres
The Kervaire-Milnor classification of exotic spheres

Into the 60s again

About 50 years ago three
papers appeared that revo-
lutionized algebraic and dif-
ferential topology.

•

John Milnor’s On manifolds home-
omorphic to the 7-sphere, 1956.
He constructed the first “exotic
spheres”, manifolds homeomorphic
but not diffeomorphic to the stan-
dard S7. They were certain S3-
bundles over S4.

.17
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The Kervaire-Milnor classification of exotic spheres (continued)

•

Michel Kervaire 1927-2007

Michel Kervaire’s A manifold which does not admit any differentiable structure, 1960. His
manifold was 10-dimensional. I will say more about it later.
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The Kervaire-Milnor classification of exotic spheres (continued)
• Kervaire and Milnor’s Groups of homotopy spheres, I, 1963.

They gave a complete classification of exotic spheres in dimensions ≥ 5, with two caveats:

(i) Their answer was given in terms of the stable homotopy groups of spheres, which remain
a mystery to this day.

(ii) There was an ambiguous factor of two in dimensions congruent to 1 mod 4. That problem
is the subject of this talk.
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1.4 Exotic spheres as framed manifolds
Exotic spheres as framed manifolds

Following Kervaire-Milnor, let Θn denote the group of diffeomorphism classes of exotic n-
spheres Σn. The group operation here is connected sum.

Each Σn admits a framed embedding into some Euclidean space Rn+k, but the framing is not
unique. Thus we do not have a homomorphism from Θn to πS

n , but we do get a map to a certain
quotient.

Two framings of an exotic sphere Σn ⊂ Sn+k differ by a map to the special orthogonal group
SO(k), and this map does not depend on the differentiable structure on Σn. .20

Exotic spheres as framed manifolds (continued)
Varying the framing on the standard sphere Sn leads to a homomorphism

πnSO(k) J // πn+kSk

Heinz Hopf George Whitehead
1894-1971 1918-2004

called the Hopf-Whitehead J-homomorphism. It is well understood by homotopy theorists. .21
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Exotic spheres as framed manifolds (continued)
Thus we get a homomorphism

Θn
p // πS

n/ImJ.

The bulk of the Kervaire-Milnor paper is devoted to studying its kernel and cokernel using
surgery. The two questions are closely related.

• The map p is onto iff every framed n-manifold is cobordant to a sphere, possibly an exotic one.
• It is one-to-one iff every exotic n-sphere that bounds a framed manifold also bounds an (n+

1)-dimensional disk and is therefore diffeomorphic to the standard Sn.

They denote the kernel of p by bPn+1, the group of exotic n-spheres bounding parallelizable
(n+1)-manifolds. .22

Exotic spheres as framed manifolds (continued)
Hence we have an exact sequence

0 // bPn+1 // Θn
p // πS

n/ImJ.

Kervaire-Milnor Theorem (1963). • The homomorphism p above is onto except possibly when
n = 4m+2 for m ∈ Z, and then the cokernel has order at most 2.

• Its kernel bPn+1 is trivial when n is even.
• bP4m is a certain cyclic group. Its order is related to the numerator of the mth Bernoulli number.

The key invariant here is the index of the 4m-manifold.
• The order of bP4m+2 is at most 2.
• bP4m+2 is trivial iff the cokernel of p in dimension 4m+2 is nontrivial.

We now know the value of bP4m+2 in every case except m = 31. .23

Exotic spheres as framed manifolds (continued)
In other words have a 4-term exact sequence

0 // Θ4m+2
p // πS

4m+2/ImJ // Z/2 // bP4m+2 // 0

The early work of Pontryagin implies that bP2 = 0 and bP6 = 0.

In 1960 Kervaire showed that bP10 = Z/2.

To say more about this we need to define the Kervaire invariant of a framed manifold. .24

2 The Arf-Kervaire invariant

2.1 The Arf invariant of a quadratic form in characteristic 2
The Arf invariant of a quadratic form in characteristic 2

Back to the 1940s

Cahit Arf 1910-1997
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Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank 2n with
mod 2 reduction H. It is known that H has a basis of the form {ai,bi : 1 ≤ i ≤ n} with

λ (ai,ai′) = 0 λ (b j,b j′) = 0 and λ (ai,b j) = δi, j.

.25

The Arf invariant of a quadratic form in characteristic 2 (continued)
In other words, H has a basis for which the bilinear form’s matrix has the symplectic form

0 1
1 0

0 1
1 0

. . .
0 1
1 0


.
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The Arf invariant of a quadratic form in characteristic 2 (continued)
A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x+ y) = q(x)+q(y)+λ (x,y)

Its Arf invariant is

Arf(q) =
n

∑
i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n) determines the isomorphism type of
q. .27

Money talks: Arf’s definition republished in 2009

Cahit Arf 1910-1997
.28

Bill’s election year definition of the Arf invariant (1968)
The elements of H hold an election, using the function q to vote for 0 or 1. Arf(q) is the winner.

America is a democracy. If this is not an invariant, then I don’t know what is.
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2.2 The Kervaire invariant of a framed (4m+2)-manifold
The Kervaire invariant of a framed (4m+2)-manifold

Into the 60s
a third time

Let M be a 2m-connected smooth closed
framed manifold of dimension 4m+2. Let
H = H2m+1(M;Z), the homology group in
the middle dimension. Each x ∈ H is rep-
resented by an embedding ix : S2m+1 ↪→ M
with a stably trivialized normal bundle. H
has an antisymmetric bilinear form λ de-
fined in terms of intersection numbers.

Here is a simple example. Let M = T 2, the torus, be embedded in S3 with a framing. We define
the quadratic refinement

q : H1(T 2;Z/2)→ Z/2

as follows. An element x ∈ H1(T 2;Z/2) can be represented by a closed curve, with a neighborhood
V which is an embedded cylinder. We define q(x) to be the number of its full twists modulo 2. .30

The Kervaire invariant of a framed (4m+2)-manifold (continued)
For M = T 2 ⊂ S3 and x ∈ H1(T 2;Z/2), q(x) is the number of full twists in a cylinder V neigh-

boring a curve representing x. This function is not additive!

.31

The Kervaire invariant of a framed (4m+2)-manifold (continued)
Again, let M be a 2m-connected smooth closed framed manifold of dimension 4m+ 2, and let

H = H2m+1(M;Z). Each x ∈ H is represented by an embedding S2m+1 ↪→ M. H has an antisymmetric
bilinear form λ defined in terms of intersection numbers.
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Kervaire defined a quadratic refinement q on its mod 2 reduction H in terms of each sphere’s
normal bundle. The Kervaire invariant Φ(M) is defined to be the Arf invariant of q.

Recall the Kervaire-Milnor 4-term exact sequence

0 // Θ4m+2
p // πS

4m+2/ImJ // Z/2 // bP4m+2 // 0

Kervaire-Milnor Theorem (1963). bP4m+2 = 0 iff there is a smooth framed (4m+ 2)-manifold M
with Φ(M) nontrivial.

.32

2.3 Some theorems about φ(M)

Some theorems about φ(M)4m+2

What can we say about Φ(M)?

For m = 0 there is a framing on the torus S1 ×S1 ⊂ R4 with nontrivial Kervaire invariant.

Pontryagin (1930’s)

Pontryagin used it in 1950 (after some false starts in the 30s) to show πk+2(Sk) = Z/2 for all
k ≥ 2. There are similar framings of S3 ×S3 and S7 ×S7. This means that bP2, bP6 and bP14 are each
trivial. .33

Some theorems about φ(M)4m+2 (continued)
Kervaire (1960) showed it must vanish when m= 2, so bP10 =Z/2. This enabled him to construct

the first example of a topological manifold (of dimension 10) without a smooth structure.

This construction generalizes to higher m, but Kervaire’s proof that the boundary is exotic does not. .34
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Some theorems about φ(M)4m+2 (continued)

Ed Brown Frank Peterson
1930-2000

Brown-Peterson (1966) showed that it vanishes for all positive even m. This means bP8`+2 = Z/2
for ` > 0. .35

3 Browder’s theorem

3.1 The quadratic operation
Browder’s theorem

Browder’s Theorem (1969). The Kervaire invariant of a smooth framed (4m+2)-manifold M can
be nontrivial only if m = 2 j−1 − 1 for some j > 0. This happens iff the element h2

j is a permanent
cycle in the Adams spectral sequence.

This means that bP4m+2 = Z/2 unless m+ 1 is a power of 2, and bP2 j+1−2 vanishes only under
the condition stated above.

Recall that the Kervaire invariant associated with a framing F is defined in terms of a quadratic
map

H2m+1M = H2m+1(M; Z/2)
ψ // Z/2

which Browder interprets this as follows. An element in HnX is the same thing as a map from X to
the Eilenberg-Mac Lane space

Kn = K(Z/2,n).
.36

A sketch of Browder’s proof
Now consider the diagram

ΣK2m+1

i

��

∗

''

î

ww
F2m+2 // K2m+2

Sq
2m+2

// K4m+4

Here the map i is adjoint to the equivalence K2m+1 → ΩK2m+2, Sq2m+2 is the Steenrod squaring
operation and F2m+2 is its fiber. This operation vanishes on the suspension of a (2m+1)-dimensional
class, so Sq2m+2i is null and i lifts to F2m+2.

The space F2m+2 has two nontrivial homotopy groups,

πnF2m+2 =

 Z/2 for n = 2m+2
Z/2 for n = 4m+3
0 otherwise.

The map î is an equivalence thru dimension 4m+3 and

π4m+2+kΣ
kK2m+1 = Z/2 for k > 0.

.37
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A sketch of Browder’s proof (continued)
A framed embedding of M in Rk+4m+2 and a class x ∈ H2m+1M yields a diagram

S4m+2+k pF // ΣkM+
x // ΣkK2m+1,

where the Pontryagin map pF depends on the choice of framing F . The composite map represents an
element in the homotopy group we just calculated, namely

π4m+2+kΣ
kK2m+1 = Z/2.

Browder showed that its value is the quadratic operation ψ(x).

Browder’s strategy:

Find the most general possible and simplest situation in which the Kervaire element can
be defined and then study the place of framed manifolds in this situation.

.38

3.2 Wu classes
Wu classes

This most general and simplest situation involves Wu classes.

Given a vector bundle ξ over a space X , let w(ξ ) denote its total Stiefel-Whitney class

w(ξ ) = 1+∑
i>0

wi(ξ ).

Let Sq denote the total Steenrod squaring operation

Sq = 1+∑
i>0

Sq
i
.

Both w and Sq are invertible, and we define the total Wu class v(ξ ) by

v(ξ ) =
(
Sq−1w(ξ )

)−1
.

Hence vn(ξ ) for each n > 0 is a certain polynomial in the Stiefel-Whitney classes. .39

Wu orientations

v(ξ ) =
(
Sq−1w(ξ )

)−1
.

For a (4m+2)-manifold M we define vi(M) ∈ H iM to be the ith Wu class of its normal bundle.
It is known that for x ∈ H4m+2−iM,

Sqix = vix ∈ H4m+2M.

This implies via Poincaré duality that vi(M) = 0 for i > 2m+1.

Consider the diagram

M
ν��

ν̂

ww
∗
''

B〈v2m+2〉
π // BO

v2m+2 // K2m+2

where BO is the classifying space of the stable orthogonal group O, ν is the map inducing the
normal bundle, and B〈v2m+2〉 is the fiber of the map v2m+2. Then the composite v2m+2 ·ν is null so
the indicated lifting exists, but not uniquely. Browder calls ν̂ a Wu orientation of M. .40
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3.3 The Browder spectrum
The Browder spectrum

M
ν��

ν̂

ww
∗
''

K2m+1 // B〈v2m+2〉
π // BO

v2m+2 // K2m+2

We now consider the Thom spectra associated the universal bundle over BO and its pullbacks.
The diagram becomes

T (νM)

T ν��
T ν̂

ww
K2m+1 // Br2m+2

p // MO

where T (νM) is the Thom spectrum for the normal bundle of M, K2m+1 here denotes the sus-
pension spectrum of the space K2m+1 and Br2m+2, the mth Browder spectrum, is the Thom spectrum
associated with B〈v2m+2〉. .41

The Browder spectrum (continued)

T (νM)

T ν��
T ν̂

ww
Σ∞K2m+1 // Br2m+2

p // MO

The Spanier-Whitehead dual of T (νM) is Σ−4m−2M+, so we have a map

DBr2m+2
η // Σ−4m−2M+.

Both of these spectra have no cells in positive dimensions and Sq2m+2 maps trivially to H0. Now
suppose we have an element x ∈ H2m+1M with η∗(x) = 0. Stably we have

DBr2m+2
η // Σ−4m−2M+

x
��

X
g // Σ−4m−2K2m+1 K

.42

The Browder spectrum (continued)
Let q = 2m+1, so our diagram reads

DBrq+1
η // Σ−2qM+

x
��

X
g // Σ−2qKq K

Consider the following diagram with exact rows in black:

0 ιq
�oo
Q

��

α
�oo P

��

H−qX H−qK
g∗oo

Sqq+1��

H−q(K,X)oo

Sqq+1��

H−1−qXoo

0��
H1K H1(K,X)oo H0Xoo H0K0oo

0 Sqqιq
�oo

0 Sqq+1α
�oo ψ(x)�oo

The diagram chase is shown in red. The element ψ(x) is independent of the choice of α . Browder
shows that the operation ψ is quadratic. .43
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The Browder spectrum (continued)
If the manifold M has a framing F we get

S0

��

T (νM)

T ν
��

oo
T ν̂

ww
Σ∞K2m+1 // Br2m+2

p // MO

This means we can replace X = DBr2m+2 by S0, so the next diagram becomes

S0 pF // Σ−4m−2M+

x
��

S0 // Σ−4m−2K2m+1

This is Browder’s interpretation of the quadratic operation ψ described earlier. .44

3.4 The homotopy type of Br2m+2

The homotopy type of Br2m+2
A framed (4m+ 2)-manifold M with nontrivial Kervaire invariant represents, via Pontryagin’s

isomorphism, a nontrivial map

S4m+2 θ // S0.

Browder shows that the composite map to the Browder spectrum

S4m+2 θ // S0 // Br2m+2

must also be nontrivial.

He analyzes the homotopy type of Br2m+2 and gets a diagram

Br2m+2

p

��

Br2m+2
(1)

h

��

oo Br2m+2
(2)

k

��

oo

 (4m+2)-
connected

fiber

oo

MO K2m+1 ∧MO K4m+2
.45

The homotopy type of Br2m+2 (continued)
S0

��

S4m+2θoo

��
Br2m+2

p
��

Br2m+2
(1)

h
��

oo Br2m+2
(2)

k
��

oo

 (4m+2)-
connected

fiber

oo

MO K2m+1 ∧MO K4m+2

Here each horizontal map is the inclusion of the fiber of the following vertical map. We know
that MO is a wedge of suspensions of mod 2 Eilenberg-Mac Lane spectra. This means that Br2m+2 is
a 3-stage Postnikov system in the relevant range of dimensions.

It follows that θ must be detected by an element on the 2-line of the Adams spectral sequence.
An explicit description of the map k rules out all elements other than h2

j , which is shown to detect the
Kervaire invariant in dimension 2 j+1 −2.

This completes the proof of the theorem. .46
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