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§1. Elliptic cohomology theory

The purpose of this paper is to give the algebraic topological background for ellip-
tic cohomology theory and to pose some number theoretic problems suggested by these
concepts.

Algebraic topologists study functors from the category of spaces to various algebraic
categories. In particular there are functors to the category of graded rings called mul-
tiplicative generalized cohomology theories. (All rings are assumed to be commutative
and unital. Graded rings are commutative subject to the usual sign conventions, i.e.,
odd-dimensional elements anticommute with each other.) These functors satisfy all of the
Eilenberg-Steenrod axioms but the dimension axiom. In other words they have the same
formal properties as ordinary cohomology except that the cohomology of a point may be
more complicated.

For a discussion of these axioms the interested reader should consult [S] or [ES]; for
generalized cohomology theories a good reference is Part III of [A1].

Among these cohomology theories the following examples are mentioned elsewhere in
this volume:

Examples 1.1

(i) H∗(·; R) ordinary cohomology with coefficients in a ring R.
(ii) K∗(·) complex K-theory.
(iii) KO∗(·) real K-theory.
(iv) MU∗(·) complex cobordism theory.
(v) MSO∗(·) oriented cobordism theory.
(vi) MSpin∗(·) Spin cobordism theory.

A comprehensive reference for cobordism theory is [St]; a very brief account can be
found in Sections 4.1 and 4.2 of [R1].

A cohomology theory E is said to be complex-oriented if it behaves well on infinite
dimensional complex projective space CP∞, namely if

E∗(CP∞) = E∗(pt.)[[x]] with x ∈ E2(CP∞).

Here E∗(pt.) means the cohomology of a point and x is such that its restriction to E∗(pt.)
is zero. This is a graded ring which will be abbreviated by E∗. For any space X, E∗(X)
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is an algebra over E∗. Of the examples given above, all but (iii) and (vi) are complex-
oriented. Complex-oriented theories are studied in detail in Part II of [A1] and in Sections
4.1 and 4.2 of [R1].

When the theory is complex-oriented, there is a formal group law associated with it.

Definition 1.2. A formal group law over a commutative ring with unit R is a power
series F(x, y) over R that satisfies

(i) F (x, 0) = F (0, x) = x (identity),
(ii) F (x, y) = F (y, x) (commutativity) and
(iii) F (F (x, y), z) = F (x, F (y, z)) (associativity).

(The existence of an inverse is automatic. It is the power series i(x) determined by the
equation F (x, i(x)) = 0.)

Examples 1.3

(i) F (x, y) = x + y. This is called the additive formal group law.
(ii) F (x, y) = x+ y +xy = (1+x)(1+ y)− 1. This is called the multiplicative formal group

law.
(iii)

F (x, y) =
x
√

R(y) + y
√

R(x)
1− εx2y2

where
R(x) = 1− 2δx2 + εx4.

This is the formal group law associated with the elliptic curve

y2 = R(x),

a Jacobi quartic. It is defined over Z[1/2][δ, ε]. This curve is nonsingular mod p (for p
odd) if the discriminant ∆ = ε(δ2 − ε)2 is invertible. This example figures prominently in
elliptic cohomology theory; see [L1] for more details.

The theory of formal group laws from the power series point of view is treated compre-
hensively in [Ha]. A short account containing all that is relevant for the current discussion
can be found in Appendix 2 of [R1].

If E∗ is an oriented cohomology theory then we have

E∗(CP∞ × CP∞) = E∗(pt.)[[x⊗ 1, 1⊗ x]].

There is a map from CP∞ × CP∞ to CP∞ inducing the tensor product of complex line
bundles. The induced map in cohomology goes the other way since cohomology is a
contravariant functor. Thus we get a map

E∗(pt.)[[x]] → E∗(pt.)[[x⊗ 1, 1⊗ x]].
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Definition 1.4. Let FE(x⊗ 1, 1⊗ x) denote the image of x under this map. It is easy to
verify that this FE satisfies the conditions of 1.2, so we have a formal group law over the
ring E∗.

Now we need a result from the theory of formal group laws first proved by Lazard.

Theorem 1.5. (i) There is a universal formal group law defined over a ring L of the form

G(x, y) =
∑

i,j

ai,jx
iyj with ai,j ∈ L

such that for any formal group law F over R there is a unique ring homomorphism θ from
L to R such that

F (x, y) =
∑

i,j

θ(ai,j)xiyj .

(ii) L is a polynomial algebra Z[x1, x2, . . . ]. If we put a grading on L such that ai,j has
degree 2(1− i− j) then xi has degree −2i.

The relevance of this to algebraic topology is embodied in the following result of Quillen
[Q] proved in 1969.

Theorem 1.6. The formal group law FMU associated with complex cobordism theory is
isomorphic to Lazard’s universal formal group law. In particular L is isomorphic to MU∗.

This suggests that complex cobordism should be central to the study of oriented theories
and their relation to formal group laws. On the other hand Ochanine’s theorem [O]
concerns oriented manifolds, which suggests using oriented cobordism theory MSO∗. This
discrepancy is not a serious one. Every complex manifold is oriented, so there is a natural
homomorphism from MU∗ to MSO∗. Moreover if we localize away from the prime 2 i.e.,
if we tensor with Z[1/2], then MU∗ and MSO∗ are essentially equivalent theories, i.e.,
each one is functorially determined by the other.

Quillen’s theorem (1.6) also raises the question of whether there is an oriented cohomol-
ogy theory for each formal group law. A formal group law over R corresponds by 1.5 to
a homomorphism from L to R, i.e., an L-module structure on R. One can ask if there is
an MU -module spectrum E which is a ring spectrum such that E∗ = R with the desired
L-module structure. There are no known counterexamples, but also no general theorems.
Given such an R, a more precise question is whether the functor

R∗(X) = MU∗(X)⊗L R,

is a cohomology theory. It is if it satisfies certain criteria spelled out in the Landweber
Exact Functor Theorem [L2]; a precise statement can be found in 4.2 of [R1].

The formal group law of 1.3 (ii) does satisfy Landweber’s criteria while 1.3 (i) does not.
In the case of (ii) the resulting cohomology theory is classical complex K-theory. We get
elliptic cohomology from (iii) after inverting the prime 2 and any of δ2 − ε, ε or ∆. The
proof in the latter case involves some deeper aspects of formal group law theory and elliptic
curves; see [LRS]. In particular it uses the fact the the formal group law of an elliptic curve
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must have height 1 or 2; this is proved as Corollary 7.5 in Silverman’s book [Si]. (The
height of a formal group law is defined below in 2.4.)

Unfortunately this method of definition is too abstract to reveal the full power of the
cohomology theory in question. In the case of K-theory there is the classical definition
in terms of vector bundles, which bears little obvious relation with complex cobordism or
formal group laws. Any ‘physical’ interpretation of K-theory, such as its relation to the
Dirac operator, relies completely on the geometric definition and would not be possible
without it.

It would be extremely desirable to have a comparable geometric definition of elliptic
cohomology. In [Wi] Witten studies a possible geometric definition of the map from MSO∗

to R used to define elliptic cohomology.

§2. Some curious group cohomology and the chromatic filtration

In studying complex cobordism theory, topologists have been led to the study of the
cohomology (in the algebraic sense of the term) of certain groups which appear to be
arithmetically interesting.

Definition 2.1. Let Γ be the group of power series over Z having the form

γ = x + b1x
2 + b2x

3 + · · ·

where the group operation is functional composition. Γ acts on the Lazard ring L of 1.5
as follows. Let G(x, y) be the universal formal group law as above and let γ ∈ Γ. Then
γ−1G(γ(x), γ(y)) is another formal group law over L, and therefore is induced by a homo-
morphism from L to itself. Since γ is invertible, this homomorphism is an automorphism,
giving the desired action of Γ on L.

The cohomology group in question is H∗(Γ;L). It is of topological interest because it
is closely related to the homotopy groups of spheres. More precisely, it is the E2-term of
the Adams-Novikov spectral sequence, which converges to the stable homotopy groups of
spheres. For more discussion of this point, see Sections 1.3 and 1.4 of [R1]. The group is
bigraded since L itself is graded. It is known that H0(Γ; L) = Z (concentrated in dimension
0) and that Hs(Γ;L) is locally finite for s > 0.

This group is difficult to compute and a lot of machinery has been developed for doing
so. H1,∗ and H2,∗ are completely known. The problem can be be studied locally at each
prime p. For s > 2, the p-component of Hs,t is known for t < 2(p− 1)p3 for p odd and for
t < 40 for p = 2. The description of H1 is very suggestive.

Theorem 2.2. H1,t is trivial if t is odd and is cyclic of order 2 if t is a positive odd
multiple of 2. When t = 4k,H1,t is cyclic of order a2k (for k = 1 its order is half this
number or 12), where a2k is the denominator of B2k/4k, and B2k is the 2kth Bernoulli
number.

The values of a2k for small k are displayed in the following table.

k 1 2 3 4 5 6 7 8 9 10 11 12

a2k 24 240 504 480 264 65520 24 16320 28728 13200 552 131040
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These numbers can be described in at least two different ways. B2k/4k is the value of
the Riemann zeta function ζ(1− 2k). As such it appears as a coefficient in an Eisenstein
series associated with the Weierstrass ℘-function. An alternate description which is more
useful for our purposes is that

(2.3) a2k = gcd nL(n2k − 1)

where n ranges over all the integers and L is as large as necessary. (This is proved is [A2].)
For 2k = 2, the square of any odd integer is congruent to 1 mod 8, so whenever n is even
we take L ≥ 3 and this makes a2 divisible by 8. The square of any integer prime to 3 is
congruent to 1 mod 3, so when n is divisible by 3 we take L ≥ 1 and a2 is divisible by 3.
There are no other such congruences for larger primes so a2 = 24 as indicated. For k odd
2.3 gives ak = 2, which is consistent with 2.2.

The groups H2,t are also known. They are far more complicated than H1,t; for example
there is no upper bound on the number of summands the p-component can have. Moreover
there is no known arithmetic description comparable to 2.2. Given the fact that the group
has such a complicated structure, a number theoretic interpretation could lead to a great
deal of new information.

There is a deeper way to view H∗(Γ;L) due to Jack Morava. Spec(L), which is an
infinite-dimensional affine space, can be though of as a moduli space for formal group
laws over Z. Then the orbits under Γ are isomorphism classes of formal group laws. The
classification of formal group laws becomes quite manageable if we replace Z by Fp, the
algebraic closure of the field with p elements. We lose little information about cohomology
since there is an isomorphism

H∗(Γ; L⊗ Z/p)⊗ Fp
∼= H∗(ΓFp

; L⊗ Fp)

where ΓFp
is the group of power series over Fp similar to Γ.

Formal group laws over Fp are determined up to isomorphism by an invariant called the
height. To define it we introduce some power series associated with a formal group law.
For each integer n define [n](x) (called the n-series) by

[1](x) = x,

[n](x) = F (x, [n− 1](x)) for n > 1 and(2.4)

[−n](x) = i([n](x)).

These satisfy

[n](x) ≡ nx mod (x2),

[m + n](x) = F ([m](x), [n](x)) and

[mn](x) = [m]([n](x)).

In characteristic p the p-series always has leading term axq where q = ph. The height
is defined to be h. For the additive formal group law we have [p](x) = 0 and the height
is said to be ∞. The multiplicative formal group law has height 1 since [p](x) = xp. The
mod p reduction (for p odd) of the elliptic formal group law of 1.3(iii) has height one or
two depending on the values of δ and ε. For example if δ = 0 and ε = 1 then the height is
one for p ≡ 1 mod 4 and 2 for p ≡ 3 mod 4. (See pp.373-374 of [R1].)
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Theorem 2.5. (i) For each prime p there are polynomial generators vi of of L ⊗ Z(p)

having degree 2pi − 2 such that the height of a formal group law induced by θ is n if and
only if

θ(vi) = 0 for i < n and θ(vn) 6= 0.

(ii) Two formal group laws over Fp are isomorphic if and only if they have the same height.
(iii) Let In = (p, v1, ...vn−1) ⊂ L. Then

H∗(Γ; v−1
n L/In)⊗ Fp

∼= H∗(Sn;Fp)

where Sn is the automorphism group of a height n formal group law over Fp.

The structure of Sn is known and is described in Chapter 6 of [R1]. It is a group of
units in a division algebra Dn (with Hasse invariant 1/n) over the p-adic numbers Qp of
rank n2. It is known that each degree n extension of Qp embeds as a subfield of Dn.

The isomorphism 2.5(iii) is very useful since the cohomology of Sn is much easier to
compute than that of Γ. This can be used to get information about H∗(Γ; L) with the
help of the chromatic spectral sequence, which is described in Chapter 5 of [R1]. The
cohomology groups of 2.5(iii) are ”vn-periodic” in the sense that they are modules over
the ring

(2.6) K(n)∗ = Z/p[vn, v−1
n ].

This notion can be generalized in such a way that each element in H∗(Γ; L) is vn-periodic,
and this leads to a chromatic filtration of H∗(Γ; L).

We know now that this filtration can be defined on the homotopy category itself, not
just on H∗(Γ;L). The author made several conjectures concerning this in [R2], many of
which have been proved by Devinatz, Hopkins and Smith in [DHS]. Expository accounts
can be found in [R3] and [Ho]. We will describe some of this material now.

The ring K(n)∗ of 2.6 is the coefficient ring of a cohomology theory called the nth

Morava K-theory. We use K(0)∗ to denote rational cohomology. K(1)∗ is mod p
complex K-theory. Every graded module over K(n)∗ is free, so we can regard K(n)∗ as a
graded field. In particular there is a very convenient Künneth isomorphism

K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

Ordinary cohomology with coefficients in a field (such as Z/p or Q) enjoys a similar prop-
erty. In [DHS] it is shown that ordinary cohomology with field coefficients and the various
Morava K-theories are the only theories with such a Künneth isomorphism. If we tensor
with the field with pn elements, then we get a functorial action of the group Sn of 2.5(iii).
For n = 1 this group is the p-adic units and we get the p-adic Adams operations.

If G is a finite group then we can define a K(n)-theoretic generalization of group coho-
mology by considering K(n)∗(BG), where BG is the classifying space of G. (Recall that
the usual Eilenberg-Mac Lane cohomology of G is H∗(BG).) Unlike H∗(BG),K(n)∗(BG)
is known to have finite rank. Atiyah showed that K∗(BG) is the completion of the com-
plex representation ring of G at its augmentation ideal, so K(1)∗(BG) can be described
in similar terms. In particular its rank is the number of conjugacy classes of elements in
G whose order is a power of p. In [HKR] we generalize this result as follows. The Euler
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characteristic (and presumably the rank) of K(n)∗(BG) is the number of conjugacy classes
of n-tuples of elements in G which commute with each other and have order a power of p.

Morava K-theory is also useful for studying the general homotopy theory of finite com-
plexes. If X is a finite complex it is known that

rk K(n)∗(X) ≤ rk K(n + 1)∗(X).

These numbers are all finite and not all zero (unless X is contractible). After fixing
a prime p we say that a finite complex has type n if n is the smallest integer such that
K(n)∗(X) 6= 0. Equivalently n is the smallest integer such that MU∗(X) is not annihilated
by the invariant prime ideal In of 2.5(iii).

Theorem 2.7 (Mitchell [M]). For each n there is a finite complex Xn of type n.

It is known that for any finite complex X of type n there is an Γ-equivariant L-
endomorphism α of MU∗(X) which becomes an isomorphism after tensoring with K∗(n).
One such α is multiplication by an appropriate power of vn. This is an algebraic prop-
erty of L-modules with Γ-action. It raises the geometric question of the existence of an
analogous endomorphism of X itself.

Periodicity Theorem 2.8 (Hopkins-Smith [HS]). Any finite complex of type n admits
an endomorphism α which induces a K(n)∗- isomorphism. Moreover some iterate of α is
in the center of the endomorphism ring End(X), which has Krull dimension one.

It is also known that any other Γ-equivariant endomorphism of MU∗(X) is nilpotent,
i.e., some iterate of it is zero. The analogous geometric fact is the following.

Nilpotence Theorem 2.9 (Devinatz-Hopkins-Smith [DHS]). An endomorphism of
a finite complex that induces the trivial map in each Morava K-theory is nilpotent.

The special case of 2.9 when X is the sphere spectrum is Nishida’s Theorem, which says
that each positive-dimensional element in the stable homotopy ring is nilpotent.

§3. Formal A-modules

Definition 3.1. Let A be the ring of integers in a number field K (or a subring thereof)
or in a finite extension of the p-adic numbers. A formal A-module over an A-algebra R
is a formal group law over R equipped with power series [a](x) for each a ∈ A with similar
properties to the [n](x) of 2.4.

Lubin and Tate [LT] used a formal A-module in the local case to construct the max-
imal totally ramified abelian extension of the local field K. This is a generalization of
Kronecker’s Jugendtraum, which concerns the case when K is an imaginary quadratic
extension of Q. There we have an elliptic curve E with complex multiplication whose
endomorphism ring is A. The formal group law associated with E (over A) is a formal
A-module. In both cases the abelian extensions are obtained by adjoining the roots of
[a](x).

The theory of formal A-modules is treated in Section 21 of [Ha].
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It is possible to generalize the algebraic constructions of the previous section to formal
A-modules. There is a generalization of Lazard’s theorem (1.5). The resulting ring is
denoted by LA. There are inclusions

(3.2) L⊗A ⊂ LA ⊂ L⊗K

where K is the field of fractions of A. LA is known to be a polynomial ring in the local
case and when the class number of K is 1.

We define the group ΓA to be the group of power series over A analogous to Γ (2.1).
It acts on LA in a similar way, so we can ask about H∗(ΓA; LA). It is known that
H0(ΓA; LA) = A (concentrated in dimension 0) and that Hs(ΓA; LA) is locally finite for
s > 0. The topological significance of this group is unclear. It could be the E2-term of the
Adams-Novikov spectral sequence for some generalization of the sphere, but this appears
to be very hard to prove. Theorem 2.5 generalizes to formal A-modules in a satisfactory
way as does the chromatic spectral sequence. More details can be found in [R4]. In the
local case if q is the cardinality of the residue field then we have a sparseness result,

(3.3) Hs,t(ΓA; LA) = 0 unless t is divisible by 2q − 2.

H1(ΓA; LA) has been computed in the local case by Keith Johnson [Jo]. The two
descriptions of this group (2.2 and 2.3) is the case A = Z generalize in different ways. In
the global case one might generalize 2.2 by using the Dedekind zeta function for K, but
this will not work since this function vanishes at negative integers unless K is totally real,
while H1(ΓA; LA) is far from trivial.

However we can generalize 2.3 by defining ideals

(3.4) Jk = ∩(aN (ak − 1))

where the intersection is over all a 6= 0 ∈ A and all natural numbers N . Then Johnson’s
result is that in the local case

(3.5) H1,2k(ΓA;LA) = A/Jk

except for certain small values of k and certain rings A. (Recall that for A = Z there was
an exception for k = 2.)
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