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Abstract. This paper presents some speculations about alternatives to the
recently disproved telescope conjecture in stable homotopy theory. It includes
a brief introduction to the parametrized Adams spectral sequence, the main
technical tool used to disprove it. An example supporting the new conjectures
is described.

1. Introduction

A p-local finite spectrum X is said to have type n if K(n − 1)∗(X) = 0 and
K(n)∗(X) 6= 0. The periodicity theorem of Hopkins-Smith [HS] says that any such
complex admits a map

ΣdX
f−→ X

such that K(n)∗(f) is an isomorphism and K(m)∗(X) = 0 for all m > n. Such
a map is called a vn-map. This map is not unique, but the direct limit X̂ of the
system

X
f−→ Σ−dX

f−→ Σ−2dX
f−→ · · · ,

called the telescope associated with X, is independent of the choice of f . (See
[Rav92a] for more background.)

This telescope is of interest because its homotopy groups, unlike those of X
itself, are computable. By this we mean that it is possible in many interesting cases
to give a complete explicit description of π∗(X̂). We remind the reader that there
is not a single example of a noncontractible finite spectrum X for which π∗(X) is
completely known. The only connected finite complexes X for which the unstable
homotopy groups are completely known are the ones (such as surfaces of positive
genus) which happen to be K(π, 1)s.

In the case n = 0, i.e., when H∗(X;Q) 6= 0, X̂ is the stable rational homotopy
type of X. We have known how to compute its homotopy groups for decades. For
n = 1, π∗(X̂) is called the v1-periodic homotopy of X. Since 1982 this has been
computed in may interesting cases; these results are surveyed by Davis in [Dav].

In this paper we will speculate here about this problem for n ≥ 2, offering some
substitutes for the original telescope conjecture [Rav84].
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The classical Adams spectral sequence is useless for computing π∗(X̂) because
H∗(X̂;Z/(p)) = 0. The Adams-Novikov spectral sequence for π∗(X̂) has nice prop-
erties and can be completely analyzed in many interesting cases, but is not known
to converge for n > 1.

The telescope conjecture of 1977 has three equivalent formulations:
• The Adams-Novikov spectral sequence for π∗(X̂) converges.
• The natural map X̂ → LnX is an equivalence, where Ln denotes Bousfield

localization with respect to (equivalently) E(n), v−1
n BP or K(0) ∨K(1) ∨

· · · ∨K(n). For X as above, LnX is the same as LK(n)X.
• X̂ has the same Bousfield class as K(n).
These statements are easily proved for n = 0, known to be true (but not easily

proved) for n = 1 (this is due to Mahowald [Mah82] for p = 2 and to Miller
[Mil81] for p > 2), and known to be false ([Rav92b] and [Rava]) for n = 2.

We will indicate how far off the telescope conjecture is for n ≥ 2 by describing
our best guesses for the values of π∗(X̂) and π∗(LnX) in the simplest cases. What
follows is not intended to be a precise statement, but rather an indication of the
flavor of the calculations. They have been verified for n = 2 and p = 2 in recent
joint work with Mahowald and Shick [MRS].

With these caveats in mind, π∗(LnX) (for a suitable type n finite ring spectrum
X) is a subquotient of an exterior algebra on n2 generators, while π∗(X̂) a sub-
quotient of an exterior algebra on only

(
n+1

2

)
generators tensored with

(
n
2

)
factors

of the form Z/(p)[Q/Z(p)]. (Note that
(
n+1

2

)
+

(
n
2

)
= n2.)

The appearance of this second type of factor, in place of
(
n
2

)
of the exterior

factors in π∗(LnX), is a startling development. It implies that in π∗(V (1)) for
p ≥ 5 (where V (1) stands for Toda’s example of a type 2 complex [Tod71]) there
is a family of elements x1, x2, · · · , each having positive Adams-Novikov filtration,
such that any product of them (with no repeated factors) is nontrivial. We are not
aware of any example of this sort that was known previously.

2. The Adams spectral sequence

The Adams spectral sequence for π∗(X) is derived from the following Adams
diagram.

· · · X−1 X0 X1 · · ·

K−1 K0 K1,
?

g−1

¾

?

g0

¾

?

g1

¾ ¾

(1)

Here Xs+1 is the fibre of gs, and Xs = X (and Ks−1 = pt.) for all s ≤ 0. We get
an exact couple of homotopy groups and a spectral sequence with

Es,t
1 = πt−s(Ks) and dr : Es,t

r → Es+r,t+r−1
r .

This spectral sequence converges to π∗(X) if the homotopy inverse limit lim←Xs

is contractible. When X is connective, it is a first quadrant spectral sequence. For
more background, see [Rav86].

In the classical Adams spectral sequence we set Ks = Xs∧H/p, where H/p de-
notes the mod p Eilenberg-Mac Lane spectrum, and in the Adams-Novikov spectral
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sequence we have Ks = Xs∧BP . For a connective spectrum X, the classical Adams
spectral sequence converges when X is p-adically complete, and the Adams-Novikov
spectral sequence converges when X is p-local. In each case E2 can be identified as
an Ext group which can be computed algebraically.

3. The localized Adams spectral sequence

The localized Adams spectral sequence (originally due to Miller [Mil81]) is
derived from the Adams spectral sequence in the following way. The telescope X̂
is obtained from X by iterating a vn-map f : X → Σ−dX. Suppose that this map
has positive Adams filtration (which it always does in the classical case), ie suppose
there is a lifting

f̃ : X → Σ−dXs0

for some s0 > 0. This will induce maps f̃ : Xs → Σ−dXs+s0 for s ≥ 0. This enables
us to define X̂s to be the homotopy direct limit of

Xs Σ−dXs+s0 Σ−2dXs+2s0
· · ·-f̃ -f̃ -f̃

Xs = X for s < 0. Thus we get the following diagram, similar to that of (1).

· · · X̂−1 X̂0 X̂1 · · ·

K̂−1 K̂0 K̂1,

?
g−1

¾

?

g0

¾

?
g1

¾ ¾

where the spectra K̂s are defined after the fact as the obvious cofibres. This leads
to a full plane spectral sequence (the localized Adams spectral sequence) with

Es,t
1 = πt−s(K̂s) and dr : Es,t

r → Es+r,t+r−1
r

as before. This spectral sequence converges to the homotopy of the homotopy
direct limit π∗(lim→ X̂−s) if the homotopy inverse limit lim← X̂s is contractible.
The following result is proved in [Ravb].

Theorem 2 (Convergence of the localized Adams spectral sequence). For a type
n finite complex X, in the localized Adams spectral sequence for π∗(X̂) we have

• The homotopy direct limit lim→ X̂−s is the telescope X̂.
• The homotopy inverse limit lim← X̂s is contractible if the original (unlocal-

ized) Adams spectral sequence has a vanishing line of slope s0/d at Er for
some finite r, i.e., if there are constants c and r such that

Es,t
r = 0 for s > c + (t− s)(s0/d).

(In this case we say that f has a parallel lifting f̃ .)

The proof of this result is not deep; it only involves figuring out which diagrams
to chase. Here are some informative examples.

• If we start with the Adams-Novikov spectral sequence, then the map f
cannot be lifted since BP∗(f) is nontrivial. Thus we have s0 = 0 and the
lifting condition requires that X has a horizontal vanishing line in its Adams-
Novikov spectral sequence. This is not known (or suspected) to occur for
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any nontrivial finite X, so we do not get a convergence theorem about the
localized Adams-Novikov spectral sequence, which is merely the standard
Adams-Novikov spectral sequence applied to X̂.

• If we start with the classical Adams spectral sequence, an unpublished the-
orem of Hopkins-Smith says that a type n X (with n > 0) always has a
vanishing line of slope 1/|vn| = 1/(2pn − 2). (A proof can be found in
[Ravb].) Thus we have convergence if f has a lifting with s0 = d/|vn|.
This does happen in the few cases where Toda’s complex V (n) exists. Then
V (n− 1) is a type n complex with a vn-map with d = |vn| and s0 = 1.

• The lifting described above does not exist in general. For example, let X be
the mod 4 Moore spectrum. It has type 1 and |v1| = 2. Adams constructed
a v1-map f with d = 8, but its filtration is 3, rather than 4 as required by the
convergence theorem. Replacing f with an iterate f i does not help, because
its filtration is only 4i − 1. This difficulty can be fixed with the localized
parametrized Adams spectral sequence (see [Ravb] for more details), to be
described below.

• In favorable cases (such as Toda’s examples) the E2-term of the localized
Adams spectral sequence can be identified as an Ext groups which can be
computed explicitly.

4. The parametrized Adams spectral sequence

We will describe a family of Adams spectral sequences parametrized by a ra-
tional number ε interpolating between the classical Adams spectral sequence (the
case ε = 1) and the Adams-Novikov spectral sequence (ε = 0). The construction is
easy to describe, but difficult to carry out in detail. It is the subject of [Ravb].

First we need some notation. Let G = BP and F = H/p. We have the
following homotopy commutative diagram in which the rows are cofibre sequences,
and h and h′ are the usual unit maps.

G S0 G

F S0 F

-r

?
ι

-h

? ?
ι

-r′ -h′

Then in the Adams diagram for the classical Adams spectral sequence we can
set Xs = X ∧ F

(s)
, and in the one for the Adams-Novikov spectral sequence,

Xs = X ∧G
(s)

.
We want to smash these two Adams diagrams together to get a 2-dimensional

diagram, and we also want to exploit the map ι above. For i, j ≥ 0 let

Xi,j = X ∧
{

S0 for j ≤ i

F
(j−i)

for j > i

}
∧G

(i)

We will define maps

Xi,j

γi,j−−−−−−−−−→ Xi−1,j for i > 0, and Xi,j

ϕi,j−−−−−−−−−→ Xi,j−1 for j > 0
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by

γi,j = X ∧
{

F
(j−i) ∧ ι if j ≥ i

r otherwise

}
∧G

(i−1)

ϕi,j = X ∧
{

F
(j−i−1) ∧ r′ if j > i

S0 otherwise

}
∧G

(i)

It follows that we have a diagram

X X0,0 X1,0 X2,0 · · ·

X0,1 X1,1 X2,1 · · ·

X0,2 X1,2 X2,2 · · ·

- ¾ γ1,0 ¾ γ2,0 ¾

6ϕ0,1

¾ γ1,1

6ϕ1,1

¾ γ2,1

6ϕ2,1

¾

6ϕ0,2

¾ γ1,2

6ϕ1,2

¾ γ2,2

6ϕ2,2

¾

6 6 6

By our definitions this is the same as

X X ∧G X ∧G
(2) · · ·

X ∧ F X ∧G X ∧G
(2) · · ·

X ∧ F
(2) X ∧ F ∧G X ∧G

(2) · · ·

¾ X∧r ¾X∧r∧G ¾

6
X∧r′

¾ X∧ι

6

¾X∧r∧G

6

¾

6
X∧F∧r′

¾X∧F∧ι

6
X∧r′∧G

¾X∧ι∧G

6

¾

6 6 6

This diagram commutes up to homotopy and is equivalent to one that commutes
strictly [Ravb]. Hence it makes sense to speak of unions and intersections of the
various Xi,j as subspectra of X.

Now fix a number 0 ≤ ε ≤ 1, and for each s ≥ 0 let

Xs =
⋃

(1−ε)i+εj≥s

Xi,j =
⋃

i+εj≥s

X ∧G
(i) ∧ F

(j)
.

Definition 3. For a rational number ε = k/m (with m and k relatively prime)
between 0 and 1, the parametrized Adams spectral sequence is the homotopy
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spectral sequence based on the exact couple associated with the resolution

X X0 X1/m X2/m · · ·

K0 K1/m K2/m

-

?

g0

?

g1/m

¾

?

g2/m

¾ ¾

with Xs as above and Ks the obvious cofibre. This is a reindexed form of the Adams
diagram of §2; the index s need not be an integer but will always be a whole multiple
of 1/m. Thus we have

Es,t
1/m = πt−s(Ks/m) and dr : Es,t

r → Es+r,t+r−1
r .

The indices r, s and t need not be integers here, but t−s (the topological dimension)
is always a whole number.

In favorable cases, when the classical Adams spectral sequence for BP∗(X) =
π∗(BP ∧ X) collapses from E2 (as it does when X is a Toda complex), we can
describe E1+ε in terms of Ext groups.

This parametrized Adams spectral sequence can be localized the same way
the classical Adams spectral sequence can be, and there is a similar convergence
theorem for the localized parametrized Adams spectral sequence. Thus we need to
examine the existence of parallel liftings again.

The methods of Hopkins-Smith can be adopted to this situation to show that
for any ε > 0, the parametrized Adams spectral sequence for a type n complex X
has a vanishing line of slope ε/|vn|. We also have the following result.

Theorem 4. Let f : X → Σ−dX be a vn-map. Then for ε < |vn|/d, f has a
lifting to Σ−dXεd/|vn|.

Hence for any type n complex X, the localized parametrized Adams spectral
sequence converges to π∗(X̂) for sufficiently small positive ε.

5. Some conjectures

Now we will speculate about the behavior of this localized parametrized Adams
spectral sequence converging to π∗(X̂). Each statement we will make below has
been verified in a special case where n = 2 and p = 2, in recent joint work with
Mahowald and Shick [MRS].

Presumably these statements will be proved by showing that the indicated
properties are generic, i.e., the set of spectra having them is closed under cofibra-
tions and retracts. Then the thick subcategory theorem (originally due to Hopkins-
Smith[HS] and alos proved in [Rav92a, Chapter 5]), which classifies all such sets
of finite spectra, will say that if they are true for one type n complex, they are true
for all of them. However, at the moment we cannot prove that any of the properties
we will discuss are generic.

We have three conjectures. All concern the behavior of the localized parame-
trized Adams spectral sequence converging to π∗(X̂) for sufficiently small positive
ε.

Conjecture 5. The localized parametrized Adams spectral sequence collapses
from Er for some finite r.
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Now recall that our spectral sequence has a vanishing line of slope ε/|vn| at
E∞. Let c be its s-intercept, that is the smallest number such that

Es,t
∞ = 0 for s > c + ε(t− s)/|vn|.

Recall also that the vn-map f induces isomorphisms

Es,t
r → Es+ε(d/|vn|),t+d+ε(d/|vn|)

r

commuting with differentials, so E∞ is determined by Es,t
∞ for 0 ≤ t− s < d.

With this in mind, let ρ(y) denote the total rank of the Es,t
∞ with 0 ≤ t− s < d

and

c + ε(t− s)/|vn| ≥ s > c− y + ε(t− s)/|vn|.
In the usual chart (with horizontal coordinate t− s) and vertical coordinate s, this
is a parallelogram shaped region bounded by two vertical lines d units apart, the
vanishing line, and a line y units below and parallel to it.

Conjecture 6. Let ρ(y) be as above. Then it is finite for all y ≥ 0 and grows
asymptotically with y(n

2).

This growth estimate for ρ(y) is related the
(
n
2

)
factors of the form Z/(p)[Q/Z(p)].

If the telescope conjecture were true, ρ(y) would be bounded.
Our third conjecture concerns the behavior of the spectral sequence as ε ap-

proaches 0. This type of analysis was crucial in the disproof of the telescope con-
jecture.

Given an element x ∈ Es,t
r , we define its effective filtration φ(x, ε) by

φ(x, ε) = s− |vn|
ε

(t− s).

On the chart, this is the s-intercept of a line parallel to the vanishing line, through
the point corresponding to x. It is invariant under composition with f .

For x ∈ π∗(X̂), for each sufficiently small ε > 0, there is a unique nontrivial
permanent cycle xε represented by x, and we define φ(x, ε) to be φ(xε, ε).

Conjecture 7. For x ∈ π∗(X̂), let φ(x, ε) be as above. Then the quantity

λ0(x) = lim
ε→0+

φ(x, ε)

is either +∞ (in which case we say x is parabolic), or it is an integer ranging
from 0 to

(
n+1

2

)
, in which case we say that x is linear.

A nontrivial element is linear if and only if its image in π∗(LnX) is nontrivial,
and λ0(x) is its Adams-Novikov filtration.

For a parabolic element x, the function εφ(x, ε) is bounded, and we define

λ1(x) = lim sup
ε→0+

εφ(x, ε),

λ2(x) = lim sup
ε→0+

(
φ(x, ε)− λ1(x)

ε

)
,

and µ(x) =
lim supε→0+ εφ(x, ε)
lim infε→0+ εφ(x, ε)

.

(We call these quantities the focal length, displacement and magnification
of x respectively.) These quantities are all nonnegative and finite, and subject to
bounds depending only on p and n.
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For n = 2, 0 < λ1(x) < p2−1
p , µ(x) = (p+1)2

4p , and λ2(x) − λ1(x)/(p− 1) is an
integer ranging from 0 to

(
n+1

2

)
.

6. An example with n = 2

We will now describe an example that illustrates this conjecture and motivates
its terminology. The relevant computations were done in [Rava]. Let X = V (1)
for p ≥ 5. It has a v2-map f of degree |v2|. Let x ∈ π∗(X̂) be the image of the
composite

S|v2| Σ|v2|V (1)

V (1) S2p Σ2pV (1)

-h

?

f

-j -h

where h and j are the obvious inclusion and pinch maps.
In the localized parametrized Adams spectral sequence we have elements

bi,0 ∈ E
2,2p(pi−1)
1+ε and hi,1 ∈ E

1,2p(pi−1)
1+ε

for i > 0. For large ε, b1,0 is the nontrivial permanent cycle represented by x, but
for small ε, b1,0 is killed by a differential and the situation is more complicated.

For i > 0, let

εi =
2p− 2
pi − 1

=
2

1 + p + · · ·+ pi−1
≈ 2

pi−1

Then for i > 1 we have differentials

dr(hi+1,1) =





v2b
p
i,0 for ε > εi

v2b
p
i,0 ± vpi

2 bi−1,0 for ε = εi

vpi

2 bi−1,0 for ε < εi

for suitable values of r. The element h1,1 is always a permanent cycle represented
by a linear element, and for suitable values of r we have (ignoring powers of v2)

dr(h2,1) =





bp
1,0 for ε > ε2

bpi

i,0 for εi > ε > εi+1

bpi

i,0 ± bpi−1

i−1,0 for ε = εi.

From these considerations we can deduce that our element x ∈ π∗(X̂) represents
the nontrivial permanent cycle xε given by

xε =





b1,0 for ε > ε2

bpi−1

i,0 ± bpi

i+1,0 for ε = εi

bpi

i+1,0 for εi > ε > εi+1

Now since

φ(bi,0, ε) = 2− ε

|v2| (2pi+1 − 2p− 2) = 2− ε

(
pi+1 − p− 1

p2 − 1

)
,
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we have

φ(x, ε) =





2− ε
(

p2−p−1
p2−1

)
for ε ≥ ε2

2pi−1 − εpi−1
(

pi+1−p−1
p2−1

)
for εi ≥ ε ≥ εi+1.

(8)

Thus φ(x, ε) as a function of ε is piecewise linear and εφ(x, ε) is piecewise quadratic,
its graph consisting of a countable collection of parabolic arcs. (This is not the
reason for the term ‘parabolic,’ which will be explained below.) Close examination
reveals that

(ε + 2p− 2)2

εp(p2 − 1)
≤ φ(x, ε) ≤ (ε + 2p− 2)2(p + 1)2

4εp2(p2 − 1)
,(9)

i.e., the graph of the φ(x, ε) lies between two hyperbolas. The lower bound is
obtained at the cusp points εi, and the line segments in the graph are each tangent
to the upper hyperbola.

From (9) we get

(ε + 2p− 2)2

p(p2 − 1)
≤ εφ(x, ε) ≤ (ε + 2p− 2)2(p + 1)2

4p2(p2 − 1)
.

The upper and lower bounds are parabolas, but in the relevant range (0 ≤ ε ≤
1) they look very much like straight lines. The graph of εφ(x, ε) is a countable
collection of parabolic ares, each concave downward. Each arc is tangent to the
upper ‘line’ while the lower ‘line’ goes through the cusp points, where adjacent arcs
meet.

Each arc has its maximum value in the prescribed interval, which is roughly
[2p−i, 2p1−i]; the ith arc achieves its maximum value at

ε =
p2 − 1

pi+1 − p− 1
≈ 1

pi−1

and the maximum value is
pi−1(p2 − 1)
pi+1 − p− 1

so we get

λ1(x) =
p2 − 1

p2
.

This value of λ1(x) differs from the upper bound of the conjecture by a factor
of p. Let xi ∈ π∗(X̂) be an element representing bi,0 for ε > εi+1. Then similar
computations show that

λ1(xi) =
p2 − 1
pi+1

and λ1(x
p−1
1 xp−1

2 · · ·xp−1
k ) =

(p2 − 1)(p− 1)
p

(
1
p

+
1
p2

+ · · ·+ 1
pk

)

=
(p2 − 1)(pk − 1)

pk+1 − 1

<
p2 − 1

p
.

Local minima of εφ(x, ε) are achieved at the cusp points εi; we find that
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εiφ(x, εi) =
4(p− 1)p2i

(p + 1)(pi − 1)2
,

which gives

lim inf
ε→0+

εφ(x, ε) =
4(p− 1)
p(p + 1)

and

µ(x) =
(p + 1)2

4p
.

7. Optical terminology

Finally, we will discuss the terminology used in the last conjecture; it does not
refer to the parabolic arcs described above. Consider the points on an Ext chart
corresponding to bpi−1

i,0 , for which s = 2pi−1 and t = 2pi(pi − 1). These points all
lie on the parabola

t− s =
p2s2

2
− (p + 1)s,(10)

along which they are exponentially distributed.
In order to find εφ(x, ε), look at the lines with slope ε/|v2| passing through these

points, and choose with one with the highest s-intercept. This intercept is φ(x, ε),
and εφ(x, ε) is |v2| times the product of intercept and the slope. A calculus exercise
shows that the limiting value of this product for lines tangent to the parabola is the
parabola’s focal length, and that λ1(x) is |v2| times this focal length.

The number λ2(x) is the s-coordinate (in the (t − s, s)-coordinate system) of
the vertex of this parabola; hence the term displacement. We see in this case that
λ2(x) = λ1(x)/(p − 1). Replacing x by its product with a linear element y would
translate the parabola raise this quantity by the Adams-Novikov filtration of y.

To find lim infε→0+ εφ(x, ε), consider the infinite convex polygon having these
points as vertices. Local minima of εφ(x, ε) are achieved when ε/|v2| is the slope
of one the edges the polygon, i.e., when ε = εi for some i ≥ 2. These lines are all
tangent to the parabola

t− s =
p(p + 1)2

8
s2 − (p + 1)s.(11)

The same calculus exercise shows that lim infε→0+ εφ(x, ε) is |v2| times the focal
length of this parabola. It follows that µ(x) is the ratio between the two focal
lengths, hence the term ‘magnification.’

8. Projective geometry

Here is another approach to the parabola discussed above. The convex polygon
in the (t − s, s)-plane is dual, in the sense of projective geometry, to the graph of
the function φ(x, ε) (8) in the (ε, φ)-plane.

This duality is defined as follows. A nonvertical line in one plane has a slope
and a ‘y-intercept,’ i.e., the coordinate of its intersection with the vertical axis.
These two numbers are (up to suitable scalar multiplication) the coordinates of the
dual point in the other plane. (We assume that the slope of the line is proportional
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to the horizontal coordinate of the dual point, and the intercept is proportional
to the vertical one.) Conversely, given a point in one plane, each nonvertical line
through it determines a point in the other plane and these points are collinear, so
we get a line in the other plane dual to the original point. If we enlarge both affine
planes to projective planes, then it is no longer necessary to exclude vertical lines.
They are dual to points at infinity, and the line at infinity is dual to the point at
infinity in the vertical direction.

There is also a projective duality between curves. A curve in one plane has
a collection of tangent lines, each of which is dual to a point in the other plane.
These points all lie on a new curve, which is defined to be the dual of the original
curve. The tangent lines of the dual curve are dual to the points of the original
curve.

A parabola with horizontal axis, such as the one defined by (10), is dual to a
hyperbola having the vertical axis as an asymptote, namely the upper one defined
in (9). The lower hyperbola of (9) is dual to the parabola of (11).
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