BIPOLYNOMIAL HOPF ALGEBRAS

Douglas C. RAVENEL

Columbia University, New York, N.Y., U.S.A.

and

W. Stephen WILSON Princeton University, Princeton, N.J., U.S.A.

> Communicated by A. Heller Received 25 May 1973

0. Introduction

Definition. A graded connected bicommutative Hopf algebra is said to be *bipolynomial* if both it and its dual are polynomial algebras.

We will show that being bipolynomial of finite type over $Z_{(p)}$ or Z_p determines the Hopf algebra structure. This result has applications in [2].

1. The simple case

Husemoller [1] studies a Hopf algebra $B_{(p)}$ over $Z_{(p)}$, the integers localized at the prime p (or $Z_p = Z/pZ$). As an algebra, $B_{(p)}$ is polynomial on generators a_k of degree $2p^k d$ (for Z_2 , degree $2^k d$). As a Hopf algebra it is bipolynomial; in fact, it is isomorphic as Hopf algebras to its own dual. Let $B_{(p)}(n)$ be the sub-Hopf algebra generated by $a_0, ..., a_n$. We will show, by the following series of lemmas, that a bipolynomial Hopf algebra over $Z_{(p)}$ which is the same size as $B_{(p)}$ is isomorphic as Hopf algebras to $B_{(p)}$.

Let $B_{(p)}(n)^*$ be the Hopf algebra dual to $B_{(p)}(n)$.

Lemma 1.1. As an algebra, a minimal set of generators for $B_{(p)}(n)^*$ is given by the elements e_k dual to $(a_0)^{p^k}$ with respect to the monomial basis of $B_{(p)}(n)$.

Proof. For $B_{(p)}$, see [1]. $B(0)^*$ is just the algebra of divided powers, i.e., $\gamma_i \gamma_j = (i,j)\gamma_{i+j}$ where γ_i is dual to $(a_0)^i$ and (i,j) is the binomial coefficient in $\mathbb{Z}_{(p)}$ (or \mathbb{Z}_p).

It is well known that the necessary generators here are the $\gamma_p k = c_k$. The inclusions $B_{(p)}(0) \rightarrow B_{(p)}(n) \rightarrow B_{(p)}$ take monomials to monomials, and so the maps are $\mathbb{Z}_{(p)}$ split. Since the maps are $\mathbb{Z}_{(p)}$ split, the dual maps $B_{(p)}(0)^* \leftarrow B_{(p)}(n)^* \leftarrow B_{(p)}^*$ are all onto. Since monomials go to monomials, the e_k for $B_{(p)}^*$ go to the c_k for $B_{(p)}(n)^*$. Since $B_{(p)}(n)^*$ is onto and the e_k generate $B_{(p)}^*$, the e_k must also generate $B_{(p)}(n)^*$. Since $B_{(p)}(n)^* \rightarrow B_{(p)}(0)^*$ is onto, and the e_k are all necessary in $B_{(p)}(0)^*$, they must all be necessary in $B_{(p)}(n)^*$.

Let H^* be a polynomial algebra over $\mathbb{Z}_{(p)}$ (or \mathbb{Z}_p) on generators f_k of degree $2p^k d$ (for $\mathbb{Z}_2, 2^k d$).

Lemma 1.2. If we have an onto algebra map $H^* \rightarrow B_{(p)}(n-1)^*$ in degrees $\leq 2p^n d$ $(2^n d \text{ for } \mathbb{Z}_2)$, then it lifts to an algebra isomorphism $H^* \rightarrow B_{(p)}(n)^*$ in degrees $\leq 2p^n d (2^n d \text{ for } \mathbb{Z}_2)$:

(A*) $B_{(p)}(n-1)* \longleftarrow H^*$ $B_{(p)}(n)* \overset{\bullet}{}$

Proof. $E_{(p)}(n-1)^* \simeq B_{(p)}(n)^* \simeq H^*$ in degrees $< 2p^n d$ ($2^n d$ for \mathbb{Z}_2), so our only concern is how to lift f_n .

Some multiple of e_n , say $cp^k e_n$, may be decomposable, where c is a unit in $\mathbb{Z}_{(p)}$. If this is so, then $p^k e_n$ is decomposable, k is greater than zero by Lemma 1.1. (In fact k = n, but all we care is that $\infty \ge k \ge 0$.) If the image of f_n in $B_{(p)}(n-1)^*$ is decomposable, then e_n is not in the image and $H^* \to B_{(p)}(n-1)^*$ is not onto by 1.1. So f_n goes to $cp^j e_n + g(e_1, e_2, ..., e_{n-1})$, where g is a polynomial and c is a unit. Thus we have p/e_n and $p^k e_n$ in the image, so if e_n is to be in the image we must have j = 0. So f_n goes to $ce_n + g(e_1, ..., e_{n-1})$ in $B_{(p)}(n-1)^*$. To obtain our lift for f_n , we just send it to $ce_n + g(e_1, ..., e_{n-1})$ in $B_{(p)}(n)^*$. This commutes and gives us our algebra map in degrees $\le 2p^n d$, and since c is a unit, e_n is in the image and we have an isomorphism in those degrees. \Box

Let H be a bipolynomial Hopf algebra with the algebra structure given by $Z_{(p)}[g_0, g_1, ...]$, where degree $g_k = 2p^k d$ ($2^k d$ for Z_2). By rank considerations, H^* as an algebra must be $Z_{(p)}[f_0, f_1, ...]$ as above.

Proposition 1.3. $H \simeq B_{(p)}$ as Hopf algebras.

Proof. We will define an isomorphism $B_{(p)} \rightarrow H$ step by step, starting with $B_{(p)}(0)$. Map $B_{(p)}(0) \rightarrow H$ by letting a_0 go to g_0 .

Claim (n). If we have a Hopf algebra map $B_{(p)}(n-1) \rightarrow H$ which takes generators to generators, then we can extend the map to a Hopf algebra map of $B_{(p)}(n)$ in such

a way that a_n goes to a generator:

(A)
$$B_{(p)}(n-1) \xrightarrow{} H$$
$$B_{(p)}(n)$$

This will prove the proposition, because by induction we get a Hopf algebra map $B_{(p)} \rightarrow H$ which is an algebra isomorphism, and so it is a Hopf algebra isomorphism.

Proof of claim (n). $B_{(p)}(n-1) \rightarrow H$ takes generators to generators, so since H is a polynomial algebra, $H_{2pnd} = \mathbb{Z}_{(p)} \oplus \text{image } B_{(p)}(n-1)_{2p}n_d$. We can send a_n to any element which has the proper coproduct and get a map of Hopf algebras $B_{(p)}(n) \rightarrow H$ extending $B_{(p)}(n-1) \rightarrow H$. Such a map $B_{(p)}(n) \rightarrow H$ gives a $\mathbb{Z}_{(p)}$ isomorphism in degree $2p^n d$ iff a_n goes to an algebra generator. Therefore all we must do is extend the (coalgebra) map $B_{(p)}(n-1) \rightarrow H$ to a coalgebra map $B_{(p)}(n) \rightarrow H$ in dimensions $\leq 2p^n d$ in such a way that $B_{(p)}(n)_{2pnd} \rightarrow H_{2p}n_d$ is a $\mathbb{Z}_{(p)}$ isomorphism. Because the a_i go to polynomial generators in H, $B_{(p)}(n-1) \rightarrow H$ is $\mathbb{Z}_{(p)}$ split and the dual map is onto. We have now reduced the problem to a purely coalgebra statement, the dual of which we have already proven as Lemma 1.2, so we are done. Similarly for \mathbb{Z}_p . \Box

2. The general case

We adopt the notation of [1]. Our Hopf algebra $B_{(p)}$ will be denoted $B_{(p)}[x, 2d]$ with generators $a_k(x)$ of degree $2p^k d$. We let $B_{(p)}[x, 2d](2n)$ be the sub-Hopf algebra of $B_{(p)}[x, 2d]$ generated by the $a_k(x)$ with degree $a_k(x) = 2p^k d \le 2n$. Note that this is different from our $B_{(p)}(n)$. We need to generalize the lemmas found in Section 1. Note that

$$[\bigotimes_{j} B_{(p)}[x_{j}, 2d_{j}](2n)]^{*} \simeq \bigotimes_{j} B_{(p)}[x_{j}, 2d_{j}](2n)^{*}$$

(for *j* over a finite indexing set). Let $e_k(x_j) \in \bigotimes_j B_{(p)}[x_j, 2d_j]^*$ be dual to $[a_0(x_j)]^{pk}$ in the monomial basis for $\bigotimes_j B_{(p)}[x_j, 2d_j](2n)$.

Lemma 2.1. As an algebra, a minimal set of generators for

$$\bigotimes_j B_{(p)}[x_j, 2d_j](2n)^*$$

is given by the $e_k(x_i)$ for $d_i \leq n$.

Proof. It is enough to do this for $B_{(p)}[x_j, 2d_j](2n)$, which is done in Lemma 1.1.

Let H^* be a polynomial algebra of finite type over $Z_{(p)}$ (or Z_p).

Lemma 2.2. If we have an onto algebra map $(d_i < n)$

$$H^* \rightarrow \bigotimes_j B_{(p)}[x_j, 2d_j](2(n-1))^{\mathfrak{q}}$$

which is an isomorphism in degrees $\leq 2(n-1)$, then it lifts to an algebra isomorphism

$$H^* \rightarrow \bigotimes_j B_{(p)}[x_j, 2d_j](2n)^* \bigotimes_i B_{(p)}[x_i, 2n](2n)^*$$

in degrees $\leq 2n$.

Proof. We need only worry about what happens in dimension 2*n*. The 2*n*-dimensional generators of $\bigotimes_j B_{(p)}[x_j, 2d_j](2(n-1))^*$ are the $e_k(x_j)$, where $n = p^k d_j$. So, since we have this onto map, just as in Lemma 1.2 there must be degree 2*n* generators $e'_k(x_j)$ in H^* such that $e'_k(x_j)$ maps to $e_k(x_j)$ + decomposables, $p^k d_j = n$. As in 1.2, we just map $e'_k(x_j)$ to $e_k(x_j)$ + same decomposables in $\bigotimes_j B_{(p)}[x_j, 2d_j](2n)^*$. Now look at the kernel of this map in dimension 2*n*. Find $\mathbf{Z}_{(p)}$ generators e_k of the kernel. They will all be algebra generators of H^* . Map them to $e_0(x_k)$ in $B_{(p)}[x_k, 2n](2n)^*$. This completes the proof. \Box

Proposition 2.3. If H is a bipolynomial Hopf algebra of finite type over $Z_{(p)}$ (or Z_p), then

 $H \cong \bigotimes_j B_{(p)}[x_j, 2d_j]$

as Hopf algebras (for \mathbf{Z}_2 replace $2d_i$ by d_i).

Proof. We define an isomorphism

$$\bigotimes_j B_{(p)}[x_j, 2d_j] \to H$$

step by step starting with $\bigotimes_i B_{(p)}[x_i, 2](2) \rightarrow H$ which is easily constructed.

Claim (n). If we have a Hopf algebra map $(d_j < n)$

$$\bigotimes_j B_{(p)}[x_j, 2d_j](2(n-1)) \rightarrow H$$
,

which is an isomorphism for dimensions $\leq 2(n-1)$, then we can extend this to a Hopf algebra map

$$\otimes_{j} B_{(p)}[x_{j}, 2d_{j}](2n) \otimes_{i} B_{(p)}[x_{i}, 2n](2n) \rightarrow H,$$

which is an isomorphism for dimensions $\leq 2n$.

This will prove the proposition by letting $n \to \infty$ and the fact that $B_{(p)}[x_j, 2d_j] \simeq B_{(p)}[x_j, 2d_j](2n)$ in degrees $\leq 2n$.

Proof of claim (n). All of the algebra generators of $\bigotimes_j B_{(p)}[x_j, 2d_j](2(n-1))$ are of degree $\leq 2(n-1)$. The given map is an isomorphism in this range and so generators go to generators. Since both algebras are polynomial algebras, this means that the map is $\mathbf{Z}_{(p)}$ split and the dual is onto. Our only problem is in deciding where to send the new generators, i.e. $a_k(x_j)$ for $p^k d_j = n$, and $a_0(x_i)$. Any coalgebra extension to these elements also gives a Hopf algebra extension. If it is a coalgebra isomorphism through dimension $\leq 2n$, then it is a Hopf algebra isomorphism. We have reduced the problem to a pure coalgebra problem which is dual to Lemma 2.2 which we have already proven, so we are done. \Box

For \mathbf{Z}_2 , just eliminate the factor of 2 everywhere.

We would like to thank the referee for finding a mistake in the original version of this paper where we thought we could prove the result over the integers. The problem is still open there. (Added in proof: Brian Shay has found counterexamples to the integer analogue of Proposition 2.3.)

References

- D. Husemoller, The structure of the Hopf algebra H_{*}(BU) over a Z_(p)-algebra, Am. J. Math. 93 (1971) 329-349.
- [2] W.S. Wilson, The Ω-spectrum for Brown—Peterson cohomology, Part I, Comment. Math. Helv., to appear; Part II, Am. J. Math., to appear.