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This paper is intended to be an informal introduction to [HKR], where we
study the Morava K–theories (which will be partially defined below) of the
classifying space of a finite group G and related matters. It will be long on
exposition and short on proofs, in the spirit of the third author’s lecture at the
conference.

In Section 1 we will recall Atiyah’s theorem relating the complex K–theory
of BG to the complex representation ring R(G). We will also define classical
characters on G. In Section 2 we will introduce the Morava K–theories K(n)∗

and the related theories E(n)∗. In Section 3 we will state our main results and
conjectures. Most of the former are generalizations of the classical results stated
in Section 1.

In the remaining five sections we will outline the proofs of our results. Section
4 is purely group–theoretic, i.e., it makes no use of any topology. In it we will
prove our formula for the number χn,p(G) of conjugacy classes of commuting n–
tuples of elements of prime power order in a finite group G. We have discussed
this material with several prominent group theorists, but we have yet to find one
who admits to ever having considered this question. In Section 5 we equate this
number with the Euler characteristic of K(n)∗(BG). Our generalized characters
are functions on the set of such conjugacy classes with values in certain p–adic
fields.

In Section 6 we recall the Lubin–Tate construction from local algebraic num-
ber theory. It uses formal group laws to construct abelian extensions of finite
extensions of the field of p–adic numbers. We need it in Section 7 where we
describe the connection between E(n)∗(BG) and our generalized characters.

In Section 8, we prove a theorem about wreath products. A corollary of this
is that our main conjecture (3.5) about K(n)∗(BG) holds for all the symmetric
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groups.
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1 Atiyah’s theorem and other classical results

Atiyah determined the complex K–theory of the classifying space BG in [Ati61].
A complex representation ρ of a finite group G is a homomorphism G → U
(where U denotes the stable unitary group) and hence gives a map of classifying
spaces BG → BU , which defines a vector bundle over BG and an element in
K∗(BG). A virtual representation leads to a virtual vector bundle, and we still
get an element in K∗(BG). It follows that there is a natural ring homomorphism

R(G) −→ K∗(BG),

where R(G) denotes the complex representation ring of G.
This map is not an isomorphism, but it is close to being one. The represen-

tation ring R(G) has an augmentation ideal I, the ideal of all virtual represen-
tations of degree 0. Let R(G)̂ denote the I–adic completion of R(G).

Theorem 1.1 (Atiyah) For a finite group G,

Ki(BG) ∼=
{

R(G)̂ if i is even
0 if i is odd.

When G is a p–group, the I–adic completion is roughly the same as the
p–adic completion. More precisely, we have

R(G)̂ ∼= Z⊕ (Zp ⊗ I),
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where Zp denotes the p–adic integers. For more general finite groups G, I–adic
completion is more drastic. The map R(G)→ R(G)̂ has a nontrivial kernel, as
can be seen by studying the case G = Z/(6).

In view of 1.1, it is useful to recall some classical facts about the representa-
tion ring R(G). A good reference is Serre’s book [Ser67b]. Additively, R(G) is
a free abelian group whose rank is the number of conjugacy classes of elements
in G.

The mod p analog of 1.1 is the following, which was proved in [Kuh87].

Proposition 1.2 For a finite group G and a prime number p,

Ki(BG;Z/(p)) ∼=
{

R(G)̂ ⊗ Z/(p) if i is even
0 if i is odd,

and the rank of this vector space is the number of conjugacy classes of elements
whose order is some power of the prime p.

A representation ρ induces a complex valued function χ, called a character,
on the set of conjugacy classes as follows. Pick a basis for the complex vector
space V on which G acts via ρ. Then for G ∈ G we define χ(g) to be the trace
of the matrix ρ(g). This turns out to be invariant under conjugation and to be
independent of the choice of basis. It leads to a ring isomorphism

R(G)⊗C
χG−→ Cl(G), (1.3)

where Cl(G) denotes the ring of complex valued functions on the conjugacy
classes of elements in G.

It should be noted here that this isomorphism does not have an analog in
characteristic p, namely K∗(BG;Z/(p))⊗ F̄p is not naturally isomorphic to the
ring of F̄p–valued functions on conjugacy classes of prime power order, where
F̄p denote the algebraic closure of the field Z/(p).

We will illustrate this by studying the representation ring for the quaternion
group Q8. Using the usual notation for quaternions, its elements are ±1, ±i,
±j, and ±k. There are five conjugacy classes, namely {1}, {−1}, {±i}, {±j},
and {±k}. The center is the subgroup of order 2 generated by −1, and there is
a group extension

1 −→ Z/(2) −→ Q8 −→ Z/(2)⊕ Z/(2) −→ 1

There are four irreducible representations of Q8 of degree 1 induced by those
on the quotient group. We denote these by 1, α, β and γ. There is a fifth
irreducible representation of degree 2, which we denote by σ, obtained by the
usual action of Q8 on the space H = C2 of quaternions.

The corresponding characters are displayed in Table 1.4. This is a character
table for Q8. There is a column for each irreducible representation and a row
for each conjugacy class. The numbers shown are that various values of χ(g).
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Table 1.4: Character table for Q8

1 α β γ σ
1 1 1 1 1 2
−1 1 1 1 1 −2
±i 1 1 −1 −1 0
±j 1 −1 1 −1 0
±k 1 −1 −1 1 0

From this table we can read off the multiplicative structure of R(Q8). We
see that αβγ = α2 = β2 = γ2 = 1, σα = σβ = σγ = σ, and σ2 = 1 + α + β + γ.

It follows that there is a unique homomorphism from R(Q8) to a field k of
characteristic 2, and it sends α, β and γ to 1 and σ to 0. On the other hand, the
ring of k–valued functions on the conjugacy classes of Q8 admits at least five
such homomorphisms, namely evaluation on each of the five conjugacy classes.

In view of (1.3), one can ask for a characterization of R(G) as a subring
of Cl(G). This seems to be a very delicate business, but one can recover its
rational form R(G)⊗Q in the following way.

First, one does not need all of C to get the isomorphism (1.3). The trace
of ρ(g) is a linear combination of eigenvalues of g, i.e., it lies in a cyclotomic
extension of Q. To fix notation let L denote the union of all such extensions,
i.e., the maximal abelian extension of Q. Then (1.3) can be replaced by an
isomorphism

R(G)⊗ L −→ Cl(G,L),

where Cl(G,L) denotes the ring of L–valued class functions.
Now the Galois group Gal(L:Q) is known to be isomorphic to the group of

units in the profinite integers. Each automorphism of L raises each root of unity
to a certain power, depending on the order of the root. This group also acts on
the set of conjugacy classes in G in a similar way. Elements in Cl(G,L) coming
from representations are equivariant with respect to these two Galois actions.

Proposition 1.5 The subring of Cl(G, L) consisting of Galois equivariant class
functions is isomorphic to R(G)⊗Q.

Finally, we must mention a theorem of Artin about R(G). Given a subgroup
H of G, one has a restriction homomorphism R(G)→ R(H). Given a category
C of subgroups (such as that of all abelian subgroups or all cyclic subgroups)
one has a map

R(G) −→ lim
C

R(H) (1.6)

and one can ask under what circumstances it is an isomorphism. The limit here
is the categorical inverse limit. It is defined to be the subset of the product

∏

H∈Ob(C)
R(H)
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consisting of points in which the coordinates are compatible under all morphisms
in C. This means that for any morphism

H ′ h−→ H ′′,

the coordinates xH′ ∈ R(H ′) and xH′′ ∈ R(H ′′) must satisfy

xH′ = f∗(xH′′).

We are assuming that the objects in C are closed under subgroups, i.e., if a
subgroup H is an object of C, then so is any subgroup of H. We all assume that
the morphisms in C are generated by inclusions and conjugations.

We will illustrate the categorical limit with the quaternion group Q8 (whose
character table is shown in 1.4) and the category of abelian subgroups. It has
five abelian subgroups: the trivial subgroup, the subgroup of order 2, and three
subgroups of order 4 (A1, A2 and A3). An element in the limit

lim
C

R(A)

is a 5–tuple of representations (one for each abelian subgroup) which are com-
patible under inclusions and conjugations. This means three things:

(i) All five must have the same degree, since they must have the same restric-
tion to the trivial subgroup. It follows that the limit is spanned by the
trivial representation of degree 1 and by elements in which each coordinate
is a virtual representation of degree 0.

(ii) The representations of the three subgroups of order 4 must the same re-
striction to the subgroup of order 2. Let α denote the nontrivial represen-
tation of Z/(2) of degree 1.

(iii) The representations of the subgroups of order 4 must each be invariant
under the nontrivial involution of that group, since it is induced by a
conjugation in Q8. If λ denotes a representation of Z/(4) of degree 1
with eigenvalue i, then the coordinate in the 5–tuple must be a linear
combination of 1, λ2 and λ + λ3.

It follows that the limit is spanned by five generators whose restrictions to
the five subgroups are as shown in Table 1.7. In it there is a row for each
subgroup and a column for each generator.

Comparing this with Table 1.4, we see that the map of (1.6) sends α to
C + D + 1, β to B + D + 1, γ to B + C + 1 and σ to A + 2. It follows that the
map is one–to–one and has a cokernel of order 2.

Artin’s theorem, which is proved in [Ser67b, Chapter 9], says that in general
this map is one–to–one, and the order of its cokernel is a product of primes
dividing the order of G.
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Table 1.7: Generators of limR(A) for Q8

A B C D 1
A1 λ + λ3 − 2 λ2 − 1 0 0 1
A2 λ + λ3 − 2 0 λ2 − 1 0 1
A3 λ + λ3 − 2 0 0 λ2 − 1 1

Z/(2) 2α− 2 0 0 0 1
{e} 0 0 0 0 1

Theorem 1.8 (Artin) Let C(G) denote the category whose objects are cyclic
subgroups of G, with morphisms generated by inclusions and conjugations. Then
the natural map

R(G)⊗ Z[|G|−1] −→ lim
C∈C(G)

R(C)⊗ Z[|G|−1]

is an isomorphism. The same is true if we replace C(G) by A(G), the category
of abelian subgroups of G.

Corollary 1.9 The natural maps

K∗(BG)⊗ Z[|G|−1] −→ lim
C∈C(G)

K∗(BC)⊗ Z[|G|−1]

and
K∗(BG)⊗ Z[|G|−1] −→ lim

A∈A(G)
K∗(BA)⊗ Z[|G|−1]

are isomorphisms for every finite group G.

Note that this is trivially true if we replace K–theory by mod p cohomology.
In that case the source and target of the map are both trivial.

2 Morava K–theories

We would like to generalize 1.1 and 1.2 to some other cohomology theories
related to BP–theory. Recall that BP is a ring spectrum, which is a minimal
wedge summand of the Thom spectrum MU localized at p, with

BP∗ = π∗(BP ) = Z(p)[v1, v2, · · ·],
where the dimension of vn is 2pn − 2. There are BP–module spectra E(n) and
K(n) (the nth Morava K–theory at the prime p) for each n ≥ 0 with

E(0)∗ = K(0)∗ = Q

K(n)∗ = Z/(p)[vn, v−1
n ]

E(n)∗ = Z(p)[v1, v2, · · · vn, v−1
n ]

for n > 0.
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We will not elaborate here on the construction of these spectra. The interested
reader can find more information in [Rav84] and [Wil82].

Some additional properties of these spectra should be noted. E(0) = K(0)
is the rational Eilenberg–Mac Lane spectrum. E(1) is one of p − 1 isomorphic
summands of the complex K–theory spectrum localized at p, and K(1) is its mod
p analog. E(2) is related in a similar way to elliptic cohomology; see [Bak89].

Hence 1.1 and 1.2 can easily be translated into descriptions of E(1)∗(BG)
and K(1)∗(BG). We will give a partial generalization to E(n)∗(BG) and
K(n)∗(BG).

The coefficient ring K(n)∗ is a graded field in the sense that every graded
module over it is free. This makes it very convenient for computations. In
particular there is a Künneth isomorphism

K(n)∗(X × Y ) = K(n)∗(X)⊗K(n)∗(Y ). (2.1)

A consequence of the Nilpotence Theorem of [DHS88] is that the Morava K–
theories, along with ordinary mod p cohomology, are essentially the only coho-
mology theories with Künneth isomorphisms.

For a finite complex X, we know that the rank of K(n)∗(X) is finite, grows
monotonically with n, and is bounded above by the rank of H∗(X;Z/(p)). In
[Rav82] it was shown that K(n)∗(BG) for finite G also has finite rank. Our
results indicate that this rank grows exponentially with n.

All of these theories are complex oriented. This means that they behave in
the expected way on CP∞, namely

K(n)∗(CP∞) = K(n)∗(pt.)[[x]]

with x ∈ K(n)2(CP∞), and similarly for E(n)∗(CP∞).
We also have

K(n)∗(CP∞ ×CP∞) = K(n)∗(pt.)[[x⊗ 1, 1⊗ x]].

The H–space multiplication

CP∞ ×CP∞ m−→ CP∞

induces a homomorphism in K(n)–cohomology determined by its behavior on
the class x, and we can write

m∗(x) = F (x⊗ 1, 1⊗ x).

The power series F is a formal group law, that is it satisfies

(i) F (u, 0) = F (0, u) = u,

(ii) F (u, v) = F (v, u) and

(iii) F (F (u, v), w) = F (u, F (v, w)).
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This particular formal group law is characterized by its p–series, i.e., by the
image of x under the pth power map on CP∞. This is given by

[p](x) = vnxpn

. (2.2)

This formula enables us to compute K(n)∗(BZ/(pi)) in the following way.
The space BZ/(pi) is an S1–bundle over CP∞. As such, its K(n)–cohomology
can be computed with a Gysin sequence similar to the one for ordinary cohomol-
ogy. One needs to know the Euler class of the bundle, and this can be derived
easily from (2.2). The result is

Proposition 2.3

K(n)∗(BZ/(pi)) = K(n)∗(pt.)[x]/(xpni

).

Using, (2.1), this can easily be extended to finite abelian groups. Notice that
for a finite abelian p–group A, the rank of K(n)∗(BA) is the nth power of the
order of A.

The reduction map r : Z/(pm+1)→ Z/(pm) induces a homomorphism

K(n)∗(BZ/(pm)) r∗−→ K(n)∗(BZ/(pm+1))

which sends x to vnxpn

and is therefore one–to–one. On the other hand, the
inclusion map i : Z/(pm)→ Z/(pm+1) induces a surjection. From these we can
easily deduce

Proposition 2.4 Let h : A→ A′ be a homomorphism of finite abelian groups.
Then K(n)∗(h) is onto if h is one–to–one and K(n)∗(h) is one–to–one if h is
onto. If A and A′ are also p–groups, the converse statements are also true.

Notice that nothing like this holds for ordinary cohomology.
One can make similar computations with E(n)–theory. Again one has a

formal group law F with a p–series satisfying

[p](x) ≡ px mod (x2) and
[p](x) ≡ vnxpn

mod (p, v1, · · · vn−1).
(2.5)

It follows that

[pi](x) ≡ pix mod (x2) and
[pi](x) ≡ v

(pni−1)/(pn−1)
n xpni

mod (p, v1, · · · vn−1).

Furthermore, we have

E(n)∗(BZ/(pi)) = E(n)∗[[x]]/([pi](x)). (2.6)

After a certain completion, this is a free E(n)∗–module of rank pni, generated
by {xj : 0 ≤ j < pni}. The analogue of 2.4 holds for E(n)–theory.
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3 Main results and conjectures

Now we can state our main results, which are partial generalizations of 1.1, 1.2,
and 1.9. We will give the second of these first.

1.2 identifies says K(1)∗(BG) is concentrated in even dimensions and its
rank is the number of conjugacy classes of elements in G of prime power order.
We cannot prove that K(n)∗(BG) is concentrated in even dimensions; this is
Conjecture 3.5. We know it is true for finite abelian groups by 2.3. We will
discuss this matter further at the end of this Section.

We know that K(n)∗(BG) has finite rank, so we can speak of its Euler
characteristic, i.e., the difference between the rank of its even dimensional part
and that of its odd dimensional part. We denote this number by χn,p(G). From
2.3 we know that for a finite abelian group A,

χn,p(A) = |A(p)|n, (3.1)

the nth power of the order of the p–component of A.
Like χ1,p(G) of 1.2, χn,p(G) can be described in terms of conjugacy classes.

It is the number of conjugacy classes of of commuting n–tuples of elements of
prime power order in G. More precisely, let

Gn = {(g1, g2, · · · gn): [gi, gj ] = e for 1 ≤ i < j ≤ n},

i.e., the coordinates gi lie in an abelian subgroup of G. We define Gn,p similarly
with the additional condition that the order of each gi is some power of p. G
acts on both Gn and Gn,p by coordinate–wise conjugation.

Theorem 3.2 Let χn,p(G) be the Euler characteristic of K(n)∗(BG), i.e., the
difference in ranks between the even and odd–dimensional components of K(n)∗(BG).
It is equal to the number of G–orbits in Gn,p.

We have a formula for this number, which will be described and proven
below in Section 4. We will outline the proof of Theorem 3.2 in Section 5.

In view of this result it is natural to consider characters as functions defined
on orbits of Gn,p, generalizing the classical case of n = 1. A more sophisticated
way of viewing Gn,p is as follows. Let Zp denote the p–adic integers. Observe
that, as G–sets,

Gn,p = Hom((Zp)n, G);

Let Cln,p(G) be the ring of Qp valued conjugacy class functions on Gn,p.
Then

Cln,p(G) = MapG(Hom(Zn
p , G),Qp).

We can now state our main theorem, which is a partial generalization of
Theorem 1.1.
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Theorem 3.3 Let A be the ring of integers in a finite extension K of the p–adic
numbers, with maximal ideal (π). Given a ring homomorphism

ϕ : E(n)∗( pt. ) −→ A ⊂ Qp

such that ϕ(In) ⊂ (π), there exist natural isomorphisms, for all finite groups G,

E(n)∗(BG)⊗E(n)∗ Qp
χG−→ Cln,p(G),

which is an isomorphism after a suitable completion of the source.

This is our analogue of classical character theory:

χG : R(G)⊗C ∼−→ Cl(G),

where Cl(G) is the ring of complex valued class functions on G.
Our generalization of 1.9 is

Theorem 3.4 For every finite group G and for each positive integer n and each
prime p, the natural map

E(n)∗(BG)⊗ Z[|G|−1] −→ lim
A∈A(G)

E(n)∗(BA)⊗ Z[|G|−1]

is an isomorphism. The same is true if we replace A(G) by the category of
abelian subgroups generated by at most n elements.

This theorem is actually true in much greater generality; E(n)∗ can be re-
placed by any complex oriented cohomology theory, provided we state it in terms
of the category of A(G). This is proved in Section 2 of [HKR].

Our main conjecture about K(n)∗(BG) is the following.

Conjecture 3.5 K(n)∗(BG) is concentrated in even dimensions.

This is true for n = 1 by Atiyah’s theorem.

Proposition 3.6 3.5 is true for G if it is true for a p–Sylow subgroup H ⊂ G.

Proof. The composite stable map

BG
Tr−→ BH −→ BG

induces multiplication by the index of H in G in ordinary homology. Since this
index is prime to p, it follows that the map is an equivalence after localizing at
p. This means that BG(p) is a retract of BH(p). The result follows.

The conjecture holds for abelian p–groups by 2.3. Tezuka–Yagita [TY89]
have verified it for the nonabelian groups of order p3. Theorem 5.4 of [Kuh89]
implies that for any stable summand eBG of BG, K(n)∗(BG) has positive Euler
characteristic for sufficiently large n.

We can show that it holds for certain wreath products. In order to state this
result, we need a preliminary definition.

10



Definition 3.7 (a) For a finite group G, an element x ∈ K(n)∗(BG) is good
if it is a transferred Euler class of a complex subrepresentation of G, i.e., a class
of the form Tr∗(e(ρ)) where ρ is a complex representation of a subgroup H < G,
e(ρ) ∈ K(n)∗(BH) is its Euler class (i.e., its top Chern class, this being defined
since K(n)∗ is a complex oriented theory), and Tr : BG → BH is the transfer
map.

(b) G is good if K(n)∗(BG) is spanned by good elements as a K(n)∗–
module.

Recall that a representation ρ of a subgroup H ⊂ G leads to an induced
representation IndG

H(ρ) of G. Its degree is that of ρ times the index of H in G.
One also has a stable transfer map

BG
Tr−→ BH.

The induced map K–theory sends the element corresponding (under Atiyah’s
isomorphism) to ρ to that corresponding to IndG

H(ρ).
However, Tr∗(e(ρ)) 6= e(IndG

H(ρ)) in general. For good G, K(n)∗(BG) can-
not be described only in terms of representations of G itself. If G is good then
K(n)∗(BG) is of course concentrated in even dimensions. We know of no groups
which are not good in this sense, so we could strengthen the conjecture by saying
that all finite groups are good.

With this definition we have

Theorem 3.8 If a finite group G is good, then so is the wreath product W =
Z/(p) oG.

A variant of this has been proved independently by Hunton [Hun90].

Corollary 3.9 Let Σk denote the symmetric group on k letters. Then

K(n)∗(BΣk)

is concentrated in even dimensions for all k.

Proof. The p–Sylow subgroup of Σk is a direct sum of iterated wreath products
of Z/(p) with itself, and is therefore good by 3.8. The result follows by transfer
arguments.

Our conjecture is closely related to the one that says that E(n)∗(BG) is
torsion free and even–dimensional. Note that then the map of Theorem 1.8
would be monic before inverting |G|.

Part of Atiyah’s proof goes as follows. We want to show that K(1)∗(BG)
is concentrated in even dimensions. It suffices to do this for p–groups. Each
p–group G has a normal subgroup H of index p. We can assume inductively
that K(1)∗(BH) is concentrated in even dimensions. We can study the spectral
sequence associated with the fibration

BH −→ BG −→ BZ/(p)

11



converging to K(1)∗(BG) with

E2 = H∗(Z/(p); K(1)∗(BH)),

where this cohomology has twisted coefficients based on the action of Z/(p) on
H by conjugation. One wants to show that this spectral sequence collapses.

We know inductively that K(1)∗(BH) has a basis corresponding to certain
irreducible characters of H, i.e., characters associated with irreducible repre-
sentations. These characters are clearly permuted by outer automorphisms of
H, so it follows that Z/(p) acts on K(1)∗(BH) by permutations. From this
it follows easily that the E2–term is concentrated in even dimensions and the
spectral sequence collapses as desired.

The difficulty in generalizing this argument to n > 1 is that Z/(p) need not
act on K(n)∗(BH) via a permutation representation so we cannot say that the
spectral sequence collapses.

4 Counting the orbits in Gn,p

In this section we will derive our formula for the number of G–orbits in Gn,p,
i.e. the number of conjugacy classes of commuting n–tuples of elements whose
order is a power of the prime p. This is an exercise in elementary group theory.
Before proving it we will illustrate the formula with some examples. In this
section no mention will be made of Morava K–theory. The notation χn,p(G) is
used here only for convenience to denote the number of G–orbits in Gn,p. The
connection of this number with Morava K–theory will be discussed in Section
5.

The formula for χn,p(G) is

Proposition 4.1 The number of G–orbits in Gn,p is

χn,p(G) =
∑

A<G

|A|
|G|µG(A)χn,p(A)

where the sum is over all abelian subgroups A < G and µG is a Möbius function
defined recursively by ∑

A<A′
µG(A′) = 1

where the sum is over all abelian subgroups A′ < G which contain A. (In
particular, µG(A) = 1 when A is maximal.)

The Möbius function µ can be defined as above for any partially ordered set
in which each element is dominated by only finitely many elements in the set.
The classical arithmetic Möbius function is obtained (up to a factor of −1) in
this way from the poset of proper subgroups of the integers.

If G is an abelian group, then µG(G) = 1 and µG vanishes on all proper
subgroups, since each is contained in precisely one maximal abelian subgroup.
Thus the sum has but one terms and the formula is tautologous in this case.
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Now we will consider the quaternion group Q8 again. The lattice of abelian
subgroups is

0 −→ Z/(2) −→ 3(Z/(4))

It follows that µQ8(Z/(2)) = −2, while µQ8 vanishes on the trivial subgroup.
(In general it can be shown that µG vanishes on any abelian subgroup not
containing the center of G.)

Thus the formula gives

χn,2(Q8) =
3 · 4 · 4n − 2 · 2 · 2n

8

=
3 · 4n − 2n

2
.

Note that when n = 1 this gives 5, the number of conjugacy classes in Q8, and
that for all n it gives an integer.

If we replace Q8 by the dihedral group D8 of order 8, the lattice of abelian
subgroups has the same structure, but with two of the Z/(4)s replaced by
(Z/(2))2. This change will not alter any of the numbers in the formula, so
we have

χn,2(D8) = χn,2(Q8).

Now we consider the symmetric group on three letters Σ3. (It should be
noted that the formula for χn,p(G) requires us to sum over all abelian subgroups,
not just those which are p–groups.) Here there are four maximal abelian sub-
groups, three of order 2 and one of order 3. The intersection of any pair of them
is the trivial subgroup. It follows that the value of µΣ3 on the trivial subgroup
is −3. Hence the formula gives

χn,p(Σ3) =
3 · 2χn,p(Z/(2)) + 3χn,p(Z/(3))− 3

6

χn,2(Σ3) =
3 · 2 · 2n + 3− 3

6
= 2n

= χn,2(Z/(2))

χn,3(Σ3) =
3 · 2 + 3 · 3n − 3

6

=
3n + 1

2

Recall that BΣ3 localized at the prime 3 is one of two stable summands of
BZ/(3), and we see that χn,3(Σ3) is roughly half of χn,3(Z/(3)).

Next we consider the alternating group A4. It has five maximal abelian
subgroups, four of order three and one isomorphic to (Z/(2))2. The latter has
three subgroups of order 2. Thus we have

0 −→ 3(Z/(2)) −→ (Z/(2))2

↓
4(Z/(3))

13



The Möbius function µA4 vanishes on each subgroup of order 2, and its value
on the trivial subgroup is −4. Thus we have

χn,p(A4) =
4 · 3χn,p(Z/(3)) + 4χn,p(Z/(2))2 − 4

12

χn,2(A4) =
4 · 3 + 4 · 4n − 4

12

=
4n + 2

3

χn,3(A4) =
4 · 3 · 3n + 4− 4

12
= 3n

= χn,3(Z/(3)).

Finally, we look at the symmetric group on 4 letters, Σ4. It has three cyclic
subgroups of order 4. In each case the subgroup of order 2 is contained in A4.
There are six additional subgroups of order 2, each generated by a transposition.
There are three more noncyclic subgroups of order 4. In each of them one of
the three subgroups of order 2 is contained in A4 and the other two are not.

Thus the diagram of abelian subgroups is

6(Z/(2)) 3((Z/(2))2)
↑ ↑
0 −→ 3(Z/(2)) −→ (Z/(2))2

↓ ↓
4(Z/(3)) 3(Z/(4))

It follows that µΣ4 vanishes on the six subgroups of order 2 not contained in
4 and takes the value −2 on the three that are. Its value on the trivial subgroup
is −4. Thus the formula gives

χn,p(Σ4) =
4 · 3χn,p(Z/(3)) + 4 · 4χn,p(Z/(2))2 + 3 · 4χn,p(Z/(4))

24

−6 · 2χn,p(Z/(2)) + 4
24

χn,2(Σ4) =
4 · 3 + 4 · 4 · 4n + 3 · 4 · 4n − 6 · 2 · 2n − 4

24

=
7 · 4n − 3 · 2n + 2

6

χn,3(Σ4) =
4 · 3 · 3n + 4 · 4 + 3 · 4− 6 · 2− 4

24

=
3n + 1

2
= χn,3(Σ3)

Proof of 4.1. We first treat the case n = 0. In this case we are counting conju-
gacy classes of 0–tuples, so the answer should be one. In particular χ0,p(A) = 1

14



for any abelian group A. If we multiply the right hand side by |G| we get
∑

A<G

|A|µG(A) =
∑

A<G

∑

g∈A

µG(A).

since |A| is the number of elements in A. If we change the order of summation
we get

∑

g∈G

∑

A3g

µG(A). (4.2)

where the second sum is over all abelian subgroups containing the element g.
These groups also contain the cyclic subgroups generated by g, so the inner sum
is 1 by the definition of µG. Hence the value of the expression in (4.2) is |G| so
χ0,p(G) = 1 for all G as expected.

For n > 0 we can write

∑

A<G

|A|
|G|µG(A)χn,p(A) =

∑

A<G

1
|G|

∑

g0,g1,···,gn∈A

µG(A)

where the elements g1, · · · , gn ∈ A all have order a power of p, since χn,p(A) =
|A(p)|n. Changing the order of summation gives

∑

A<G

|A|
|G|µG(A)χn,p(A) =

∑

g0,g1,···,gn∈G

1
|G|

∑

A3g0,g1,···,gn

µG(A)

where the outer sum is over all (n + 1)–tuples (gi) of commuting elements with
all but g0 having order a power of p. Again the inner sum is one because it is
taken over all the abelian subgroups containing the one generated by the gi, so
we have ∑

A<G

|A|
|G|µG(A)χn,p(A) =

∑

g0,g1,···,gn∈G

1
|G| .

Now G acts on the n–tuple (g1, · · · , gn) by coordinate–wise conjugation and
the isotropy group is precisely the set of elements g0 which commute with each
of g1, · · · , gn. We can write

∑

g0,g1,···,gn∈G

1
|G| =

∑

(g1,···,gn)∈Gn,p

∑
g0

1
|G| ,

and the inner sum is one over the number n–tuples in Gn,p conjugate to (g1, · · · , gn).
It follows that our expression is the number of G–orbits in Gn,p as claimed.
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5 The Euler characteristic of K(n)∗(BG)

In this section we will outline the proof of Theorem 3.2. Thus our aim is to
prove the formula of 4.1 with the understanding that χn,p(G) denotes the Euler
characteristic of K(n)∗(BG). We already know χn,p(A) for finite abelian groups
A by 2.3. The outline given here will be more pedestrian than the proof given
in [HKR], more along the lines in which we first thought of it.

Let ρ : G→ U(m) be a faithful unitary representation of G, so that G acts
freely on U(m). This gives a G–action on the flag manifold

F (m) = U(m)/Tn

(where Tn denotes the maximal torus in U(m), i.e., the group of diagonal ma-
trices) in which every isotropy group is abelian. The Borel construction

X = F (m)×G EG

(where EG is a free contractible G–space) is an F (m)–bundle over BG. It is
easy to show that its K(n)–theoretic Euler characteristic, which we will denote
by χn,p(X), is m! times that of BG since χn,p(F (m)) = m!.

For each abelian subgroup A ⊂ G, let F (m)〈A〉 denote the subspace of F (m)
consisting of points where the isotropy group is precisely A. Then F (m)〈A〉 is
an open dense subset of F (m)A, the subspace fixed by A. In fact we have

F (m)A =
⋃

A′⊃A

F (m)〈A
′〉.

We can describe the subspaces F (m)A explicitly as follows. Each A ⊂ G
determines an eigenspace decomposition of the vector space V = Cm on which
G acts. Recall that a point in the flag manifold F (m) is a decomposition of V
into one dimensional subspaces. If each of these subspaces is contained in an
eigenspace of A, then the flag is fixed by A. If the eigenspace decomposition
has the form

V = V1 ⊕ V2 ⊕ · · ·Vk

where Vi has rank di, then F (m)A is a finite disjoint union of copies of subman-
ifolds of the form

F (d1)× F (d2)× · · ·F (dk),

the number of copies being
m!

d1! d2! · · · dk!
.

(The fact that F (m)A has the same Euler characteristic as F (m) is a special
case of the Lefschetz Fixed Point Theorem.)

Each subspace F (m)A ⊂ F (m) is a complex submanifold equipped with a
complex normal bundle. The compliment of the zero section in this bundle has
trivial Euler characteristic, so we have

χn,p(F (m)) = χn,p(F (m)A) + χn,p(F (m)− F (m)A),
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from which we deduce that for each A ⊂ G

m! = χn,p(F (m)A) =
∑

A⊂A′
χn,p(F (m)〈A

′〉),

the sum being over all abelian subgroups A′ containing A.
We can solve these equations for χn,p(F (m)〈A〉), and get

χn,p(F (m)〈A〉) = m! µG(A)

where µG is the Möbius function defined in Section 4.
The subspace F (m)〈A〉 ⊂ F (m) is not G–invariant because g ∈ G sends

F (m)〈A〉 to F (m)〈gAg−1〉. Let

F (m)(A) =
⋃

g∈G

F (m)〈gAg−1〉.

It is invariant and each orbit in it is isomorphic to G/A.
It follows that

F (m)(A) ×G EG ' F (m)(A)/G×BA

and

χn,p(F (m)(A) ×G EG) =
|A|
|G|χn,p(F (m)(A))χn,p(A).

Summing over all conjugacy classes (A) of abelian subgroups A ⊂ G, we get

m!χn,p(G) = χn,p(F (m)×G EG)

=
∑

(A)

χn,p(F (m)(A) ×G EG)

=
∑

A⊂G

|A|
|G|χn,p(F (m)〈A〉)χn,p(A)

=
∑

A⊂G

|A|
|G|m!µG(A)χn,p(A),

which proves Theorem 3.2.

6 The Lubin–Tate construction

In this section we will describe the Lubin–Tate construction [LT65], which is a
description of the maximal totally ramified abelian extension of a local field K
of characteristic 0 (i.e., of a finite extension of the p–adic numbers Qp) using
formal group laws. Accounts can also be found in [Ser67a] and [Haz78, Section
32]. We need these fields because they are the natural targets for our generalized
characters, to be described in the next section.
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Recall that the maximal abelian extension of the rationals Q can be obtained
by adjoining all of the roots of unity in C. These are the elements of finite order,
or torsion points in the multiplicative group of the complex numbers.

Now suppose we are given a formal group law F defined over the ring of
integers A of some finite extension K of the p–adic numbers Qp. This is power
series F (x, y) with certain properties described above. If x and y are elements in
the maximal ideal of A, then this power series will converge, since A is complete.
The same is true if x and y lie in the maximal ideal m of the completion of the
algebraic closure Qp of K. In this way we obtain a group structure on m. We
will denote this group by mF .

When F is the additive formal group law x + y, then we get the usual
additive group structure on m. In this case there are no nontrivial elements of
finite order.

When F is the multiplicative formal group law, we get the usual multiplica-
tive groups structure on 1 + m. The elements of finite order are roots of unity
congruent to 1 modulo m, i.e., the (pi)th roots of unity for various i. The field
obtained by adjoining all of these elements to Qp is the maximal totally ramified
abelian extension.

The main result of [LT65] is that with a suitable choice of the formal group
law F , the field obtained by adjoining all of the elements of finite order in mF is
the maximal totally ramified abelian extension of the given field K. In order to
specify this choice, we need the notion of a formal A–module, which is a formal
group law over an A–algebra R with certain additional structure. (Recall that
A is the ring of integers in K, a finite extension of Qp.).

Associated with any formal group law there are power series [n](x) for inte-
gers n satisfying

(i) [1](x) = x,

(ii) F ([m](x), [n](x)) = [m + n](x) and

(iii) [m]([n](x)) = [mn](x).

When F is defined over a Zp–algebra, one can use continuity to extend this
definition to [u](x) for any u ∈ Zp. F is a formal A–module if we can define
[a](x) with similar properties for all a ∈ A. An account of theory of formal
A–modules can be found in [Haz78, Section 21].

Theorem 6.1 (Lubin–Tate) Let A be the ring of integers in a finite extension
K of the p–adic numbers Qp. Let π ∈ A be a generator of the maximal ideal
and let q be the cardinality of the residue field A/(π). Let f(x) ∈ A[[x]] be a
power series with

f(x) ≡ πx mod (x)2 and f(x) ≡ uxq mod (π),

where u is a unit in A.
Then
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(i) There is a unique formal A–module F over A for which [π](x) = f(x).

(ii) The field obtained by adjoining the elements of finite order in mF is the
maximal totally ramified abelian extension L of K. These elements are
the roots of the iterates of f . Let Li denote the field obtained by adjoining
the elements of order dividing (q− 1)qi−1 in mF , i.e., by the roots of f◦i,
the ith iterate of f .

(iii) The Galois group Gal(L : K) is isomorphic to the group of units A× in
A. For x an element of finite order in mF , the image of x under the
automorphism corresponding to a ∈ A× is [a](x). If x is a root of f◦i,
then it it fixed by this automorphism if a is congruent to 1 modulo (π)i.

When A = Zp, we can take

f(x) = (1 + x)p − 1 =
∑

1≤k≤p

(
p
k

)
xk

and the statements in the 6.1 can be readily verified. In this case F is the
multiplicative formal group law x + y + xy and the roots of the of f◦i are
elements of the form ζ − 1, where ζ is a (pi)th root of unity.

More generally, when f is a polynomial of degree q (the simplest example
is πx + xq), then g1(x) = f(x)/x is irreducible by Eisenstein’s criterion. The
same is true of the polynomials gi(x) defined inductively for i > 1 by gi(x) =
gi−1(f(x)). Li is the splitting field for gi(x).

7 Generalized characters and E(n)∗(BG)

In this section we will describe a homomorphism

E(n)∗(BG)
χG−→ Cln,p(G), (7.1)

the target being the ring of Qp valued conjugacy class functions on Gn,p, the
set of commuting n–tuples of elements of prime power order in G.

As remarked in Section 3, an element γ ∈ Gn,p is the same thing as a
homomorphism

(Zp)n −→ G.

Since G is finite, this factors through (Z/(pi))n for sufficiently large i. Thus we
get a map

E(n)∗(BG)
γ∗i−→ E(n)∗(B(Z/(pi))n).

Letting i go to ∞, we get a map

E(n)∗(BG)
γ∗−→ lim→

i

E(n)∗(B(Z/(pi))n).
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Note that this direct limit is not the same as

E(n)∗(lim←
i

B(Z/(pi))n),

which is far less interesting in this context.
We could define χG as in (7.1) if we had a suitable map

lim→
i

E(n)∗(B(Z/(pi))n) −→ Qp (7.2)

This is where the Lubin–Tate construction comes into the picture.
We will illustrate with an easy example. Let the field K be the unramified

extension of Qp of degree n, and let π (the generator of its maximal ideal) be
p. The cardinality q of the residue field A/(p) is pn. The homomorphism ϕ
as in Theorem 3.3 must send vn to a unit in A since vn is invertible in E(n)∗.
Then the conditions on f(x) in Theorem 6.1 are identical to those on ϕ([p](x))
in (2.5).

This means that (2.6) translates into

E(n)∗(BZ/(pi))⊗K = K[[x]]/(f◦i(x))

and we can extend ϕ to a homomorphism

E(n)∗(BZ/(pi))
ϕ−→ Li

by sending x to a root of gi. We can do this compatibly for all i and get a map

lim→
i

E(n)∗(BZ/(pi))
ϕ−→ L. (7.3)

We will extend this further as in (7.2) in such a way that the characters
given by (7.1) will be Galois equivariant in the sense of 1.5. The construction
of ϕ in (7.3) depends on a choice of roots ri ∈ L of gi satisfying

ri = f(ri+1).

Recall that the Galois group Gal(L : K) is isomorphic to the group of units A×

in A. We can regard (Z/(pi))n as A/(pi). Then we can define

lim→
i

E(n)∗(BA/(pi))
ϕ−→ L

to be the equivariant extension of the ϕ of (7.3).
We can make this more explicit as follows. We have

E(n)∗(BA/(pi)) = E(n)∗[[x0, x1, · · ·xn−1]]/([pi](xj)).

Pick a Zp–basis of A of the form {a0 = 1, a1, · · · an−1}. Then extend ϕ from
E(n)∗(BZ/(pi)) to E(n)∗(BA/(pi)) by defining

ϕ(xj) = [aj ](ri). (7.4)
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This map ϕ enables us to define

E(n)∗(BG)⊗E(n)∗ K
χG−→ Cln,p(G,L)A× , (7.5)

where Cln,p(G,L)A× denotes the ring of Galois equivariant L–valued conjugacy
class functions on Gn,p.

The Galois equivariance of these characters is not mentioned in [HKR]. If
we replace K by L in the source of (7.5), we can drop the equivariant condition
on the target. In the theorem stated in [HKR], L is replaced by Qp.

We will now give an indication of why the map of (7.5) is an isomorphism
after a suitable completion of the source. It is not hard to show that the target
behaves well with respect to abelian subgroups, i.e. that it satisfies an analogue
of Artin’s Theorem (1.8). (This is Lemma 4.11 of [HKR].) Thus Theorem 3.4
can be used to reduce to the case of abelian groups. Then a routine argument
reduces it further to the case of finite cyclic p–groups.

Therefore we will examine the case G = Z/(pi) in more detail. In this
case the target of χG is a free K–module of rank pni. The same is true of the
source after suitable completion, with the generators being the powers of the
orientation class x ∈ E(n)2(BG). Thus χG can be represented by a (pni × pni)
matrix MG over K, which must be shown to be nonsingular.

We will use the notation of (7.4). Recall that

Gn,p = Hom(A,G).

Given θ ∈ Hom(A,G), we need to compute

χG(x)((θ)) = ϕ(θ∗(x)) ∈ L,

which must be a root of f◦i. Let θj for 0 ≤ j ≤ pni − 1 denote the pni elements
of Gn,p and let

λj = χG(x)(θj) ∈ L.

These λj are the pni distinct roots of f◦i, and we have

χG(xk)(θj) = λk
j ∈ L.

It follows that MG is a Vandermonde matrix with entries

mj,k = λk
j .

Therefore it is nonsingular, completing our outline of the proof of Theorem 3.3.

8 The wreath product theorem

In this section we will prove Theorem 3.8. Recall the definition of good groups
given in 3.7. The following properties of such groups are immediate.
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Proposition 8.1 (a) G is good if its p–Sylow subgroup is good.
(b) If G1 and G2 are good then so is their product G1 ×G2.
(c) Every finite abelian group is good. (In fact, if G is abelian then K(n)∗(BG)

is generated by Euler classes of representations of G itself.)

Before specializing to the wreath product situation we note

Lemma 8.2 If f : H → G is a homomorphism and x ∈ K(n)∗(BG) is good,
then f∗(x) is a linear combination of good elements in K(n)∗(BH).

Proof. Suppose x = Tr(e(ρ)) where ρ is a representation of K < G. Then
there is a pullback diagram of spaces of the form

∐
BHα

∐
fα−−−−−−−−−→ BK

↓ ↓
BH

f−−−−−−−−−→ BG

where each Hα is a subgroup of H. This happens because the pullback is a
covering of BH whose degree is the index k of K in G. Therefore its higher
homotopy groups vanish and it must be a disjoint union of the indicated form.
The sum of the indices of the Hα must be k.

By naturality of the transfer,

f∗(x) =
∑
α

Tr∗e(f∗α(ρ)).

Corollary 8.3 If x and y are good elements of K(n)∗(BG) then their cup prod-
uct xy is a sum of good elements.

Proof. x×y ∈ K(n)∗(BG×G) is good and xy = ∆∗(x×y) where ∆ : G→ G×G
is the diagonal map.

To prove the Theorem 3.8, we study the extension

Gp −→W −→ Z/(p)

and the associated spectral sequence

E2 = H∗(Z/(p); K(n)∗(BGp))⇒ K(n)∗(BW ). (8.4)

Z/(p) acts on K(n)∗(BGp) by permuting the factors. Thus, as a module
over Z/(p), we have

K(n)∗(BGp) = F ⊕ T

where F is a free Z/(p)–module and T has trivial Z/(p)–action. If {xi} is a
basis of K(n)∗(BG), then F has basis

{xi1 ⊗ xi2 · · · ⊗ xip}
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where the subscripts i1, . . . ip are not all the same, and T has basis {Pxi} where
Pxi = xi ⊗ xi · · ·xi. Moreover

Hi(Z/(p); F ) =
{

FZ/(p) for i = 0
0 for i > 0

and
H∗(Z/(p); T ) = T ⊗H∗(BZ/(p))

where
H∗(BZ/(p)) = E(u)⊗ P (x)

with u ∈ H1 and x ∈ H2.
We need to show that each element in

E0,∗
2 = H0(Z/(p); T ⊕ F )

is a permanent cycle. Once we have this, then we know that the spectral se-
quence has a differential of the form

d2pn−1(u) = vnxpn

because this happens in the case when G is trivial, i.e., in the Atiyah–Hirzebruch
spectral sequence for K(n)∗(BZ/(p)). It would then follow that

E2pn = E∞ = H0(Z/(p); F )⊕ (H0(Z/(p); T )⊗K(n)∗(BZ/(p)))

which is concentrated in even dimensions. We will also show that W is good.
Thus we will need the following two lemmas.

Lemma 8.5 Each element in H0(Z/(p); F ) is a permanent cycle in the spectral
sequence (8.4).

Lemma 8.6 Each element in H0(Z/(p); T ) is a permanent cycle in the spectral
sequence (8.4).

Proof of Lemma 8.5. Let x = xi1 ⊗· · ·xip be a basis element of F and let σ(x)
denote the sum of x and all of its conjugates under the action of Z/(p). Then
H0(Z/(p); F ) is spanned by these σ(x). Moreover σ(x) is the image of x under
the composite

K(n)∗(BGp) Tr∗−→ K(n)∗(BW ) Res∗−→ K(n)∗(BGp).

(Res∗ here denotes the restriction map induced by the inclusion Gp →W .) An
element in E0,∗

2 ⊂ K(n)∗(BGp) is a permanent cycle iff it is the restriction of an
element in K(n)∗(BW ). Hence this is true of each element of H0(Z/(p); F ) =
FZ/(p).

Proof of 8.6. As in the proof above we need to show that for each basis
element xi ∈ K(n)∗(BG), Pxi ∈ K(n)∗(BGp) is the restriction of an element
y ∈ K(n)∗(BW ).
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We can assume that xi is a transferred Euler class Tr∗(e(ρ)) for ρ a complex
representation of some subgroup H < G. The representation ρ⊕ρ⊕· · · ρ of Hp

extends to a representation ρ̂ of Z/(p) oH and e(ρ̂) restricts to P (e(ρ)).
The following diagram commutes.

K(n)∗(BHp) Res∗←− K(n)∗(B(Z/(p) oH))
↓Tr∗ ↓Tr∗

K(n)∗(BGp) Res∗←− K(n)∗(BW )

Hence we have

Res∗Tr∗(e(ρ̂)) = Tr∗Res∗e(ρ̂)
= Tr∗(Pe(ρ))
= PTr∗(e(ρ))
= Pxi

so we can take y = Tr∗(e(ρ̂)).

Proof of Theorem 3.8. We have shown that each element in E0,∗
2 is a permanent

cycle, so the spectral sequence has only one differential. It remains to show that
W is good. We have

K(n)∗(BW ) = H0(Z/(p); F )⊕ (H0(Z/(p); T )⊗K(n)∗(BZ/(p))).

H0(Z/(p); F ) is in the image of the transfer by Lemma 8.5, and Lemma 8.6
shows that H0(Z/(p); T ) is generated by elements of the form Tr∗(e(ρ̂)) where
ρ̂ is a representation of some subgroup of W . Recall that

K(n)∗(BZ/(p)) = K(n)∗[x]/(xpn

)

where x = e(λ), λ being a one–dimensional representation of of Z/(p). It
follows from 8.3 that Tr∗e(ρ̂)xi is a sum of transferred Euler classes, completing
the proof.
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