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The main point of this talk

The 3-primary Arf-Kervaire invariant problem
is still open.

We have a program for solving it similar to what we
did for p = 2.

We are missing a crucial ingredient.

Maybe you can find it!
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Defining the problem

The Arf-Kervaire invariant problem for a prime p is to determine
the fate of the elements

θj =

{
h2

j for p = 2
bj−1 for p > 2

}
∈ Ext2,2pj (p−1)

A (Z/p,Z/p) (1)

where A denotes the mod p Steenrod algebra.

This Ext group
is the E2-term for the classical Adams spectral sequence
converging to the p-component of the stable homotopy groups
of spheres.

Frank Adams
1930–1989

In these bidegrees the groups
are known to be isomorphic to
Z/p in each case, generated by
these elements.
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1.4

Introduction (continued)

Bill Browder

Browder’s Theorem of 1969 states that
for p = 2, h2

j is a permanent cycle
in the Adams spectral sequence if and
only if there is a framed manifold with
nontrivial Kervaire invariant manifold in
dimension 2j+1−2.

Such manifolds are
known to exist for 1 ≤ j ≤ 5.

We recently showed that for p = 2, θj does not exist for j ≥ 7.
The case j = 6 remains open.
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1.5

Introduction (continued)
Again, we want to know the fate of the elements

θj =

{
h2

j for p = 2
bj−1 for p > 2

}
∈ Ext2,2pj (p−1)

A

The corresponding Adams-Novikov group, Ext2,2pj (p−1)
BP∗(BP) , is more

complicated. It is an elementary abelian p-group of rank
roughly j/2. The Thom reduction map

Ext2,2pj (p−1)
BP∗(BP)

Φ // Ext2,2pj (p−1)
A

is onto in all but one case, with

θ̂j = βpj−1/pj−1 7→
{

0 for j = 1 and p = 2
θj otherwise

A reformulation of the problem is the following:

Is any element of Ext2,2pj (p−1)
BP∗(BP) mapping to θj a

permanent cycle?
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1.6

Introduction (continued)

There is no known intrepretation of the problem at odd primes
in terms of manifolds.

In the late 70s the third author showed
for that for p ≥ 5, the element θj for j > 1 is not a permanent
cycle, while θ1 is a permanent cycle representing

θ̂1 = β1 ∈ π2p2−2p−2S0.

Modulo some indeterminacy, there are differentials

d2p−1(θ̂j) = h0θ̂
p
j−1 (2)

where h0 ∈ Ext1,2p−1
A represents α1 ∈ π2p−3S0.
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1.7

The role of the Morava stabilizer group

In order to describe the difficulties at p = 3, we need to recall
the methods of of [HHR] for p = 2 and myself for p ≥ 5.

The
starting point for p ≥ 5 is the following result of Toda:

Hirosi Toda
in 2009

In the Adams-Novikov spectral sequence
for an odd prime p there is a nontrivial dif-
ferential

d2p−1(θ̂2) = α1θ̂
p
1 . (3)

We also show that there are relations

θ̂j θ̂
pj−1

2 = θ̂j+1θ̂
pj−1

1 . (4)

Using (3-4) one can deduce that

d2p−1(θ̂j) = α1θ̂
p
j−1 for all j ≥ 2.

The hard part is to use chromatic methods to show that these
targets are all nontrivial.
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targets are all nontrivial.
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The role of the Morava stabilizer group

In order to describe the difficulties at p = 3, we need to recall
the methods of of [HHR] for p = 2 and myself for p ≥ 5. The
starting point for p ≥ 5 is the following result of Toda:

Hirosi Toda
in 2009
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p
1 . (3)

We also show that there are relations

θ̂j θ̂
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2 = θ̂j+1θ̂
pj−1

1 . (4)

Using (3-4) one can deduce that

d2p−1(θ̂j) = α1θ̂
p
j−1 for all j ≥ 2.

The hard part is to use chromatic methods to show that these
targets are all nontrivial.
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1.8

The role of the Morava stabilizer group (continued)

Jack Morava

We now know (but only suspected in the
late 70s) that the extended Morava stabilizer
group Gn acts on the Morava spectrum En
in such a way that the homotopy fixed point
set EhGn

n is LK (n)S0, the Bousfield localiza-
tion of the sphere spectrum with respect to
the nth Morava K-theory.

This is a corollary of the Hopkins-
Miller theorem. For any closed sub-
group H ⊂ Gn there is a homotopy
fixed point spectral sequence

H∗(H;π∗En) =⇒ π∗EhH
n Mike Haynes

Hopkins Miller

which coincides with the Adams-Novikov spectral sequence for
EhH

n . One has the expected restriction maps for subgroups.
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The role of the Morava stabilizer group (continued)

Jack Morava

We now know (but only suspected in the
late 70s) that the extended Morava stabilizer
group Gn acts on the Morava spectrum En
in such a way that the homotopy fixed point
set EhGn

n is LK (n)S0, the Bousfield localiza-
tion of the sphere spectrum with respect to
the nth Morava K-theory.

This is a corollary of the Hopkins-
Miller theorem. For any closed sub-
group H ⊂ Gn there is a homotopy
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H∗(H;π∗En) =⇒ π∗EhH
n Mike Haynes

Hopkins Miller

which coincides with the Adams-Novikov spectral sequence for
EhH
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1.9

The role of the Morava stabilizer group (continued)

The group Gn is known to have a subgroup of order p (unique
up to conjugacy) when p − 1 divides n.

This leads to a
composite homomorphism, the detection map

ExtBP∗(BP)
// H∗(Cp;π∗Ep−1) // H∗(Cp;Fpp−1 [u,u−1])

where the second homomorphism is reduction modulo the
maximal ideal in π∗Ep−1 and |u| = 2. The action of Cp here is
trivial, so the target is a bigraded form of the usual mod p
cohomology of Cp. For p odd this cohomology is

E(α)⊗ P(β)⊗ Fpp−1 [u,u−1]

where α ∈ H1 and β ∈ H2 each have topological degree 0.
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The role of the Morava stabilizer group (continued)
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cohomology of Cp.
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where α ∈ H1 and β ∈ H2 each have topological degree 0.
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1.9

The role of the Morava stabilizer group (continued)

The group Gn is known to have a subgroup of order p (unique
up to conjugacy) when p − 1 divides n. This leads to a
composite homomorphism, the detection map
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// H∗(Cp;π∗Ep−1) // H∗(Cp;Fpp−1 [u,u−1])

where the second homomorphism is reduction modulo the
maximal ideal in π∗Ep−1 and |u| = 2. The action of Cp here is
trivial, so the target is a bigraded form of the usual mod p
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E(α)⊗ P(β)⊗ Fpp−1 [u,u−1]

where α ∈ H1 and β ∈ H2 each have topological degree 0.
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1.10

The role of the Morava stabilizer group (continued)

Again we have the detection map

ExtBP∗(BP)
// H∗(Cp;π∗Ep−1) // H∗(Cp;Fpp−1 [u,u−1]) (5)

We showed that under this map we have

α1 7→ up−1α

θ̂jβpj−1/pj−1 7→ upj (p−1)β
(6)

up to unit scalar. Hence all monomials in the θ̂j and their
products with α1 have nontrivial images. This implies that the
differentials

d2p−1(θ̂j) = α1θ̂
p
j−1

are nontrivial as desired.
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1.10

The role of the Morava stabilizer group (continued)

Again we have the detection map
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j−1

are nontrivial as desired.
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1.10

The role of the Morava stabilizer group (continued)

Again we have the detection map

ExtBP∗(BP)
// H∗(Cp;π∗Ep−1) // H∗(Cp;Fpp−1 [u,u−1]) (5)

We showed that under this map we have

α1 7→ up−1α

θ̂jβpj−1/pj−1 7→ upj (p−1)β
(6)

up to unit scalar. Hence all monomials in the θ̂j and their
products with α1 have nontrivial images.

This implies that the
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d2p−1(θ̂j) = α1θ̂
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j−1

are nontrivial as desired.
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1.10

The role of the Morava stabilizer group (continued)

Again we have the detection map

ExtBP∗(BP)
// H∗(Cp;π∗Ep−1) // H∗(Cp;Fpp−1 [u,u−1]) (5)

We showed that under this map we have

α1 7→ up−1α

θ̂jβpj−1/pj−1 7→ upj (p−1)β
(6)

up to unit scalar. Hence all monomials in the θ̂j and their
products with α1 have nontrivial images. This implies that the
differentials

d2p−1(θ̂j) = α1θ̂
p
j−1

are nontrivial as desired.
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1.11

The role of the Morava stabilizer group (continued)

To summarize:

• The existence of an element of order p in Sp−1 leads to
the detection map of (5),

ExtBP∗(BP)
// H∗(Cp;Fpp−1 [u,u−1])

E(α)⊗ P(β)⊗ Fpp−1 [u,u−1]

α1
� // up−1α

θ̂j
� // upj (p−1)β

• The multiplicative relations among the θ̂j and the Toda
differential on θ̂2 lead to differentials on all higher θ̂j . They
are nontrivial by the detection data above.
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1.11

The role of the Morava stabilizer group (continued)

To summarize:

• The existence of an element of order p in Sp−1 leads to
the detection map of (5),
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// H∗(Cp;Fpp−1 [u,u−1])

E(α)⊗ P(β)⊗ Fpp−1 [u,u−1]

α1
� // up−1α

θ̂j
� // upj (p−1)β

• The multiplicative relations among the θ̂j and the Toda
differential on θ̂2 lead to differentials on all higher θ̂j . They
are nontrivial by the detection data above.
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1.11

The role of the Morava stabilizer group (continued)

To summarize:

• The existence of an element of order p in Sp−1 leads to
the detection map of (5),

ExtBP∗(BP)
// H∗(Cp;Fpp−1 [u,u−1])

E(α)⊗ P(β)⊗ Fpp−1 [u,u−1]

α1
� // up−1α

θ̂j
� // upj (p−1)β

• The multiplicative relations among the θ̂j and the Toda
differential on θ̂2 lead to differentials on all higher θ̂j .

They
are nontrivial by the detection data above.
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1.11

The role of the Morava stabilizer group (continued)

To summarize:

• The existence of an element of order p in Sp−1 leads to
the detection map of (5),

ExtBP∗(BP)
// H∗(Cp;Fpp−1 [u,u−1])

E(α)⊗ P(β)⊗ Fpp−1 [u,u−1]

α1
� // up−1α

θ̂j
� // upj (p−1)β

• The multiplicative relations among the θ̂j and the Toda
differential on θ̂2 lead to differentials on all higher θ̂j . They
are nontrivial by the detection data above.
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1.12

Difficulties at p = 3

Why does this approach fail for p < 5?

• For p = 2, the target of the Toda “differential”,

d3(θ̂2) = α1θ̂
2
1 = 0,

so this method does not show that any θ̂j fails to be a
permanent cycle.

• The group Ext2,2pj (p−1)
BP∗(BP) is known to have [(j − 1)/2] other

generators besides θ̂j . For p = 3 these other generators,
such as β7 in the bidegree of θ̂3, can have nontrivial
images under the detection map. This has to do with the
fact that they are v2-periodic and hence vp−1-periodic. It
turns out that θ̂3 ± β7 and hence θ3 are permanent cycles
even though θ2 is not. The argument above establishes
the nonexistence of θ̂j for j > 1, but not that of θj .
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1.13

Difficulties at p = 3 (continued)

In order to describe the way out of these difficulties we need to
say more about finite subgroups of Gn.

It is by definition an
extension of the Morava stabilizer group Sn by Gal(Fpn : Fp).
The Galois group (which is cyclic of order n) is there for
technical reasons but plays no role on our calculations. Sn is
the group of units in the maximal order of a certain division
algebra over the p-adic numbers Qp. Its finite subgroups have
been classified by Hewett.

Sn has an element of order p iff p − 1 divides n, a condition that
is trivial when p = 2. More generally Sn has an element of
order pk+1 iff pk (p − 1) divides n. For such n we could replace
the detection map (5) by

ExtBP∗(BP)
// H∗(Cpk+1 ;π∗En) // H∗(Cpk+1 ; ?),

for some coefficient ring in the target. The naive choice of
Fpn [u,u−1] for this ring turns out not to detect θ̂j for n > p − 1.
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1.14

Difficulties at p = 3 (continued)

Again, for n divisible by pk (p − 1) we have a detection map

ExtBP∗(BP)
// H∗(Cpk+1 ;π∗En) // H∗(Cpk+1 ; ?).

Experience has shown two things:
(i) In order to flush out the spurious elements (which are

v2-periodic) having the same bidegree as θ̂j , we need to
have n > 2.

(ii) In order to detect the θ̂j itself, we need to have n be equal
to pk (p − 1) for some k ≥ 0, not just be divisible by it.
Then θ̂j will map to an element of order p in a cohomology
group isomorphic to Z/pk+1. We cannot detect higher
products of these elements for k > 0.

For p = 2 these considerations suggest using the group C8
and n = 4, which is the approach used in [HHR].

For p = 3 we need to use the group C9 with n = 6.
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Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties without the use of equivariant stable homotopy
theory.
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Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties without the use of equivariant stable homotopy
theory.
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Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties without the use of equivariant stable homotopy
theory.
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Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties without the use of equivariant stable homotopy
theory.
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Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties without the use of equivariant stable homotopy
theory.
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Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties

without the use of equivariant stable homotopy
theory.



The 3-primary
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

The main point of this
talk

Introduction
Defining the problem

The role of the Morava
stabilizer group

Difficulties at p = 3

What might happen
Entering Fantasyland

Two spectral sequences

Norming up to C9

A possible Gap Theorem

1.15

Difficulties at p = 3 (continued)

For the prime 2, our strategy in [HHR] was to construct a ring
spectrum Ω with a unit map S0 → Ω satisfying three properties:

(i) DETECTION THEOREM. If θj exists, its image in π∗Ω is
nontrivial.

(ii) PERIODICITY THEOREM. πkΩ depends only on the
congruence class of k modulo 256.

(iii) GAP THEOREM. π−2Ω = 0.

The nonexistence of θj for j ≥ 7 follows from the fact that its
dimension is congruent to −2 modulo 256.

Ever since the discovery of the Hopkins-Miller theorem, it has
been possible to prove that EhC8

4 satisfies the first two of these
properties without the use of equivariant stable homotopy
theory.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256.

If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
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We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.



The 3-primary
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

The main point of this
talk

Introduction
Defining the problem

The role of the Morava
stabilizer group

Difficulties at p = 3

What might happen
Entering Fantasyland

Two spectral sequences

Norming up to C9

A possible Gap Theorem

1.16

Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2.

In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs.

As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because

(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and

(b) since we cannot detect products of the θjs, we cannot
make an inductive argument.
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Difficulties at p = 3 (continued)

For p = 3, the same goes for EhC9
6 with the periodicity

dimension being 972 (2 more than the dimension of θ5) instead
of 256. If all goes well, we would get a theorem saying θj does
not exist for j ≥ 5, leaving the status of θ4 (in the 322-stem)
open. We already know that θ1 (in the 10-stem) and θ3 (in the
106-stem) exist while θ2 (in the 34-stem) does not.

For p ≥ 5, the same holds for EhCp
p−1 with periodicity 2p2(p − 1),

which is 2 more than the dimension of θ2. In this case the
spectrum also detects the product of α1 with any monomial in
the θjs. As explained above, this enables us to use Toda’s
differential to show that none of the θj for j > 1 exists.

We cannot use Toda’s differential for p < 5 because
(a) for p = 2 its target is trivial, and
(b) since we cannot detect products of the θjs, we cannot

make an inductive argument.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration.

The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration.

Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult.

We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum,

or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation,

and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action.

A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

The proof of the Gap Theorem requires the use of equivariant
stable homotopy theory and the slice filtration. The slice
filtration is an equivariant analogue of the classical Postnikov
filtration. Analyzing it for a general equivariant spectrum is
difficult. We do not know how to do it directly for the case of
interest, the Morava E6 at p = 3 as a C9-spectrum, or for E4 at
p = 2 for the group C8.

We do know how to do it for MUR, which is MU as a
C2-spectrum via complex conjugation, and for N2n+1

2 MUR, which
is underlain by MU(2n) with a C2n+1 -action. A crucial step here is
the Reduction Theorem, which says roughly that if we kill all of
the underlying homotopy groups in positive dimensions in a
certain equivariant way, we get the equivariant
Eilenberg-Mac Lane spectrum HZ.
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Difficulties at p = 3 (continued)

In order to do a similar thing at an p = 3 we need an analog
MUΞ of the C2-spectrum MUR.

It should be a C3-spectrum
underlain by MU(2) with two properties:

(i) It has a tractable slice filtration with a certain description.

(ii) Its geometric fixed point spectrum MUgC3
Ξ is a wedge of

suspensions of H/3, the mod 3 Eilenberg-Mac Lane
spectrum. For p = 2 we have MUgC2

R = MO, the
unoriented cobordism spectrum, which fits this description.
This identification is a pivotal step in determining
differentials in the slice spectral sequence needed to prove
the Periodicity Theorem.

We do not know how to construct this spectrum!

It is our missing piece. Maybe you can find it.
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1.19

Entering Fantasyland

Let’s suppose the hypothetical MUΞ exists as described above.

For convenience we will work with its BP analog, BPΞ.

A useful technical notion. Let E be a connective equivariant
spectrum with πu

∗E (its underlying homotopy groups) free
abelian. A refinement of this group is an equivariant map
W → E where W is underlain by a wedge of spheres mapping
to the generators of πu

∗E . The reduction theorem for E is the
statement that the map

E ∧
W

S0 → HZ

is an equivariant equivalence.
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1.20

Entering Fantasyland (continued)

If all goes according to plan, πu
∗BPΞ is refined by a map from

W =
∧
n≥1

Wn

with

Wn = S0
[
S

2·3n−1ρ−1
]

where
• ρ denotes the regular representation of C3 and

• S
V

denotes the codimension one skeleton of SV .



The 3-primary
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

The main point of this
talk

Introduction
Defining the problem

The role of the Morava
stabilizer group

Difficulties at p = 3

What might happen
Entering Fantasyland

Two spectral sequences

Norming up to C9

A possible Gap Theorem

1.20

Entering Fantasyland (continued)

If all goes according to plan, πu
∗BPΞ is refined by a map from

W =
∧
n≥1

Wn

with

Wn = S0
[
S

2·3n−1ρ−1
]

where
• ρ denotes the regular representation of C3 and

• S
V

denotes the codimension one skeleton of SV .



The 3-primary
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

The main point of this
talk

Introduction
Defining the problem

The role of the Morava
stabilizer group

Difficulties at p = 3

What might happen
Entering Fantasyland

Two spectral sequences

Norming up to C9

A possible Gap Theorem

1.20

Entering Fantasyland (continued)

If all goes according to plan, πu
∗BPΞ is refined by a map from

W =
∧
n≥1

Wn

with

Wn = S0
[
S

2·3n−1ρ−1
]

where
• ρ denotes the regular representation of C3 and

• S
V

denotes the codimension one skeleton of SV .



The 3-primary
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

The main point of this
talk

Introduction
Defining the problem

The role of the Morava
stabilizer group

Difficulties at p = 3

What might happen
Entering Fantasyland

Two spectral sequences

Norming up to C9

A possible Gap Theorem

1.20

Entering Fantasyland (continued)

If all goes according to plan, πu
∗BPΞ is refined by a map from

W =
∧
n≥1

Wn

with

Wn = S0
[
S

2·3n−1ρ−1
]

where
• ρ denotes the regular representation of C3 and

• S
V

denotes the codimension one skeleton of SV .



The 3-primary
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

The main point of this
talk

Introduction
Defining the problem

The role of the Morava
stabilizer group

Difficulties at p = 3

What might happen
Entering Fantasyland

Two spectral sequences

Norming up to C9

A possible Gap Theorem

1.21

Entering Fantasyland (continued)

For n = 1 we have

W1 = S0
[
S

2ρ−1]
.

Here S
2ρ−1

is underlain by S4 ∨ S4, and W1 is underlain by a
wedge of spheres with k + 1 summands in dimension 4k for
each k ≥ 0. There is a C3-action on the space X = S5 × S5

such that W1 = Σ∞ΩX .

Equivariantly we have

W1 = S0 [S4ρ] ∧
S0 ∨ S

2·ρ−1
∨ C3+ ∧

∨
i≥2

S4i

 .

Free summands here contribute torsion free summands to
π∗EC3 , so they are irrelevant to the Kervaire invariant problem.
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1.22

Entering Fantasyland (continued)

Hence will ignore the free summands in W1 and replace it by

W ′
1 = S0 [S4ρ] ∧ (

S0 ∨ S
2ρ−1)

.

We have a map

W ′
1 = S0

[
S4ρ

]
∧
(

S0 ∨ S
2ρ−1) // BPΞ

Thus there is an element Nv1 ∈ π4ρBPΞ. We can invert it and
throw away the higher generators. The resulting fixed point
spectrum looks a lot like tmf , but with periodicity in dimension
36 instead of 72.
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Two spectral sequences

Here is its slice spectral sequence.
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Two spectral sequences (continued)

Here is its homotopy fixed point spectral sequence.
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Norming up to C9

Now we need to norm up from C3 to C9.

Recall that

W ′
1 =

(
S0 ∨ S

2·ρ−1)
∧ S0 [S4ρ] .

The norm functor commutes with smash products. For the first
factor we have

N9
3

(
S0 ∨ S

2ρ−1)
= S0 ∨

(
C9+ ∧

C3

(
S

2ρ−1
∨ S3ρ−1

))
∨
(
C9+ ∧ S8) ∨ S

ρ9+2λ

where λ denotes the 2-dimensional representation of C9 with a
rotation of order 9.

For the second factor of W ′
1,

N9
3 S0 [S4ρ] = S0 [S4ρ9

]
∧

S0 ∨

C9+ ∧
C3

∨
i,j≥0

S4(i+j+1)ρ

 .
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1.26

A possible Gap Theorem

After inverting the right element in π4ρ9 , we get a spectrum Ω̃
whose fixed point set Ω is 972-periodic and detects the θj for
j ≥ 5.

The key question here is
Do we get a Gap Theorem stating that π−2Ω is torsion
free?

To answer this we need to look at the equivariant homotopy
groups of

X ∧ Σ4mρ9HZ and X ∧ C9+ ∧
C3

Σ4nρ3HZ

for m,n ∈ Z, where X is one of the following:

S0, C9+ ∧
C3

S
2ρ−1

, C9+ ∧
C3

S3ρ−1 or S
ρ9+2λ

.
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A possible Gap Theorem (continued)

The following table indicates the dimensions in which

πiX ∧ Σ4mρ9HZ and πiX ∧ C9+ ∧
C3

Σ4nρ3HZ

can be nontrivial for m,n ≥ 0, with one caveat as indicated
below.

X πiX ∧ Σ4mρ9HZ πiX ∧ C9+ ∧
C3

Σ4nρ3HZ

S0 4m ≤ i ≤ 36m 4n ≤ i ≤ 12n

C9+ ∧
C3

S
2ρ−1

12m + 1 ≤ i ≤ 36m + 4 4n + 1 ≤ i ≤ 12n + 4

C9+ ∧
C3

S3ρ−1 12m + 2 ≤ i ≤ 36m + 8 4n + 2 ≤ i ≤ 12n + 8

S
ρ9+2λ

4m + 1 ≤ i ≤ 36m + 12 4n + 3 ≤ i ≤ 12n + 12
for n ≥ −1
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A possible Gap Theorem (continued)
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1.28

A possible Gap Theorem (continued)

Here is a similar table for m,n ≤ −1.

X πiX ∧ Σ4mρ9HZ πiX ∧ C9+ ∧
C3

Σ4nρ3HZ

S0 36m ≤ i ≤ 4m − 3 12n ≤ i ≤ 4n − 3
C9+ ∧

C3

S
2ρ−1

36m + 4 ≤ i ≤ 12m − 2 12n + 4 ≤ i ≤ 4n − 2

C9+ ∧
C3

S3ρ−1 36m + 8 ≤ i ≤ 12m − 1 12n + 8 ≤ i ≤ 4n − 1

S
ρ9+2λ

36m + 12 ≤ i ≤ 4m − 2 12n + 12 ≤ i ≤ 4n
for n ≤ −2

In each case the upper bound here is 3 less than the
corresponding lower bound in the previous table. The
calculation behind this is the same for p = 3 as it was for p = 2.

Since m,n ≤ −1, our upper bound is always ≤ −4, so we have
the desired Gap Theorem.
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A possible Gap Theorem (continued)
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A possible Gap Theorem (continued)

Here is a similar table for m,n ≤ −1.
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Since m,n ≤ −1, our upper bound is always ≤ −4, so we have
the desired Gap Theorem.
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1.29

The C9 slice spectral sequence

Here is a color coded illustration of these fixed point homotopy
groups.
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