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0. Introduction. In this paper we will show that certain elements of order p (j> aa.
odd prime) on the 2-line of the Adams-Novikov spectral sequence support non-trivial
differentials and therefore do not detect elements in the stable homotopy groups of
spheres. These elements are analogous to the so-called Arf invariant elements of order
2, hence the title. However, it is evident that the methods presented here do not extend
to the prime 2.

From our point of view the methods used here are possibly more interesting than the
result itself. They rely heavily on the deeper algebraic structure of complex cobordism
theory originally perceived by Jack Morava(2l) and exploited in our earlier papers
((18), (20), (24) and (25)). Our main application of these ideas is Theorem 4, which states
that a large number of elements in the Novikov E2-teim are non-zero. These elements
can be detected by a certain homomorphism from the Novikov E2-tevm *° *n e ordinary
mod p cohomology of the group of order p. The existence and basic properties of this
homomorphism, which we are unable to construct explicitly, follow from our previous
results (Theorems 11, 12 and 13) and an additional fact from algebraic number theory
(Theorem 14). The idea is to map the Novikov E2-tevm, ExtBPtBP(BP*, BP+) to

Morava's work, as interpreted by the above theorems, implies that this Ext is
essentially the mod p continuous cohomology of a certain pro-# group Sn, which in
turn is the group of proper units in a division algebra over the p-adic numbers with
Hasse invariant l/n. (For details see (24).) Theorem 14 asserts that for n = p — 1 this
division algebra has a primitive pth root of unity and it follows that the group *Sp_x has
a subgroup of order p. I t is the cohomology of this subgroup that detects the elements
mentioned in Theorem 4.

The proofs of Theorems 11 and 13 do not reveal the insight that led to their formula-
tion, which I will try to indicate now. Quillen (23) observed that the complex cobordism
ring is isomorphic to the Lazard ring, over which the universal one-dimensional formal
group law is denned. He then used this connexion between formal groups and complex
cobordism to determine the algebra of cohomology operations for BP cohomology, the
dual of which is BP+BP. Haynes Miller has observed (17) that BP+ BP is a cogroupoid
object in the category of commutative /^-algebras; he calls such an object a Hopf
algebroid. This means that for any commutative Z(p)-algebra R, the set of algebra
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homomorphisms from BP* BP to R is a groupoid, i.e. a small category, in which
every morphism is an equivalence. Peter Landweber(io) has observed that.in this
case the category is that of ^-typical formal group laws over R and isomorphisms
between them. The structure of this small category is reflected in the structure of
JBP* BP.

Very loosely speaking, the Novikov 2?2-term may be thought of as the cohomology
of this groupoid with coefficients in BP+. The homomorphism from this cohomology
to that of Sn can be thought of as a restriction map obtained by restricting to a
smaller class of formal group laws, namely those of height n (to be defined). I t is
known ((7), pp. 72-86) that the automorphism group of any height n one-dimensional
formal group defined over a field containing Fpn is Sn ® F£n. This accounts for the
connexion between ^ExtBPtBP(BP^., VnlBP*/In) and H*8n implied by Theorems 11
and 13. To define the height of a formal group law F we first define power series
[ni\F (x) for m > 6 by induction on m. Let [1]^. (x) = x and [m]F (x) = F(x, [m — 1]F (x)).
Of particular interest is [p]F (x). If the ground ring has characteristic^, it can be shown
(7) that the leading term of [p]F (x) is a non-zero multiple of xv" for some n, and this is
defined to be the height of F.

I t seems very unlikely that these methods can be carried over to the classical Adams
spectral sequence.

The plan of the paper is as follows. In Section 1 we state Theorem 4 and use it to
prove our main result, Corollary 5, which states that certain elements

support non-trivial differentials (rf2p-i)m *n e Novikov spectral sequence, for i > 0. For
i = 1, this result is due io Toda (Theorem 1). Our argument is an induction based on
certain relations among these elements (Theorem 3). We use Theorem 4 to prove that
the images of the computed differentials are non-zero. The computation of Theorem 3
is equally valid in the Adams spectral sequence, but to draw the desired conclusion
from it would require showing that the images of the differentials are non-zero in the
Adams E2p-1-term. This would be very difficult if not impossible. In the first non-
trivial case for p = 3, the desired element is zero in the Adams J5?2-term (Proposition 2).
In the Novikov spectral sequence the E2- and £J2p_1-terms are equal for dimensional
reasons, so Theorem 4 suffices.

As a consequence of our main result, we prove Theorem 6 which says that certain
BP# modules cannot be realized as the jBP-homology of any connective spectrum.

In Section 2 we prove Theorem 4 in the manner described above.
In Section 3 we examine the elements bt in the classical Adams (as opposed to the

Novikov) spectral sequence. Although there is a map from the Novikov to the Adams
spectral sequence, the fact that our elements support non-trivial differentials in the
former does not imply that they do so in the latter. Indeed it can be shown that, for
p = 3, the element b2, which has dimension 106, is a permanent cycle (see the discussion
following the statement of Theorem 17). However, we are able to show (Theorem 17)
that this never happens for p > 5. In the process of proving this we use a new technique
(the proof of Lemma 18) for computing the mod /„ reduction of certain elements in the
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Novikov 2?2-term. We mention this method now because it may be useful in other
contexts.

It is a pleasure to thank the referee for his diligence in suggesting many im-
provements in this paper. We also thank S. Oka for correcting an earlier proof of
Theorem 6.

1. The main result. To define the elements in question recall there is a spectral
sequence due to Adams (3)

where Ap is the mod p Steenrod algebra and n%(p) denotes the ^-component of the
stable homotopy of the sphere spectrum. For p > 2 there are elements

where q = 2(p—l) (and for p = 2, hie'Ext^'(¥2, F2)) and i ̂  0. These elements
correspond to the indecomposable elements &*pteAp(Sq2leA2) and are commonly
known as the Hopf invariant elements. For p = 2 Adams showed (l) that these ele-
ments support non-trivial differentials for i ̂  4. Using similar methods, Liulevicius
(11), and Shimada and Yamanoshita (29) obtained the analogous result forp > 2 and
i Js 1.

For p = 2, the h\ are the celebrated Arf invariant elements, so named because
Browder (5) showed that for i > 0, h\ is a permanent cycle in the Adams spectral
sequence if and only if there exists a framed (2i+1 — 2)-manifold with non-trivial Arf
invariant. At the present time such manifolds are known to exist for i ^ 5 ((4), (16)).

Forp > 2 one can define analogous elements 6iGExt^8pt+1(Fp, fp) a,sp-io\d Massey

products (see (14)) b, =-{h^...^}.

Equivalently bt corresponds to the Adem relation for ^ ( P - D P ' ^ P 1 and is represented in
the cobar construction (see (11) or (20)) by the element

0<j<pP \J

The element b0 is a permanent cycle and detects the homotopy element
given by the^-fold Toda bracket (see (31))

where ax e 7T^_1 is the element detected by h0. ax is the first non-trivial positive dimen-
sional element in the ̂ -component of stable homotopy while fix is the first non-trivial
element in the cokernel of the J-homomorphism. (Most of these facts can be found in
(31).)

Theorem 17 states that the elements bi for i > 0 do not detect stable homotopy
elements for p > 3. The first result in this direction was obtained in 1967 by Toda
(32), (33)).

THEOREM 1. In the Adams spectral sequence for p > 2 there are non-trivial differen-
tials dip_16X = h0 b%, up to multiplication by a non-zero element of Fp, i.e. bx does not detect
a homotopy element and ctxpf = 0.
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Toda's proof involves a subtle geometric argument related to the non-associativity
of the mod p Moore spectrum.

Theorem 1 made it natural (to the author at least) to conjecture that

for all i, and that one would prove this by some generalization of Toda's extended
power construction (32). This program was discouraged by the following result, which
was first proved by J. P. May in (15), part n.

PBOPOSITION 2. For p = 3, hob\ = 0 in Ext^3(F3, F3), i.e. b2 cannot support the
expected non-trivial differential.

Proof. We use a certain Massey product identity ((14), cor. 3-2) and very simple
facts about Ext^3(F3, F3) to show hob\ = 0. We have

hob\ = -ho{h1>h1,h1)b1

= — <Ji0, ht, hj) ht bx

by (14). We will show in the proof of Theorem 3 that h1b1 = h2b0, so

h0 b\ = — (h0, hv hj) h2 b0

= — (hlth0, h^h^

= - h^hg, hlt h2) b0.

The element (ho,hlth2y is represented in the cobar construction by [£i|£2] + [£i|£i]
which is the coboundary of [£3] so hob\ = 0. |

We will see below that this problem disappears if instead of using the classical
Adams spectral sequence, we use the Adams-Novikov spectral sequence (see (22),
(34) or (20)), i.e. the analogue of the Adams spectral sequence based on complex co-
bordism theory or equivalently, if we localize at a prime, Brown-Peterson homology
theory (6). Recall there is a multiplicative homology theory BP+ with

BP^pt.) = Z^Oi.tV--] (wheredim^ = 2(p<- 1)),

which will hereafter be denoted simply by BP#. The analogue in this theory of the dual
of the Steenrod algebra is BP* BP which as an algebra is

fa, t2...] with dim tt = 2(p* - 1),

(see (23) or (2)). There is a spectral sequence due to Novikov and Adams

(For more details we refer the reader to (20).)
One can show by other methods that the analogue of Proposition 2 for the Adams-

Novikov, J5/2-term is hob\ = + A060/ff4 = ± 04/^A (see (20) or (19) for the definition of
/?4). The latter term corresponds to an element of nitration 7 (whereas hob\ has filtra-
tion 5) in the Adams i?2-term. This is an example of one of the advantages of the
Adams-Novikov spectral sequence: elements tend to have lower filtration and the
i?2-term therefore gives more information.
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There is a natural map from the Adams-Novikov spectral sequence to the Adams
spectral sequence (see (20), section 9) which enables us to pull bt back to

Ext%]P,%(BP*, BPJ,

i.e. we define bt to be the element represented in the cobar construction by

- 2 ^(f
We also define A0 = - [ y e Ext^?>, BP (BP*, BP*).

Now we can state our main results. As in Theorem 1, the equations are valid up to a
non-zero factor which we ignore.

THEOREM 3. In the Adams—Novikov spectral sequence for p > 2

^2p-i ^t+i = ^o &? modulo ker &£•',

where a{ = p(pi - l)/(p - 1 ) .

THEOREM 4. The elements &£• &!»...&£* and A06j°...bk
keExtB1JtBP(BP+, BP+) are

non-zero for all exponents i0, ix... ^ 0.

COROLLARY 5. dZp_1bi^rl + Ofor all i js 0.

Proof. The Adams-Novikov spectral sequence has the convenient sparseness pro-
perty El' * = 0 if t ^ 0 mod q. Hence dr = 0 if r * 1 mod qsoE2 = E2v_x so b$ hob% # 0
in E2p_1 since it is non-trivial in E2. \

THEOREM 6. There is no connective spectrum X such that

BPtX = BP0/(p,^W)
for i > 0 andp > 2.

Proof. Using methods developed by Smith (30) one can show that such an X must be
an 8-cell complex and that there must be cofibrations

(ii)

(iii)
where F(0) is the mod p Moore spectrum, g and g' induce multiplication by t>f' in
BPmV(0) = BPm/(p), and/induces multiplication by v1j* in

BP.Y = BP.Y = BPt/fav?).

F(0) and the maps g, g' certainly exist, e.g. Smith showed that there is a map

a:S«"-»F(0)-+F(0)

which includes multiplication by vt. Hence aPx induces multiplication by v%\ but it
may not be the only map that does so.

Hence we have to show that the existence of/leads to a contradiction. Consider the
composite
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where j is the inclusion of the bottom cell and k is the collapse onto the top cell. We
will show that the resulting element in 7r|pi+i(P_i)-2 would be detected in the Novikov
spectral sequence by bt, thus contradicting Corollary 5. The cofibrations (ii) and (iii)
induce the following short exact sequence of BP* modules

0 -> Xtp'fr-VBPt/ip) -^-> BP«/(p) -> BP*/(p, < ) -> 0,

and the cofibration 8° -?-> S° -> F(0)

induces 0 ->BP» -?-> BP* ->BP*/{p) -> 0.

Hence we get connecting homomorphisms

and 80: Extll
BP,BP

The element fjen^i^^Y' is detected by v^ie1&^t%piiBP(BPif,BPjf/(p,v\i). The
main result (theorem 1-7) of (9) implies that

detects the element kfjen2pi+,(p_1)_2s
0.

In the proof of Lemma 18 below it is shown that this element is bi+1, so we have the
desired contradiction. |

The proof of Theorem 3 is, modulo Theorem 1 (which is also valid in the Adams-
Novikov spectral sequence), an algebraic induction argument which is also valid in
the Adams spectral sequence.

Theorem 4 is obviously not valid in the Adams spectral sequence, by Proposition 2.
Its proof is the main ingredient of this paper; it relies on the theory of Morava stabilizer
algebras developed in (18) and (24) along with an additional result from algebraic
number theory (Theorem 14). Note that it does not assert that the indicated elements
are linearly independent, which indeed they are not, but merely that they are all non-
zero. Equation (10) below gives some linear relations among them, which are essential
to our argument.

Proof of Theorem 3. We begin with a computation in ExtBP< BP (BP*, BP/(p)). We
use the symbol bi to denote the mod p reduction of the bi defined above in

ExtBP, s

We also let h{ denote the element — [tf']. In the cobar construction we have

so
(7) v1b0 = -hoh1.

In (13) May developed a general theory of Steenrod operations which is applicable
to this Ext group. His operations are similar to the classical ones in ordinary cohom-



Odd primary Arf invariant elements 435

ology, except for the fact that 0*> # 1. Rather we have ^°A£ = hi+1 and 0®^ = bi+1.
We also have ^°ht = bp fi^b. = 0, $&*vx = 0, &>% = 6? and the Cartan formula
implies that & jbf = bf+l. Applying p&>° to (7) gives

(8) 0 = b0h2-h1b1.

(The analogous equation in Ext^s(F3, F3) is used in the proof of Proposition 2.) If we
apply the operation ^ ' " ' ^ P 1 ' " 2 . . . 0>X to (8) we get

(9) h1+ibf = h2+ibtf.

Now associated with the short exact sequence

0 ->BP* -^-> BP* ->BPJ{p) -> 0

there is a connecting homomorphism

8: E x t ^ . s p {BP*, BPJ{p)) -> Exts+^*P (BP*, BP*)

with S(hi+1) = bv Applying 8 to (9) gives

(10) bM = b ^

We can now prove the theorem by induction on i, using Theorem 1 to start the
induction. We have for i > 0

s Ao &?_!&?* mod ker &{?-»

so ^2P-i &i+i = K 6f mod ker &£'. |

2. TAe proof of Theorem 4. We will prove Theorem 4 by showing that the indicated
elements map non-trivially to ExtBP< BP (BP*, v^BP*/In), where

In = (P>Vi--vn-i)
cBP* and n = p-l,

and the map is induced by the obvious map BP*->Vn1BP*/In. We first need to recall
some of the results from (18) and (24) concerning this Ext group. Let

*(»)• = F,[»»»»»x] for n > 0

and make it a BP* module by sending vt to zero for i + n. Then let

K(n)*K(n) = *(»)» ®BP.BP*BP ®BP,K(n)*.
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Then we have

THEOREM 11 (18). For alln > 0

THEOREM 12 (24). K(n)+K(n) is a commutative (non-cocommutative) Hopf algebra
over K{n)if. Its algebra structure is given by

F F

Its coproduct A is given by £ A(^) = £ h ®'?'»

where t0 = 1 and S F denotes the sum with respect to the formal group law over
determined by the homomorphism BPt->K(n)#. |

Let ¥pn denote the field with pn elements and make it a non-graded ^(M
by sending vn to 1. In (17) we showed that the non-graded Hopf algebra

is isomorphic to the dual of the group ring over Fpn of a certain p-adic Lie group Sn

which we now proceed to define. Let W(¥pn) denote the Witt ring of Fpn, i.e. the
(degree n) extension of the^-adic integers 1p obtained by adjoining (pn — l)th roots of
unity.

W(FP) = Zp, the 2>-adic integers, and W(¥pn) has an automorphism over Ip which is
a lifting of the Frobenius automorphism (which sends x to xv) on F^n. The image of an
element we W(Fpn) under this automorphism will be denoted by vf. Let

En=W(Fpn)((T})/(T"-p),

where T is a non-commuting power series variable with Tw = wfT for we W(¥pn). In
particular if we W(Fpn) is a root of unity, then Tw = (OPT. Then En is a Zp-algebra of
rank n2 generated by T and the roots of unity in W( Fpn). I t is a complete local ring with
maximal ideal (T) and residue field Fpn. The group Sn is defined to be the group of units
of En which are congruent to 1 modulo (T). This group Sn is a pro-̂ > group and there is a
short exact sequence

The relevance of this group to the Novikov spectral sequence is due to Theorem 11 and

THEOREM 13 (24). As Hopf algebras

Kfa)* K(n) ®Kin), Fpn = Homc (Fpn[Snl F,»). |

To explain this notation, note that the group algebra Fpn [Sn] has a natural topology
induced by that of Sn. Homc (Fpn[Sn], Fpn) is the Hopf algebra of continuous linear
maps from this group algebra to Fpn. To describe the isomorphism of the Theorem more
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explicitly, note that continuous linear maps on fpn[Sn] are in one-to-one corres-
pondence with continuous FpB-valued functions on Sn itself. Now each element of Sn

can be written uniquely as

where each et satisfies efn = ef, i.e. each is either zero or a root of unity in W(Fpn). We
can thus define continuous F^n-valued functions tt on Sn by tt( 1 + £ * TJ) = eif where e{

denotes the mody reduction of et. In this way we get the isomorphism of Theorem 13
above.

All of the above assertions are proved in (24). We now need another result from
algebraic number theory which will guarantee that Sp^ has a subgroup of order p. The
cohomology of this subgroup will be used below to detect the elements mentioned in
Theorem 4.

Let Qp denote the p-&dic numbers (the fraction field of the p-&dic integers) and let
Dn = En®lpQp. This latter object is a division algebra over Qp. Such division
algebras are classified by an invariant in Q/Z, the Hasse invariant, which in the case of
Dn is 1/ra (see (28)).

THEOREM 14. (i) Every degree n extension of the field Qp is a subfield of the division
algebra Dn. (ii) >SJ)_1 contains a subgroup of order p.

Proof. For (i) see (28), p. 138, or (27), p. 202.
For (ii), let K be the field obtained from Qp by adjoining pth roots of unity. The

degree of this extension is p — 1, so (i) implies that K can be embedded in Dp_v The
roots of unity in K are integers, so they map to elements of Ep_lt which is the ring of
integers of Dp_x. They are congruent to 1 modulo the maximal ideal in Ep_x, and hence
are in 8p_x, because in the residue field the only ^th root of unity is one. Hence the
subgroup of order p in Kx gives a subgroup of order p in Sp_v \

We now have all the ingredients necessary to prove Theorem 4. Let A denote the
dual of Fpn[Z/(p)]. Then Theorems 13 and 14 (ii) imply that there is an epimorphism of
Hopf algebras over ¥pn (where n = p — 1)

/ : K(n)t K(n) ®K(n), ¥pn->A.

Although the embedding of Z/(p) in (SJ,_1 and hence the map / are not unique, and
although we cannot construct any such/explicitly, we can get enough partial informa-
tion about it to prove Theorem 4. We first determine the structure of A as a Hopf

ara.

LEMMA 15. Let A be the linear dual of Fpn[Z/(p)]. As a Hopf algebra

A = Fpn[t]/(tP -1) with At = t ® 1 + 1 ® t.

Proof. As a Hopf algebra we have Fpn[Z/(p)] = ¥pn\u\/(uv— 1) with Au = u®u,
where u corresponds to a generator of the group Z/(p). We define an element t e A by its
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Kronecker pairing (u1, t} = i. Since the product in A is dual to the coproduct in the
group algebra, we have ^ <fe> = <A{u%

so by induction on k (u*, tk) = ik. (16)

We also have <«*, 1) = 1.
We show that {1, t, t2... P^Jis a basis for A by relating it to the dual basis of the group

algebra. Define x^eAby _ „ . . .k
0<k<p

for 0 < j < p and xo= 1+ 2 xy Then

(
0<k<p

2
0<k<p

= S

•{
— 1 if ij = 1 mod ̂ )

0 otherwise

and <w\ xo> = <«*, 1 +

1 if i = 0
0 if i 4= 0

so {x0, — «!, — x2 ... — Xp^} is the dual basis up to permutation.
Moreover (16) implies that tv = t so A has the desired algebra structure.
For the coalgebra structure we use the fact that the coproduct in A is dual the

product in the group algebra. We have

(ul ® u', t ® 1 + 1 ® t) = i

and (v? ® v?, A(<)> = (

so M = t ® 1 +1 ® 1.1
To proceed with the proof of Theorem 4, we now show that under the epimorphism

/:K{n)*K(n) ®Kln), Fpn->A (where n=p-l), f(tx) #= 0.

From the remarks following Theorem 13, tx can be regarded as a continuous function
from Sn to Fpn. It follows then that the non-triviality of f(tj) is equivalent to the non-
vanishing of the function tt on the non-trivial element of order p in Sn. Suppose
x e Sp_! is such an element. We can write
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with et e W(¥pn) and e\n = e^ Recalling that Tp~x = p, we compute

T)P mod (T)i+P

and (e1 T)*> = e^
p-D/(p-i)TP mod (jy+p

so it follows that ex + e^* - 1 ^ - " = 0 mod p.

(Remember that t^x) is the modp reduction of ev) Clearly one solution to this equation
is ex = 0 mod p and hence ex = 0. We exclude this possibility by showing that it implies
that x = 1. Suppose inductively that et = 0 for i < k. Then x = l+ekT

kmod(Th+1)
and a;" = l+pekT

kmod(Tk+lp) so e^sOmodp. Since e f - e f c = O, this implies
e& = 0.

Hence, if ex = Omodj), a; = 1, so tx is non-zero on non-trivial elements of order p,
so f(tj) #= 0.

Since/ is a map of Hopf algebras, /(tj) is primitive, so f{tj) = ct where ce¥pn is
non-zero. Now recall that

(Fp», Fpn) = H*(Z/(p); ¥pn) = -B(A) ® P(b),

where E( ) and P( ) denote exterior and polynomial algebras over Fpn respectively, and
h = [tjeH1

Let /* denote the composition

Then it follows that/*(&„) = -cA and/*(6i) = -cpi+1b and Theorem 4 is proved. |
Note that the scalar c must satisfy 1 + c(pP-*))/(*)-1) = 0. Since c*>p~ '-1 = 1, the equation

is equivalent to 1 +c(pP~1-1)/(*)-1) = 0. It follows that c = vfi>-1)12 for some generator
w> of Fpj>-i, so c is not contained in any proper subfield of Fpp-i. Hence tensoring with
this field is essential to the construction of the detecting map/.

3. The classical Adams spectral sequence. We now turn to the classical Adams spec-
tral sequence. Our result is

THEOREM 17. For p > 5, the elements bi+1 (i ^ 0) in the classical Adams spectral
sequence all support non-trivial differentials, i.e. none of them detect homotopy elements.

Before proving this, we describe the situation for p = 3. In a subsequent paper we
will compute the Novikov spectral sequence through a range of dimensions beyond
106, the dimension of b2. There we will see that dh fa = ± db b2 and b2 ± fa is a permanent
cycle. It reduces in the classical Adams spectral sequence to b2, which is therefore a
permanent cycle. (The element there corresponding to fa has filtration > 7 and
supports a non -trivial differential.) I t is quite possible that bi+1 for i ^ 2 is a permanent
cycle in the Adams spectral sequence for similar reasons.

To prove Theorem 17 we need the following information about Novikov E2-term.
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LEMMA 18. For p > 3

(i) Ext^iP^plBP^BP*) is generated by the [(t + 3)/2] elements ft^/pUi-u, where
j = 1,2,... [(i + 3)/2], au = (p*+2 +pi+*-21)/(p + 1), and [(i + 3)/2] is the largest integer
< (i + 3)/2. i?acA of these elements has order p.

(ii) Each of these elements except /̂ i+i/pi+i reduces to zero in

LEMMA 19. Forp 3s 5, any element ofExt%^gp(BPi)l,BPj).) (for i £s 0) wfticA maps to
bi+1 in the Adams E^-term supports a non-trivial differential d2p_v \

We will prove these Lemmas below. Note that the preceding discussion shows that
the Lemma 19 is false for̂ > = 3.

We now prove Theorem 17 modulo Lemmas 18 and 19. The natural map from the
Adams-Novikov to the classical Adams spectral sequence (see (20), section 9) comes
from a map of Adams resolutions. It follows that if a; is a permanent cycle in the Adams
2£2-term, there is a permanent cycle x in the Novikov 272-term which detects the same
element in homotopy as x and has filtration less than or equal to that of x, equality
holding if and only if x maps to x. Lemma 19 indicates that bi+1 is not the image of any
permanent cycle in filtration 2. Hence if bi+1 is a permanent cycle, there must be
permanent cycles Bi+1 in the Novikov E2-tevm having filtration 0 or 1. But the sparse-
ness property mentioned in the proof of Corollary 5 guarantees that no such elements
exist. |

Before proving the Lemmas we remark that in (20), corollary 9-6, we showed that for
p > 2, the only elements of Ext%* (¥p, ¥p) which could possibly detect homotopy
elements are the bt (i ^ 0), h0\ (i ^ 2) and 3 or 4 others (depending on#). Theorem 17
shows that the bi cannot be permanent cycles for i ^ 1 and p > 5. Whether the ele-
ments h0 ̂  survive is still an open question, as is that of the survival of 6? for i > 1.
Mahowald has recently shown (12) that for p = 2 the elements h± hi+1 (the analogues of
h0 ht) do survive and there is hope that his construction may generalize to odd primes.

Proof of Lemma 18. (i) Can be read off from the description of Ext^J# B P (Z?P#, BP*)
given in (19) or (20).

To prove (ii) we recall the definition of the elements in question. We have short exact
sequences of BP* BP-comodules

(20) ^ ^

(21) 0-+BP*/(p) ^ - U BP*/(p) - ^ BPJ(p, <+3-2J) -> 0.

Let <J0 and Sr denote the respective connecting homomorphisms. Then we have
^ e E x t V . B p ( ^ * > ^ * / t e , < + 8 ~ 2 J ) ) and ^ ^ t . - « = * , W ) . T h e element
fipi+i/pi+i (i-e. the above element for j = 1) can be shown to be bi+1 as follows. Since
(26)

(22)

and S0(tf
+") = bi+1. Moreover (22) implies that in ExtB P ,B P (BP*, BP*/(p)),

vp>+1q\ so <+2-p<+7f+l ~ v?**-Hv
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This element is the mod p reduction of p~"<~2#o(
vf*+1) a n d is therefore in ker So. Hence

< W < + 1 ) = <W<+8) = &i+i-
This definition of fipi+i/pi+i differs from that of (19) and (20), where for i > 0 it is

defined to be So

In principle one can compute this element explicitly in the cobar construction (see
(20), section 1) and reduce mod I3, but that would be very messy. A much easier method
can be devised using Yoneda's interpretation of elements in Ext groups as equivalence
classes of exact sequences (see for example (8), ch. rv). Consider the following diagram.

(28) J
, vlt v2) •^M1 • N2 • BPJ{p, <+3"2J) -> 0.

The top row is obtained by splicing (20) and (21) and it corresponds to an element in
Ext%PtBP(BP,,/(p,v%i**~ti),BP*). Composing this element with

gives fiatjtp^-^-

We let px be the standard surjection. It follows from Yoneda's result that if we
choose BP# SP-comodules M1 and M2, and comodule maps p2 and p3 such that the
diagram commutes and the bottom row is exact, then the latter will determine the

element of JZzt%PtBP(BP./lp,v?i+-%BPJ{p,v1,v2))

which, when composed with v^<i, will give the mod/3 reduction of fla. ./p<+a-«j. We
choose Mx = BP^/ipZ.pv!, v\,pv2) and M2 = BP*/(p, vl+vi+a'2J) and let^2 a,ndp3 be the
standard surjections. It is easy to check that Mt and M2 are comodules over BP^ BP,
i.e. that the corresponding ideals in BP+ are invariant. (The ideal used to define Mx is
simply I\ + I^I3.) Moreover, the resulting diagram has the desired properties.

The resulting bottom row of (23) is the splice of the 2 following short exact sequences.

(24) 0-+BPm/{p, vv »,) - ^ BP*/(p\pVl,pv2> v\)-+BPJ(p, v\) -* 0,

(25) 0 -> BPJlp, v\) - i > BP*/(p, vl+r>i+*-*i) -> BPJip, v?+—') -> 0.

Let #o, S[ denote the corresponding connecting homomorphisms. The element we are
interested in then is S'QS'^V^'J). Again, we refer the reader to (20), section 1, for a
description of the cobar construction used to make this computation.

To compute S'^vf'i) we use the formula d(v2) = (v2 +vxt\-v\tx)
n-v% implied by

(22), in the cobar construction for BP*/(p,vl+vi+3~2}). Recall that

for 1 ̂  j ^ [(»

Hence aitj = p^-u modpi+4-« and d(vp-i) = t#./»f'+I-^p?'+4-^> so

di(v?,i) = vb
2U[tfi+l-%

where bi} = aitj-p*+*-u = (pi+2-p*-*-2*)/(p + 1).
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For j = 1, bitl = 0 and

F o r j > 1, 6,- j- is divisible by p and dw§U s Omod(p*,pv1,v\) and

so cJJ tfgUeExtip,Bp (-BP*, BP*/(p,»?)) pulls back in (24) to an element of

E x t ^ B p (£P+, BPm/dP,pvltpva, ef)) and <j; *i(t$W) = 0,

completing the proof. |

Proof of Lemma 19. Any element of Ext^p^Bp (-&?„,, BP*) can be written uniquelyas
cbi+1 + x where a; is in the subgroup generated by the elements /?a< ,ipi+a-tj for j > 1.
In (20), theorem 9-4, we showed that x maps to zero in the classical Adams 2?2-term.
Hence it suffices to show that no such x can have the property

In (30) Smith showed that for p ^ 5 there is an 8-cell spectrum F(2) with
(2) = BP*/(p,vltvz), and a map f:8°->V(2) inducing a surjection in BP

homology. / also induces the standard map

/ , : ExtBP. BP (BP*, BPm) -> ExtBP. BP (fiP*.

Lemma 16 asserts that f^ifi^ /̂p<+»-«i) = 0 for j > 1, so/+(d2p-i(^)) = 0 where x is as
above. However, Theorem 3 and the proof of Theorem 4 show that

9*(dip-!(bi+1)) * 0

where g* is induced by the obvious map

Since g factors through BP*/I3, this shows that f*(d2p-i(bi+1)) 4= 0, completing the
proof. |
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